Scolaris Content Display Scolaris Content Display

運動後の筋肉痛を予防および軽減するための抗酸化物質

Background

Muscle soreness typically occurs after intense exercise, unaccustomed exercise or actions that involve eccentric contractions where the muscle lengthens while under tension. It peaks between 24 and 72 hours after the initial bout of exercise. Many people take antioxidant supplements or antioxidant‐enriched foods before and after exercise in the belief that these will prevent or reduce muscle soreness after exercise.

Objectives

To assess the effects (benefits and harms) of antioxidant supplements and antioxidant‐enriched foods for preventing and reducing the severity and duration of delayed onset muscle soreness following exercise.

Search methods

We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017.

Selection criteria

We included randomised and quasi‐randomised controlled trials investigating the effects of all forms of antioxidant supplementation including specific antioxidant supplements (e.g. tablets, powders, concentrates) and antioxidant‐enriched foods or diets on preventing or reducing delayed onset muscle soreness (DOMS). We excluded studies where antioxidant supplementation was combined with another supplement.

Data collection and analysis

Two review authors independently screened search results, assessed risk of bias and extracted data from included trials using a pre‐piloted form. Where appropriate, we pooled results of comparable trials, generally using the random‐effects model. The outcomes selected for presentation in the 'Summary of findings' table were muscle soreness, collected at times up to 6 hours, 24, 48, 72 and 96 hours post‐exercise, subjective recovery and adverse effects. We assessed the quality of the evidence using GRADE.

Main results

Fifty randomised, placebo‐controlled trials were included, 12 of which used a cross‐over design. Of the 1089 participants, 961 (88.2%) were male and 128 (11.8%) were female. The age range for participants was between 16 and 55 years and training status varied from sedentary to moderately trained. The trials were heterogeneous, including the timing (pre‐exercise or post‐exercise), frequency, dose, duration and type of antioxidant supplementation, and the type of preceding exercise. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings.

We tested only one comparison: antioxidant supplements versus control (placebo). No studies compared high‐dose versus low‐dose, where the low‐dose supplementation was within normal or recommended levels for the antioxidant involved.

Pooled results for muscle soreness indicated a small difference in favour of antioxidant supplementation after DOMS‐inducing exercise at all main follow‐ups: up to 6 hours (standardised mean difference (SMD) ‐0.30, 95% confidence interval (CI) ‐0.56 to ‐0.04; 525 participants, 21 studies; low‐quality evidence); at 24 hours (SMD ‐0.13, 95% CI ‐0.27 to 0.00; 936 participants, 41 studies; moderate‐quality evidence); at 48 hours (SMD ‐0.24, 95% CI ‐0.42 to ‐0.07; 1047 participants, 45 studies; low‐quality evidence); at 72 hours (SMD ‐0.19, 95% CI ‐0.38 to ‐0.00; 657 participants, 28 studies; moderate‐quality evidence), and little difference at 96 hours (SMD ‐0.05, 95% CI ‐0.29 to 0.19; 436 participants, 17 studies; low‐quality evidence). When we rescaled to a 0 to 10 cm scale in order to quantify the actual difference between groups, we found that the 95% CIs for all five follow‐up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD ‐0.52, 95% CI ‐0.95 to ‐0.08); at 24 hours (MD ‐0.17, 95% CI ‐0.42 to 0.07); at 48 hours (MD ‐0.41, 95% CI ‐0.69 to ‐0.12); at 72 hours (MD ‐0.29, 95% CI ‐0.59 to 0.02); and at 96 hours (MD ‐0.03, 95% CI ‐0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. Neither of our subgroup analyses to examine for differences in effect according to type of DOMS‐inducing exercise (mechanical versus whole body aerobic) or according to funding source confirmed subgroup differences. Sensitivity analyses excluding cross‐over trials showed that their inclusion had no important impact on results.

None of the 50 included trials measured subjective recovery (return to previous activities without signs or symptoms).

There is very little evidence regarding the potential adverse effects of taking antioxidant supplements as this outcome was reported in only nine trials (216 participants). From the studies that did report adverse effects, two of the nine trials found adverse effects. All six participants in the antioxidant group of one trial had diarrhoea and four of these also had mild indigestion; these are well‐known side effects of the particular antioxidant used in this trial. One of 26 participants in a second trial had mild gastrointestinal distress.

Authors' conclusions

There is moderate to low‐quality evidence that high dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise at up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements. The findings of, and messages from, this review provide an opportunity for researchers and other stakeholders to come together and consider what are the priorities, and underlying justifications, for future research in this area.

PICO

Population
Intervention
Comparison
Outcome

El uso y la enseñanza del modelo PICO están muy extendidos en el ámbito de la atención sanitaria basada en la evidencia para formular preguntas y estrategias de búsqueda y para caracterizar estudios o metanálisis clínicos. PICO son las siglas en inglés de cuatro posibles componentes de una pregunta de investigación: paciente, población o problema; intervención; comparación; desenlace (outcome).

Para saber más sobre el uso del modelo PICO, puede consultar el Manual Cochrane.

運動後の筋肉痛を予防および軽減するための抗酸化物質

背景およびレビューの目的

筋肉痛は通常、強力なまたは慣れない運動の後に起こる。運動を始めてから24〜72時間がピークである。多くの人々は、抗酸化物質が運動後の筋肉痛を予防または軽減すると信じていることから、運動の前後で、ビタミンCやEなどの抗酸化サプリメント、酸味の強いチェリーやザクロのジュースなど抗酸化物質を多く含む食物を摂取している。

検索の結果

2017年2月現在の医療データベースで、抗酸化物質補充とプラセボ(抗酸化物質を含まない偽の錠剤や飲料)や無治療などを対照群とした比較試験を検索した。抗酸化物質補充とプラセボを比較した50試験を特定した。これらでは、合計1089例の結果が報告されていた。これらのうち、約10分の9が男性であった。年齢は16〜55歳であり、トレーニング状況は、時々から中程度のトレーニングまでさまざまであった。試験は、抗酸化物質サプリメントの種類や用量、筋肉痛の原因となるエクササイズの種類について、非常にばらつきがみられた。すべての試験で、推奨1日量よりも多い抗酸化物質が用いられていた。

主要な結果

高用量の抗酸化物質補充により、6時間以内と24、48、72時間後のフォローアップで筋肉痛のわずかな軽減が認められたが、96時間後では認められなかった。しかし、この軽減は非常にわずかであるため、違いが認められる可能性は低い。徴候や症状を伴うことなく前の活動に復帰するなど、主観的な回復に関連するアウトカムについて報告している試験はなかった。

有害作用を報告しているのは9試験のみであり、2試験でのみ、有害作用が認められた。1試験の抗酸化物質群の全6例で下痢が認められ、これらのうち4例で消化不良も認められた。これらは、この試験で使用された特定の抗酸化物質のよく知られた副作用である。2件目の試験で、26例中1例で胃腸障害が認められた。

エビデンスの質

筋肉痛に関するエビデンスの質は、「中程度」または「低い」と判定した。その主な理由は、試験の大半で、結果の信頼性に影響を与え得る面が認められたため、また、いくつかの症例では、試験の結果にばらつきが認められたためである。このことは、試験結果について不確実性があり、さらなる研究で我々の結論を変え得るエビデンスが得られる可能性があることを意味する。

レビューアの結論

抗酸化物質を補給しても、運動後1、2、3または4日目の早期に筋肉痛は軽減しないと考えられる。