Scolaris Content Display Scolaris Content Display

Antioxidantien zur Prävention und Reduktion von Muskelkater nach dem Sport

Background

Muscle soreness typically occurs after intense exercise, unaccustomed exercise or actions that involve eccentric contractions where the muscle lengthens while under tension. It peaks between 24 and 72 hours after the initial bout of exercise. Many people take antioxidant supplements or antioxidant‐enriched foods before and after exercise in the belief that these will prevent or reduce muscle soreness after exercise.

Objectives

To assess the effects (benefits and harms) of antioxidant supplements and antioxidant‐enriched foods for preventing and reducing the severity and duration of delayed onset muscle soreness following exercise.

Search methods

We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017.

Selection criteria

We included randomised and quasi‐randomised controlled trials investigating the effects of all forms of antioxidant supplementation including specific antioxidant supplements (e.g. tablets, powders, concentrates) and antioxidant‐enriched foods or diets on preventing or reducing delayed onset muscle soreness (DOMS). We excluded studies where antioxidant supplementation was combined with another supplement.

Data collection and analysis

Two review authors independently screened search results, assessed risk of bias and extracted data from included trials using a pre‐piloted form. Where appropriate, we pooled results of comparable trials, generally using the random‐effects model. The outcomes selected for presentation in the 'Summary of findings' table were muscle soreness, collected at times up to 6 hours, 24, 48, 72 and 96 hours post‐exercise, subjective recovery and adverse effects. We assessed the quality of the evidence using GRADE.

Main results

Fifty randomised, placebo‐controlled trials were included, 12 of which used a cross‐over design. Of the 1089 participants, 961 (88.2%) were male and 128 (11.8%) were female. The age range for participants was between 16 and 55 years and training status varied from sedentary to moderately trained. The trials were heterogeneous, including the timing (pre‐exercise or post‐exercise), frequency, dose, duration and type of antioxidant supplementation, and the type of preceding exercise. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings.

We tested only one comparison: antioxidant supplements versus control (placebo). No studies compared high‐dose versus low‐dose, where the low‐dose supplementation was within normal or recommended levels for the antioxidant involved.

Pooled results for muscle soreness indicated a small difference in favour of antioxidant supplementation after DOMS‐inducing exercise at all main follow‐ups: up to 6 hours (standardised mean difference (SMD) ‐0.30, 95% confidence interval (CI) ‐0.56 to ‐0.04; 525 participants, 21 studies; low‐quality evidence); at 24 hours (SMD ‐0.13, 95% CI ‐0.27 to 0.00; 936 participants, 41 studies; moderate‐quality evidence); at 48 hours (SMD ‐0.24, 95% CI ‐0.42 to ‐0.07; 1047 participants, 45 studies; low‐quality evidence); at 72 hours (SMD ‐0.19, 95% CI ‐0.38 to ‐0.00; 657 participants, 28 studies; moderate‐quality evidence), and little difference at 96 hours (SMD ‐0.05, 95% CI ‐0.29 to 0.19; 436 participants, 17 studies; low‐quality evidence). When we rescaled to a 0 to 10 cm scale in order to quantify the actual difference between groups, we found that the 95% CIs for all five follow‐up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD ‐0.52, 95% CI ‐0.95 to ‐0.08); at 24 hours (MD ‐0.17, 95% CI ‐0.42 to 0.07); at 48 hours (MD ‐0.41, 95% CI ‐0.69 to ‐0.12); at 72 hours (MD ‐0.29, 95% CI ‐0.59 to 0.02); and at 96 hours (MD ‐0.03, 95% CI ‐0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. Neither of our subgroup analyses to examine for differences in effect according to type of DOMS‐inducing exercise (mechanical versus whole body aerobic) or according to funding source confirmed subgroup differences. Sensitivity analyses excluding cross‐over trials showed that their inclusion had no important impact on results.

None of the 50 included trials measured subjective recovery (return to previous activities without signs or symptoms).

There is very little evidence regarding the potential adverse effects of taking antioxidant supplements as this outcome was reported in only nine trials (216 participants). From the studies that did report adverse effects, two of the nine trials found adverse effects. All six participants in the antioxidant group of one trial had diarrhoea and four of these also had mild indigestion; these are well‐known side effects of the particular antioxidant used in this trial. One of 26 participants in a second trial had mild gastrointestinal distress.

Authors' conclusions

There is moderate to low‐quality evidence that high dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise at up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements. The findings of, and messages from, this review provide an opportunity for researchers and other stakeholders to come together and consider what are the priorities, and underlying justifications, for future research in this area.

PICO

Population
Intervention
Comparison
Outcome

El uso y la enseñanza del modelo PICO están muy extendidos en el ámbito de la atención sanitaria basada en la evidencia para formular preguntas y estrategias de búsqueda y para caracterizar estudios o metanálisis clínicos. PICO son las siglas en inglés de cuatro posibles componentes de una pregunta de investigación: paciente, población o problema; intervención; comparación; desenlace (outcome).

Para saber más sobre el uso del modelo PICO, puede consultar el Manual Cochrane.

Antioxidantien zur Prävention und Reduktion von Muskelkater nach dem Sport

Hintergrund und Ziele des Reviews

Muskelkater tritt typischerweise nach intensivem oder ungewohntem Training auf. Er erreicht seinen Höhepunkt zwischen 24 und 72 Stunden nach dem ersten Trainingsdurchgang. Viele Menschen nehmen nahrungsergänzende Antioxidantien wie Vitamin C und/oder E oder antioxidantienreiche Nahrungsmittel wie Sauerkirsch‐ oder Granatapfelsaft vor und nach dem Training zu sich, in der Hoffnung, dass diese Muskelkater nach dem Sport vorbeugen oder lindern.

Suchergebnisse

Wir durchsuchten medizinische Datenbanken bis Februar 2017 nach Studien, die eine Nahrungsergänzung mit Antioxidantien mit Kontrollinterventionen wie Placebo (Scheintablette oder –getränk ohne Antioxidantien) oder keiner Behandlung verglichen. Wir fanden 50 Studien, die alle eine Nahrungsergänzung mit Antioxidantien mit Placebo verglichen. Diese berichten Ergebnisse von insgesamt 1089 Teilnehmern, von denen fast 9 von 10 männlich waren. Die Altersspanne der Teilnehmer lag zwischen 16 und 55 Jahren, und ihr Trainingsstatus variierte von bewegungsarm bis zu mäßig trainiert. Die Studien unterschieden sich stark in Art und Dosierung des nahrungsergänzenden Antioxidans und der Art des Trainings, das den Muskelkater hervorrief. Alle Studien nutzten eine Antioxidantiendosis, die höher war als die empfohlene Tagesmenge.

Hauptergebnisse

Es gibt Evidenz dafür, dass hochdosierte Nahrungsergänzung mit Antioxidantien bis zu 6 Stunden nach dem Sport und nach 24, 48 und 72 Stunden den Muskelkater etwas reduzieren könnte, nicht aber nach 96 Stunden. Jedoch waren diese Verminderungen so klein, dass sie wahrscheinlich keinen Unterschied machen. Keine der Studien berichtete von Endpunkten bezüglich subjektiver Erholung, wie beispielsweise die Rückkehr zu vorausgegangenen Aktivitäten ohne Symptomatik.

Nur neun Studien berichteten über unerwünschte Wirkungen und in nur zwei dieser Studien traten unerwünschte Wirkungen auf. Alle sechs Teilnehmer in der Antioxidantiengruppe einer Studie hatten Durchfall und vier von ihnen hatten außerdem leichte Verdauungsstörungen. Dies sind bekannte Nebenwirkungen des in dieser Studie benutzten Antioxidans. Einer von 26 Teilnehmern in einer zweiten Studie hatte leichte Magen‐Darm‐Verstimmungen.

Qualität der Evidenz

Wir bewerteten die Qualität der Evidenz bei Muskelkater als moderat bis niedrig. Dies ist hauptsächlich darauf zurückzuführen, dass die Mehrzahl der Studien Aspekte enthielt, die die Verlässlichkeit der Ergebnisse beeinflusst haben könnten und in einigen Fällen auf die Variabilität der Studienergebnisse. Dies bedeutet, dass Ungewissheit über die Ergebnisse besteht und weitere Forschung möglicherweise Evidenz liefern könnte, die unsere Schlussfolgerungen verändern könnte.

Schlussfolgerungen der Autoren

Nahrungsergänzende Antioxidantien scheinen Muskelkater weder frühzeitig noch nach ein, zwei, drei oder vier Tagen nach dem Sport zu reduzieren.