Scolaris Content Display Scolaris Content Display

Educación del paciente para la prevención de la úlcera del pie diabético

Appendices

Appendix 1. 'Risk of bias' table judgement criteria

1.  Was the allocation sequence randomly generated?

Low risk of bias

The investigators describe a random component in the sequence generation process such as: referring to a random number table; using a computer random number generator; coin tossing; shuffling cards or envelopes; throwing dice; drawing of lots.

High risk of bias

The investigators describe a non‐random component in the sequence generation process. Usually, the description would involve some systematic, non‐random approach, for example: sequence generated by odd or even date of birth; sequence generated by some rule based on date (or day) of admission; sequence generated by some rule based on hospital or clinic record number.

Unclear

Insufficient information about the sequence generation process to permit judgement of low or high risk of bias.

2.  Was the treatment allocation adequately concealed?

Low risk of bias

Participants and investigators enrolling participants could not foresee assignment because one of the following, or an equivalent method, was used to conceal allocation: central allocation (including telephone, web‐based and pharmacy‐controlled randomisation); sequentially‐numbered drug containers of identical appearance; sequentially‐numbered, opaque, sealed envelopes.

High risk of bias

Participants or investigators enrolling participants could possibly foresee assignments and thus introduce selection bias, such as allocation based on: using an open random allocation schedule (e.g. a list of random numbers); assignment envelopes were used without appropriate safeguards (e.g. if envelopes were unsealed or non opaque or not sequentially numbered); alternation or rotation; date of birth; case record number; any other explicitly unconcealed procedure.

Unclear

Insufficient information to permit judgement of low or high risk of bias. This is usually the case if the method of concealment is not described or not described in sufficient detail to allow a definite judgement, for example if the use of assignment envelopes is described, but it remains unclear whether envelopes were sequentially numbered, opaque and sealed.

3.  Blinding ‐ was knowledge of the allocated interventions adequately prevented during the study?

Low risk of bias

Any one of the following.

  • No blinding, but the review authors judge that the outcome and the outcome measurement are not likely to be influenced by lack of blinding.

  • Blinding of participants and key study personnel ensured, and unlikely that the blinding could have been broken.

  • Either participants or some key study personnel were not blinded, but outcome assessment was blinded and the non‐blinding of others unlikely to introduce bias.

High risk of bias

Any one of the following.

  • No blinding or incomplete blinding, and the outcome or outcome measurement is likely to be influenced by lack of blinding.

  • Blinding of key study participants and personnel attempted, but likely that the blinding could have been broken.

  • Either participants or some key study personnel were not blinded, and the non‐blinding of others likely to introduce bias.

Unclear

Any one of the following.

  • Insufficient information to permit judgement of low or high risk of bias.

  • The study did not address this outcome.

4. Were incomplete outcome data adequately addressed?

Low risk of bias

Any one of the following.

  • No missing outcome data.

  • Reasons for missing outcome data unlikely to be related to true outcome (for survival data, censoring unlikely to be introducing bias).

  • Missing outcome data balanced in numbers across intervention groups, with similar reasons for missing data across groups.

  • For dichotomous outcome data, the proportion of missing outcomes compared with observed event risk not enough to have a clinically relevant impact on the intervention effect estimate.

  • For continuous outcome data, plausible effect size (difference in means or standardised difference in means) among missing outcomes not enough to have a clinically relevant impact on observed effect size.

  • Missing data have been imputed using appropriate methods.

High risk of bias

Any one of the following.

  • Reason for missing outcome data likely to be related to true outcome, with either imbalance in numbers or reasons for missing data across intervention groups.

  • For dichotomous outcome data, the proportion of missing outcomes compared with observed event risk enough to induce clinically relevant bias in intervention effect estimate.

  • For continuous outcome data, plausible effect size (difference in means or standardised difference in means) among missing outcomes enough to induce clinically relevant bias in observed effect size.

  • ‘As‐treated’ analysis done with substantial departure of the intervention received from that assigned at randomisation.

  • Potentially inappropriate application of simple imputation.

Unclear

Any one of the following.

  • Insufficient reporting of attrition/exclusions to permit judgement of low or high risk of bias (e.g. number randomised not stated, no reasons for missing data provided).

  • The study did not address this outcome.

5. Are reports of the study free of suggestion of selective outcome reporting?

Low risk of bias

Any of the following.

  • The study protocol is available and all of the study’s pre‐specified (primary and secondary) outcomes that are of interest in the review have been reported in the pre‐specified way.

  • The study protocol is not available but it is clear that the published reports include all expected outcomes, including those that were pre‐specified (convincing text of this nature may be uncommon)

High risk of bias

Any one of the following.

  • Not all of the study’s pre‐specified primary outcomes have been reported.

  • One or more primary outcomes is reported using measurements, analysis methods or subsets of the data (e.g. subscales) that were not pre‐specified.

  • One or more reported primary outcomes were not pre‐specified (unless clear justification for their reporting is provided, such as an unexpected adverse effect).

  • One or more outcomes of interest in the review are reported incompletely so that they cannot be entered in a meta‐analysis.

  • The study report fails to include results for a key outcome that would be expected to have been reported for such a study.

Unclear

Insufficient information to permit judgement of low or high risk of bias. It is likely that the majority of studies will fall into this category.

6. Other sources of potential bias

Low risk of bias

The study appears to be free of other sources of bias.

High risk of bias

There is at least one important risk of bias. For example, the study:

  • had a potential source of bias related to the specific study design used; or

  • has been claimed to have been fraudulent; or

  • had some other problem.

Unclear

There may be a risk of bias, but there is either:

  • insufficient information to assess whether an important risk of bias exists; or

  • insufficient rationale or evidence that an identified problem will introduce bias.

Appendix 2. Electronic searches

For the third update the search strings were run in the following electronic databases:

  • The Cochrane Wounds Group Specialised Register (searched 1 August 2012);

  • The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 7);

  • Ovid MEDLINE (2009 to July Week 3 2012);

  • Ovid MEDLINE (In‐Process & Other Non‐Indexed Citations, July 31, 2012);

  • Ovid EMBASE (2009 to 2012 Week 30);

  • EBSCO CINAHL (2009 to 26 July 2012).

The following search strategy was used for CENTRAL:

#1 MeSH descriptor Education explode all trees
#2 patient NEAR/3 education*
#3 diabetes NEAR/3 education*
#4 patient NEAR/3 information
#5 education* NEAR/2 program*
#6 (foot NEXT care) or footcare
#7 leaflet* or booklet* or pamphlet* or "poster" or "posters"
#8 (written or printed or oral) NEAR/3 information
#9 academic NEXT detailing
#10 training NEXT program*
#11 algorithm* or (decision NEXT tree*)
#12 (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11)
#13 MeSH descriptor Foot Ulcer explode all trees
#14 MeSH descriptor Diabetic Foot explode all trees
#15 diabet* NEAR/3 ulcer*
#16 diabet* NEAR/3 (foot or feet)
#17 diabet* NEAR/3 infection*
#18 diabet* NEAR/3 wound*
#19 (#13 OR #14 OR #15 OR #16 OR #17 OR #18)
#20 (#12 AND #19)

The search strategies for Ovid MEDLINE, Ovid EMBASE and EBSCO CINAHL can be found in Appendix 2, Appendix 3 and Appendix 4 respectively. The Ovid MEDLINE search was combined with the Cochrane Highly Sensitive Search Strategy for identifying randomised trials in MEDLINE: sensitivity‐ and precision‐maximizing version (2008 revision); Ovid format. The EMBASE and CINAHL searches were combined with the trial filters developed by the Scottish Intercollegiate Guidelines Network (SIGN). No date or language restrictions were applied.

Appendix 3. Ovid MEDLINE search strategy

1 exp Education/
2 (patient adj3 education).ti,ab.
3 (diabetes adj3 education).ti,ab.
4 (patient adj3 information).ti,ab.
5 (education adj2 program$).ti,ab.
6 (foot care or footcare).ti,ab.
7 (leaflet$ or booklet$ or pamphlet$ or poster$).ti,ab.
8 ((written or printed or oral) adj3 information).ti,ab.
9 academic detailing.ti,ab.
10 training program$.ti,ab.
11 (algorithm$ or decision tree$).ti,ab.
12 or/1‐11
13 exp Foot Ulcer/
14 exp Diabetic Foot/
15 (diabet$ adj3 ulcer$).ti,ab.
16 (diabet$ adj3 (foot or feet)).ti,ab.
17 or/13‐16
18 12 and 17

Appendix 4. Ovid EMBASE search strategy

1 exp Education/
2 (patient adj3 education).ti,ab.
3 (diabetes adj3 education).ti,ab.
4 (patient adj3 information).ti,ab.
5 (education adj2 program$).ti,ab.
6 (foot care or footcare).ti,ab.
7 (leaflet$ or booklet$ or pamphlet$ or poster$).ti,ab.
8 ((written or printed or oral) adj3 information).ti,ab.
9 academic detailing.ti,ab.
10 training program$.ti,ab.
11 (algorithm$ or decision tree$).ti,ab.
12 or/1‐11
13 exp Foot Ulcer/
14 exp Diabetic Foot/
15 (diabet$ adj3 ulcer$).ti,ab.
16 (diabet$ adj3 (foot or feet)).ti,ab.
17 or/13‐16
18 12 and 17

Appendix 5. EBSCO CINAHL search strategy

S21 S13 and S20
S20 S14 or S15 or S16 or S17 or S18 or S19
S19 TI diabet* N3 wound* or AB diabet* N3 wound*
S18 TI diabet* N3 infection* or AB diabet* N3 infection*
S17 TI ( diabet* N3 foot or diabet* N3 feet ) or AB ( diabet* N3 foot or diabet* N3 feet )
S16 TI diabet* N3 ulcer* or AB diabet* N3 ulcer*
S15 (MH "Diabetic Foot")
S14 (MH "Foot Ulcer+")
S13 S1 or S2 or S3 or S4 or S5 or S6 or S7 or S8 or S9 or S10 or S11 or S12
S12 TI ( algorithm* or decision tree* ) or AB ( algorithm* or decision tree* )
S11 TI training program* or AB training program*
S10 TI academic detailing or AB academic detailing
S9 TI ( written N3 information or printed N3 information or oral N3 information ) or AB ( written N3 information or printed N3 information or oral N3 information )
S8 TI ( leaflet* or booklet* or pamphlet* or poster or posters ) or AB ( leaflet* or booklet* or pamphlet* or poster or posters )
S7 TI ( foot care or footcare ) or AB ( foot care or footcare )
S6 (MH "Foot Care")
S5 TI education* N3 program* or AB education* N3 program*
S4 TI diabetes N3 information or AB diabetes N3 information
S3 TI diabetes N3 education* or AB diabetes N3 education*
S2 TI patient N3 education* or AB patient N3 education*
S1 (MH "Patient Education+")

Methodological quality summary: review authors' judgements about each methodological quality item for each included study.
Figuras y tablas -
Figure 1

Methodological quality summary: review authors' judgements about each methodological quality item for each included study.

Comparison 1 Effects of intensive versus brief education in high risk patient samples, Outcome 1 Foot ulcer incidence (1‐year follow‐up).
Figuras y tablas -
Analysis 1.1

Comparison 1 Effects of intensive versus brief education in high risk patient samples, Outcome 1 Foot ulcer incidence (1‐year follow‐up).

Comparison 1 Effects of intensive versus brief education in high risk patient samples, Outcome 2 Amputation Rate (1‐year follow‐up).
Figuras y tablas -
Analysis 1.2

Comparison 1 Effects of intensive versus brief education in high risk patient samples, Outcome 2 Amputation Rate (1‐year follow‐up).

Comparison 1 Effects of intensive versus brief education in high risk patient samples, Outcome 3 Foot ulcer incidence (1‐year follow‐up).
Figuras y tablas -
Analysis 1.3

Comparison 1 Effects of intensive versus brief education in high risk patient samples, Outcome 3 Foot ulcer incidence (1‐year follow‐up).

Comparison 1 Effects of intensive versus brief education in high risk patient samples, Outcome 4 Amputation rate (1‐year follow‐up).
Figuras y tablas -
Analysis 1.4

Comparison 1 Effects of intensive versus brief education in high risk patient samples, Outcome 4 Amputation rate (1‐year follow‐up).

Table 1. Results from trials

Study ID

Primary outcomes

Secondary outcomes

Barth 1991

No primary outcomes reported

Foot problems requiring treatment:
Significant reduction in intervention after 1 month (P < 0.001), maintained until final follow‐up at 6 months
Reduction was significantly smaller in control than in intervention after 1 month (P < 0.006), but not after 6 months (P = 0.216)

Foot care knowledge:
Significant increase in both groups at 1 month (P < 0.001), but more in intervention than in control (P < 0.001). Changes were maintained until final follow‐up at 6 months

Foot care routine compliance:
Significant increase in intervention after 1 month (P < 0.001), maintained until final follow‐up
Increase was significantly greater in intervention than in control after 1 month (P = 0.012)

Bloomgarden 1987

Ulcer or amputation:
people with no foot lesions at baseline:
intervention 2/83 vs control 2/63

people with callus, nail dystrophy or fungal infection at baseline: intervention 2/37 vs control 3/63

people with an ulcer or amputation at baseline: intervention 6/7 vs control 11/13

Callus, nail dystrophy and fungal infection:
people with no foot lesions at baseline: intervention 31/83 vs control 28/63 (ns)
people with callus, nail dystrophy or fungal infection at baseline: intervention 24/37 vs control 46/63 (ns)
people with an ulcer or amputation at baseline: intervention 1/7 vs control 1/13 (ns)

Behaviour assessment scores:
intervention from 3.4 to 4.3. Control from 3.6 to 4.1 (P = 0.10). Separate data for foot care not provided

Borges 2004

No primary outcomes reported

Patients' self‐reported behaviour assessment scores:
intervention from 4.7 to 5.6 (P < 0.01). RA from 4.8 to 5.2 (P = 0.06). C from 5.1 to 5.4 (P < 0.05)

Observed self‐care behaviour:
4 of 16 items significantly (P < 0.05) more observed in intervention than in control

Foot care knowledge scores:
Increased within the control group, but not in the intervention or RA groups

Cisneros 2010

Ulcer incidence:

people without a history of foot ulceration: intervention 8/21 vs control 8/14 (P = 0.317)

Patient with a history of foot ulceration: intervention 1/8 vs control 5/8 (P = 0.119)

All people: difference between the survival curves of intervention and control (P = 0.362) (HR not reported)

No secondary outcomes reported

Corbett 2003

No primary outcomes reported

Foot care knowledge scores:
intervention from 4.9 to 6.1 vs control from 4.6 to 5.2 (P = 0.03)

Foot care practice scores:
intervention from 4.3 to 5.6 vs control from 4.1 to 4.3 (P = 0.007)

Frank 2003

No primary outcomes reported

Foot care knowledge scores:
Means: intervention 20.98 (SD 2.46) vs control 18.60 (SD 2.93), (P < 0.001)
Mean differences: intervention 2.33 (SD 2.49) vs control 1.10 (SD 2.89), (P = 0.028)

Patients' behaviour assessment:
(mean number of days per week)
Checking feet: intervention 6.33 vs control 5.88 (P = 0.203). Mean differences: intervention 1.13 vs control 1.35 (P = 0.708)
Washing feet: intervention 5.75 vs control 5.94 (P = 0.573). Mean differences: intervention 0.58 vs control 0.52 (P = 0.863)
Applying lotion: intervention 5.96 vs control 4.94 (P = 0.044). Mean differences: intervention 1.42 vs control 0.75 (,P = 0.191)
Wearing shoes and socks: intervention 5.60 vs control 5.42 (P = 0.705). Mean differences: intervention 1.90 vs control 0.50 (P = 0.036)

Kruger 1992

No primary outcomes reported

Foot status:
No significant difference.

Foot care knowledge scores:
intervention from 9.1 to 10.0 vs control from 8.66 to 9.86, statistically significant increase in control group (P = 0.02), but not in the intervention group (P = 0.078)

Behaviour assessment:
Daily foot inspection: intervention from 52.5% to 66.7% vs control from 34.8% to 66.7% (ns)
Daily foot washing: intervention from 82.6% to 86.7% vs control from 74.1% to 73.3% (statistically significant increase in intervention group)
Use of pumice stones for corns: intervention from 4.3% to 26.7% vs control from 3.7% to 26.7% (ns)
Trimming toenails regularly: intervention from 34.8% to 80.0% vs control from 66.7% to 66.7% (statistically significant increase in intervention group)
Improvement in keeping toenails shorter: intervention from 30.4% to 80.0% vs control from 66.7% to 86.7% (ns)

Lincoln 2008

Ulcer incidence:
After 6 months: intervention 26 vs control 18, RR 1.41 (95% CI 0.84 to 2.38)
After 12 months: intervention 36 vs control 35, RR 1.00 (95% CI 0.70 to 1.44)

Amputation rate:
After 6 months: intervention 3 vs control 0, RR not estimable
After 12 months: intervention 9 vs control 9, RR 0.98 (95% CI 0.41 to 2.34)

Behaviour assessment scores:
intervention 42.0 vs control 38.7 (P = 0.03)

Malone 1989

Ulcer incidence:
intervention 8 vs control 26; significantly lower in intervention group (P ≤ 0.005)

Amputation rate:
intervention 7 vs control 21; significantly lower in intervention group (P < 0.025)

No secondary outcomes reported

Mazzuca 1986

No primary outcomes reported

Foot care knowledge scores:
No significant difference

Rettig 1986

No primary outcomes reported

Foot appearance scores (mean ±standard error):
intervention 70.2 ± 0.7 vs control 68.8 ±0.7 (ns)

Foot care knowledge scores:
intervention 62.2 ±1.7 vs control 53.1 ± 1.8 (P = 0.001). Significant increase in intervention group

Foot care skills scores:
intervention 71.8 ±2.0 vs control 68.9 ± 1.8 (ns)

Rönnemaa 1997

Amputation:
1‐year follow‐up: intervention 0 vs control 0

7‐year follow‐up: intervention 1 vs control 0

Foot ulceration:
1‐year follow‐up: intervention 1 vs control 0

7‐year follow‐up: intervention 1 vs control 1

Callus development:
1‐year follow‐up:

Calcaneal region:

  • presence of callus: intervention from 18.5% to 12.0% vs control from 16.8% to 15.5% (ns)

  • mean diameter: intervention from 40.5 mm (SD 30.8 mm) to 25.5 mm (SD 28.8 mm) vs control from 30.6 mm (SD 28.5 mm) to 28.3 mm (SD 26.8 mm); statistically significant decrease in area of callosities at calcaneal region in intervention group (P = 0.065)

Other regions:

  • presence of callus: intervention from 54.5% to 39.5% vs control from 51.3% to 48.2%; significant decrease in callosities in intervention group (P < 0.009)

  • mean diameter: intervention from 16.6 mm (SD 10.2 mm) to 11.4 mm (SD 10.3 mm) vs control from 15.2 mm (SD 9.8 mm) to 14.4 mm (SD 9.9 mm); statistically significant decrease in area of callosities in intervention group (P < 0.001)

7‐year follow‐up:

Calcaneal region:

  • presence of callus: intervention 12.4% vs control 12.9%, RR 0.96 (95% CI 0.55 to 1.70)

Other regions:

  • presence of callus: intervention 23.1% vs control 30.1%, RR 0.77 (95% CI 0.53 to 1.01)

Foot care knowledge scores:
1‐year follow‐up:

  • intervention from 26.7 (SD 11.4) to 32.1 (SD 10.8) vs control from 26.1 (SD 11.8) to 29.2 (SD 12.6); statistically significant increase in intervention group (P = 0.004)

7‐year follow‐up:

  • mean scores: intervention 33.6 (SD 10.5) vs control 33.0 (SD 11.1) (ns)

Patients' behaviour assessment scores:
1‐year follow‐up:

  • mean scores: intervention from 5.4 (SD 2.8) to 7.0 (SD 3.2) vs control 5.3 (SD 2.6) to 6.0 (SD 2.5); statistically significant increase in intervention group

7‐year follow‐up:

  • mean scores: intervention 6.6 (SD 2.7) vs control 6.4 (SD 2.7) (ns)

Abbreviations: CI = confidence interval, ns = no statistical significance, RA = group that received risk assessment only, RR = risk ratio, SD = standard deviation.

Figuras y tablas -
Table 1. Results from trials
Comparison 1. Effects of intensive versus brief education in high risk patient samples

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Foot ulcer incidence (1‐year follow‐up) Show forest plot

1

354

Risk Ratio (M‐H, Fixed, 95% CI)

0.31 [0.14, 0.66]

2 Amputation Rate (1‐year follow‐up) Show forest plot

1

354

Risk Ratio (M‐H, Fixed, 95% CI)

0.33 [0.15, 0.76]

3 Foot ulcer incidence (1‐year follow‐up) Show forest plot

1

172

Risk Ratio (M‐H, Random, 95% CI)

1.00 [0.70, 1.44]

4 Amputation rate (1‐year follow‐up) Show forest plot

1

172

Risk Ratio (M‐H, Random, 95% CI)

0.98 [0.41, 2.34]

Figuras y tablas -
Comparison 1. Effects of intensive versus brief education in high risk patient samples