Scolaris Content Display Scolaris Content Display

Cochrane Database of Systematic Reviews

Antibióticos para recién nacidos con líquido amniótico teñido de meconio

Información

DOI:
https://doi.org/10.1002/14651858.CD006183.pub2Copiar DOI
Base de datos:
  1. Cochrane Database of Systematic Reviews
Versión publicada:
  1. 28 junio 2017see what's new
Tipo:
  1. Intervention
Etapa:
  1. Review
Grupo Editorial Cochrane:
  1. Grupo Cochrane de Neonatología

Copyright:
  1. Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Cifras del artículo

Altmetric:

Citado por:

Citado 0 veces por enlace Crossref Cited-by

Contraer

Autores

  • Lauren E Kelly

    Department of Paediatrics, University of Toronto Mount Sinai Hospital, Toronto, Canada

  • Sandesh Shivananda

    Division of Neonatology, McMaster Children's Hospital, Hamilton, Canada

  • Prashanth Murthy

    Pediatrics, University of Calgary, Calgary, Canada

    Rockyview General Hospital, Calgary, Canada

  • Ravisha Srinivasjois

    Neonatology and Paediatrics, University of Western Australia, Joondalup Health Campus, Joondalup, Australia

  • Prakeshkumar S Shah

    Correspondencia a: Department of Paediatrics and Institute of Health Policy, Management and Evaluation, University of Toronto Mount Sinai Hospital, Toronto, Canada

    [email protected]

Contributions of authors

LE Kelly searched the literature to identify trials, entered data in Revman, completed the analysis, drafted the first version of the manuscript, and reviewed the final version. S Shivananda and P Murthy wrote and revised the protocol and reviewed the final version. P Shah was involved in editing and revising the protocol, identifying trials, verifying data collection and analysis in Revman, and reviewing the final manuscript.

Sources of support

Internal sources

  • Shared Fellowship Program in Neonatal Perinatal Medicine, University of Toronto, Canada.

  • Mount Sinai Hospital, University of Toronto, Canada.

External sources

  • Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, USA.

    Editorial support of the Cochrane Neonatal Review Group has been funded by Federal funds from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, USA, under Contract No. HHSN275201600005C

Declarations of interest

None.

Acknowledgements

The review authors would like to acknowledge Colleen Ovelman and Yolanda Brasseau of the Cochrane Neonatal Review Group for assistance in running the search and for providing editorial support.

Version history

Published

Title

Stage

Authors

Version

2017 Jun 28

Antibiotics for neonates born through meconium‐stained amniotic fluid

Review

Lauren E Kelly, Sandesh Shivananda, Prashanth Murthy, Ravisha Srinivasjois, Prakeshkumar S Shah

https://doi.org/10.1002/14651858.CD006183.pub2

2006 Oct 18

Antibiotics for neonates born through meconium stained amniotic fluid

Protocol

Sandesh Shivananda, Prashanth Murthy, Prakeshkumar S Shah

https://doi.org/10.1002/14651858.CD006183

Differences between protocol and review

Post hoc outcomes identified during evaluation of included studies were added at the review authors' discretion. One review author has been added to this review.

Keywords

MeSH

PICO

Population
Intervention
Comparison
Outcome

El uso y la enseñanza del modelo PICO están muy extendidos en el ámbito de la atención sanitaria basada en la evidencia para formular preguntas y estrategias de búsqueda y para caracterizar estudios o metanálisis clínicos. PICO son las siglas en inglés de cuatro posibles componentes de una pregunta de investigación: paciente, población o problema; intervención; comparación; desenlace (outcome).

Para saber más sobre el uso del modelo PICO, puede consultar el Manual Cochrane.

Figure 1. Study flow diagram.
Figuras y tablas -
Figure 1

Figure 1. Study flow diagram.

Figure 2. Risk of bias summary: review authors' judgements about each risk of bias item for each included study.
Figuras y tablas -
Figure 2

Figure 2. Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Forest plot of comparison: Incidence of confirmed sepsis in symptomatic neonates within the first 28 days.
Figuras y tablas -
Figure 3

Forest plot of comparison: Incidence of confirmed sepsis in symptomatic neonates within the first 28 days.

Forest plot of comparison: Mortality in symptomatic neonates (before discharge).
Figuras y tablas -
Figure 4

Forest plot of comparison: Mortality in symptomatic neonates (before discharge).

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 1 Incidence of confirmed sepsis in first 28 days.
Figuras y tablas -
Analysis 1.1

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 1 Incidence of confirmed sepsis in first 28 days.

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 2 Mortality (before discharge).
Figuras y tablas -
Analysis 1.2

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 2 Mortality (before discharge).

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 3 Duration of oxygen therapy, days.
Figuras y tablas -
Analysis 1.3

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 3 Duration of oxygen therapy, days.

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 4 Duration of hospital stay, days.
Figuras y tablas -
Analysis 1.4

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 4 Duration of hospital stay, days.

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 5 Incidence of pulmonary air leak syndrome.
Figuras y tablas -
Analysis 1.5

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 5 Incidence of pulmonary air leak syndrome.

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 6 Incidence of mechanical ventilation.
Figuras y tablas -
Analysis 1.6

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 6 Incidence of mechanical ventilation.

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 7 Time to clear chest radiograph, days.
Figuras y tablas -
Analysis 1.7

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 7 Time to clear chest radiograph, days.

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 8 Incidence of respiratory failure.
Figuras y tablas -
Analysis 1.8

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 8 Incidence of respiratory failure.

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 9 Duration of respiratory distress, hours.
Figuras y tablas -
Analysis 1.9

Comparison 1 Antibiotics versus control (no antibiotics) in symptomatic neonates, Outcome 9 Duration of respiratory distress, hours.

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 1 Incidence of confirmed sepsis in first 28 days.
Figuras y tablas -
Analysis 2.1

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 1 Incidence of confirmed sepsis in first 28 days.

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 2 Mortality (before discharge).
Figuras y tablas -
Analysis 2.2

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 2 Mortality (before discharge).

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 3 Duration of mechanical ventilation, days.
Figuras y tablas -
Analysis 2.3

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 3 Duration of mechanical ventilation, days.

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 4 Duration of oxygen therapy, days.
Figuras y tablas -
Analysis 2.4

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 4 Duration of oxygen therapy, days.

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 5 Incidence of suspected sepsis.
Figuras y tablas -
Analysis 2.5

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 5 Incidence of suspected sepsis.

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 6 Incidence of intracranial haemorrhage.
Figuras y tablas -
Analysis 2.6

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 6 Incidence of intracranial haemorrhage.

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 7 Incidence of azotaemia.
Figuras y tablas -
Analysis 2.7

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 7 Incidence of azotaemia.

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 8 Incidence of oliguria.
Figuras y tablas -
Analysis 2.8

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 8 Incidence of oliguria.

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 9 Incidence of diarrhoea.
Figuras y tablas -
Analysis 2.9

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 9 Incidence of diarrhoea.

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 10 Incidence of mechanical ventilation.
Figuras y tablas -
Analysis 2.10

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 10 Incidence of mechanical ventilation.

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 11 Incidence of respiratory distress (Downe's score).
Figuras y tablas -
Analysis 2.11

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 11 Incidence of respiratory distress (Downe's score).

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 12 Duration of respiratory distress, hours.
Figuras y tablas -
Analysis 2.12

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 12 Duration of respiratory distress, hours.

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 13 Incidence of MAS.
Figuras y tablas -
Analysis 2.13

Comparison 2 Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates, Outcome 13 Incidence of MAS.

Summary of findings for the main comparison. Antibiotics compared with control (no antibiotics) in symptomatic neonates born through meconium‐stained amniotic fluid

Antibiotics compared with control (no antibiotics) in symptomatic neonates born through meconium‐stained amniotic fluid

Patient or population: symptomatic neonates born through meconium‐stained amniotic fluid
Setting: neonatal intensive care unit
Intervention: antibiotics
Comparison: control (no antibiotics)

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

Number of participants
(studies)

Quality of the evidence
(GRADE)

Comments

Risk with control (no antibiotics)

Risk with antibiotics

Incidence of confirmed sepsis in first 28 days

Study population

Not estimable

445
(3 RCTs)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to unclear risk of bias due to methodological limitations, including a large number of dropouts; and imprecision resulting from a small sample size

9 per 1000

0 per 1000
(0 to 0)

Mortality (before discharge)

Study population

RR 1.69
(0.23 to 12.53)

445
(3 RCTs)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to unclear risk of bias due to methodological limitations, including a large number of dropouts; and imprecision resulting from a small sample size

5 per 1000

8 per 1000
(1 to 57)

Duration of oxygen therapy, days

Mean duration of oxygen therapy (days) was 0

MD 0.85 days lower
(1.19 lower to 0.52 lower)

405
(2 RCTs)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to unclear risk of bias due to methodological limitations, including a large number of dropouts; and imprecision resulting from a small sample size

Duration of hospital stay, days

Mean duration of hospital stay (days) was 0

MD 0.16 days higher
(1.15 lower to 1.47 higher)

146
(1 RCT)

⊕⊕⊕⊝
MODERATE

Evidence was downgraded owing to imprecision resulting from a small sample size

Incidence of mechanical ventilation

Study population

RR 1.18
(0.52 to 2.67)

445
(3 RCTs)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to unclear risk of bias due to methodological limitations, including a large number of dropouts; and imprecision resulting from a small sample size

45 per 1000

53 per 1000
(24 to 121)

Incidence of respiratory failure

Study population

RR 1.20
(0.51 to 2.83)

405
(2 RCTs)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to unclear risk of bias due to methodological limitations, including a large number of dropouts; and imprecision resulting from a small sample size

41 per 1000

47 per 1000
(20 to 113)

*The risk in the intervention group (and its 95% confidence interval) is based on assumed risk in the comparison group and relative effect of the intervention (and its 95% CI)

CI: confidence interval; OR: odds ratio; RR: risk ratio

GRADE Working Group grades of evidence
High quality: We are very confident that the true effect lies close to the estimate of effect
Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of effect but may be substantially different
Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of effect
Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Figuras y tablas -
Summary of findings for the main comparison. Antibiotics compared with control (no antibiotics) in symptomatic neonates born through meconium‐stained amniotic fluid
Summary of findings 2. Antibiotics compared with control (no antibiotics) in asymptomatic neonates born through meconium‐stained amniotic fluid

Antibiotics compared with control (no antibiotics) in asymptomatic neonates born through meconium‐stained amniotic fluid

Patient or population: asymptomatic neonates born through meconium‐stained amniotic fluid
Setting: neonatal intensive care unit
Intervention: antibiotics
Comparison: control (no antibiotics)

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

Number of participants
(studies)

Quality of the evidence
(GRADE)

Comments

Risk with control (no antibiotics)

Risk with antibiotics

Incidence of confirmed sepsis in first 28 days

Study population

Not estimable

250
(1 RCT)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to very serious imprecision, as the results from this study have not been replicated

54 per 1000

0 per 1000
(0 to 0)

Mortality (before discharge)

Study population

RR 1.07
(0.22 to 5.18)

250
(1 RCT)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to very serious imprecision, as the results from this study have not been replicated

23 per 1000

25 per 1000
(5 to 120)

Duration of oxygen therapy, days

Mean duration of oxygen therapy (days) was 0

MD 0.43 days higher
(0.13 higher to 0.73 higher)

250
(1 RCT)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to very serious imprecision, as the results from this study have not been replicated

Incidence of suspected sepsis

Study population

Not estimable

250
(1 RCT)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to very serious imprecision, as the results from this study have not been replicated

109 per 1000

0 per 1000
(0 to 0)

Incidence of mechanical ventilation

Study population

RR 2.13
(0.55 to 8.34)

250
(1 RCT)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to very serious imprecision, as the results from this study have not been replicated

23 per 1000

50 per 1000
(13 to 194)

Duration of respiratory distress, hours

Mean duration of respiratory distress (hours) was 0

MD 6.87 higher
(4.22 higher to 9.52 higher)

250
(1 RCT)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to very serious imprecision, as the results from this study have not been replicated

Incidence of MAS

Study population

RR 1.17
(0.67 to 2.04)

250
(1 RCT)

⊕⊕⊝⊝
LOW

Evidence was downgraded owing to very serious imprecision, as the results from this study have not been replicated

155 per 1000

181 per 1000
(104 to 316)

*The risk in the intervention group (and its 95% confidence interval) is based on assumed risk in the comparison group and relative effect of the intervention (and its 95% CI)

CI: confidence interval; OR: odds ratio; RR: risk ratio

GRADE Working Group grades of evidence
High quality: We are very confident that the true effect lies close to the estimate of effect
Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of effect but may be substantially different
Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of effect
Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Figuras y tablas -
Summary of findings 2. Antibiotics compared with control (no antibiotics) in asymptomatic neonates born through meconium‐stained amniotic fluid
Comparison 1. Antibiotics versus control (no antibiotics) in symptomatic neonates

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Incidence of confirmed sepsis in first 28 days Show forest plot

3

445

Risk Difference (M‐H, Fixed, 95% CI)

0.00 [‐0.02, 0.03]

2 Mortality (before discharge) Show forest plot

3

445

Risk Difference (M‐H, Fixed, 95% CI)

0.00 [‐0.01, 0.02]

3 Duration of oxygen therapy, days Show forest plot

2

405

Mean Difference (IV, Fixed, 95% CI)

‐0.85 [‐1.19, ‐0.52]

4 Duration of hospital stay, days Show forest plot

1

146

Mean Difference (IV, Fixed, 95% CI)

0.16 [‐1.15, 1.47]

5 Incidence of pulmonary air leak syndrome Show forest plot

3

445

Risk Ratio (M‐H, Fixed, 95% CI)

1.50 [0.62, 3.67]

6 Incidence of mechanical ventilation Show forest plot

3

445

Risk Ratio (M‐H, Fixed, 95% CI)

1.18 [0.52, 2.67]

7 Time to clear chest radiograph, days Show forest plot

1

146

Mean Difference (IV, Fixed, 95% CI)

‐1.31 [‐3.04, 0.42]

8 Incidence of respiratory failure Show forest plot

2

405

Risk Difference (M‐H, Fixed, 95% CI)

0.01 [‐0.03, 0.05]

9 Duration of respiratory distress, hours Show forest plot

1

40

Mean Difference (IV, Random, 95% CI)

‐1.20 [‐25.59, 23.19]

Figuras y tablas -
Comparison 1. Antibiotics versus control (no antibiotics) in symptomatic neonates
Comparison 2. Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Incidence of confirmed sepsis in first 28 days Show forest plot

1

250

Risk Difference (M‐H, Fixed, 95% CI)

‐0.01 [‐0.07, 0.04]

2 Mortality (before discharge) Show forest plot

1

250

Risk Ratio (M‐H, Fixed, 95% CI)

1.07 [0.22, 5.18]

3 Duration of mechanical ventilation, days Show forest plot

1

250

Mean Difference (IV, Fixed, 95% CI)

0.26 [0.15, 0.37]

4 Duration of oxygen therapy, days Show forest plot

1

250

Mean Difference (IV, Fixed, 95% CI)

0.43 [0.13, 0.73]

5 Incidence of suspected sepsis Show forest plot

1

250

Risk Difference (M‐H, Fixed, 95% CI)

‐0.03 [‐0.10, 0.05]

6 Incidence of intracranial haemorrhage Show forest plot

1

250

Risk Ratio (M‐H, Fixed, 95% CI)

0.36 [0.01, 8.64]

7 Incidence of azotaemia Show forest plot

1

250

Risk Ratio (M‐H, Fixed, 95% CI)

3.20 [0.13, 77.73]

8 Incidence of oliguria Show forest plot

1

250

Risk Ratio (M‐H, Fixed, 95% CI)

3.20 [0.13, 77.73]

9 Incidence of diarrhoea Show forest plot

1

250

Risk Ratio (M‐H, Fixed, 95% CI)

0.12 [0.01, 2.18]

10 Incidence of mechanical ventilation Show forest plot

1

250

Risk Ratio (M‐H, Fixed, 95% CI)

2.13 [0.55, 8.34]

11 Incidence of respiratory distress (Downe's score) Show forest plot

1

250

Risk Ratio (M‐H, Fixed, 95% CI)

1.18 [0.81, 1.72]

12 Duration of respiratory distress, hours Show forest plot

1

250

Mean Difference (IV, Fixed, 95% CI)

6.87 [4.22, 9.52]

13 Incidence of MAS Show forest plot

1

250

Risk Ratio (M‐H, Fixed, 95% CI)

1.17 [0.67, 2.04]

Figuras y tablas -
Comparison 2. Antibiotics versus control (no antibiotics) for prevention in asymptomatic neonates