Scolaris Content Display Scolaris Content Display

Intervenciones farmacológicas para la prevención de las hemorragias en personas sometidas a cirugía programada de cadera o rodilla: revisión sistemática y metanálisis en red

Contraer todo Desplegar todo

Antecedentes

La cirugía de reemplazo de cadera y rodilla es una forma bien establecida de mejorar la calidad de vida, pero se asocia con un riesgo significativo de hemorragia. Se calcula que un tercio de las personas presentan anemia antes de una cirugía de prótesis de cadera o rodilla; si a ello se añade la sangre que se pierde durante la intervención, hasta el 90% de los individuos presentarán anemia en el posoperatorio. En consecuencia, las personas sometidas a cirugía ortopédica reciben el 3,9% de todas las transfusiones de eritrocitos empaquetados del Reino Unido. Se ha demostrado que las hemorragias y la necesidad de transfusiones de sangre alogénica aumentan el riesgo de infección del sitio quirúrgico y la mortalidad, y se asocian con un aumento de la duración de la estancia hospitalaria y de los costes asociados con la cirugía.

Reducir la pérdida de sangre durante la cirugía puede disminuir el riesgo de transfusión de sangre alogénica, reducir los costes y mejorar los desenlaces tras la cirugía. Se dispone de varias intervenciones farmacológicas que se emplean actualmente como parte de la atención clínica habitual.

Objetivos

Determinar la eficacia relativa de las intervenciones farmacológicas para prevenir la pérdida de sangre en el reemplazo programado primario o de revisión de cadera o rodilla, e identificar la administración óptima de las intervenciones con respecto al momento, la dosis y la vía, mediante la metodología de metanálisis en red (MAR).

Métodos de búsqueda

Se realizaron búsquedas de ensayos controlados aleatorizados (ECA) y revisiones sistemáticas en las siguientes bases de datos, desde su creación hasta el 18 de octubre de 2022: CENTRAL (Biblioteca Cochrane), MEDLINE (Ovid), Embase (Ovid), CINAHL (EBSCO host ), Transfusion Evidence Library (Evidentia), ClinicalTrials.gov y la Plataforma de registros internacionales de ensayos clínicos (ICTRP) de la OMS.

Criterios de selección

Se incluyeron ECA de personas sometidas a cirugía programada de cadera o rodilla solamente.

Se excluyeron los procedimientos no programados o de urgencia, y los estudios publicados desde 2010 que no se habían registrado de forma prospectiva (política del Grupo Cochrane de Lesiones [Cochrane Injuries]). No se impusieron restricciones de sexo, grupo étnico o edad (solo adultos). Se excluyeron los estudios que utilizaron la atención estándar como comparador.

Las intervenciones elegibles incluyeron: antifibrinolíticos (ácido tranexámico [ATX], aprotinina, ácido épsilon aminocaproico [EACA]), desmopresina, factor VIIa y XIII, fibrinógeno, sellantes de fibrina y sellantes sin fibrina.

Obtención y análisis de los datos

La revisión se realizó según la metodología Cochrane estándar. Dos autores evaluaron de forma independiente la elegibilidad de los ensayos y el riesgo de sesgo, y extrajeron los datos. La certeza de la evidencia se evaluó mediante CINeMA. Se presentaron resultados directos (pareados) utilizando RevMan Web y el MAR se realizó mediante BUGSnet.

Interesaban los siguientes desenlaces principales: necesidad de transfusión de sangre alogénica (hasta los 30 días) y mortalidad por todas las causas (muertes ocurridas hasta 30 días después de la operación), y los siguientes desenlaces secundarios: número medio de episodios de transfusión por persona (hasta los 30 días), reintervención por hemorragia (en un plazo de siete días), duración de la estancia hospitalaria y eventos adversos relacionados con la intervención recibida.

Resultados principales

Se incluyeron en total 102 estudios. Doce estudios no proporcionaron el número de participantes incluidos; los otros 90 estudios incluyeron 8418 participantes. Los ensayos incluyeron más mujeres (64%) que hombres (36%).

En el MAR para la transfusión de sangre alogénica se incluyeron 47 estudios (4398 participantes). La mayoría de los estudios examinaron el ATX (58 grupos, 56%). Se observó que el ATX, administrado por vía intrarticular y oral a una dosis total de más de 3 g antes de la incisión, durante la operación y en el posoperatorio, ocupaba el primer lugar, con un efecto absoluto previsto de 147 transfusiones de sangre menos por cada 1000 personas (150 menos a 104 menos) (53% de probabilidad de ocupar el primer lugar) dentro del MAR (razón de riesgos [RR] 0,02; intervalo de credibilidad [ICr] del 95%: 0 a 0,31; evidencia de certeza moderada). Este estuvo seguido por la administración de ATX por vía oral a una dosis total de 3 g antes y después de la incisión (RR 0,06; IC del 95%: 0,00 a 1,34; evidencia de certeza baja) y de ATX por vía intravenosa y oral a una dosis total superior a 3 g antes y después del posoperatorio (RR 0,10; IC del 95%: 0,02 a 0,55; evidencia de certeza baja).

La aprotinina (RR 0,59; ICr del 95%: 0,36 a 0,96; evidencia de certeza muy baja), la fibrina tópica (RR 0,86; ICr: 0,25 a 2,93; evidencia de certeza muy baja) y el EACA (RR 0,60; ICr del 95%: 0,29 a 1,27; evidencia de certeza muy baja) no mostraron ser tan eficaces en comparación con el ATX para reducir el riesgo de transfusión sanguínea.

No fue posible realizar un MAR para el desenlace principal de mortalidad por todas las causas dentro de los 30 días de la cirugía debido al gran número de estudios con cero eventos o porque no se informó el desenlace.

En el MAR para la trombosis venosa profunda (TVP), se incluyeron 19 estudios (2395 participantes). La mayoría de los estudios examinaron el ATX (27 grupos, 64%). Ningún estudio evaluó la desmopresina, el EACA ni la fibrina tópica. Se encontró que el ATX administrado por vía intravenosa y oral a una dosis total de más de 3 g intraoperatoria y posoperatoria ocupó el primer lugar, con un efecto absoluto previsto de 67 TVP menos por cada 1000 personas (67 menos a 34 más) (26% de probabilidad de ocupar el primer lugar) dentro del MAR (RR 0,16; ICr del 95%: 0,02 a 1,43; evidencia de certeza baja). Este estuvo seguido por la administración de ATX por vía intravenosa e intraarticular a una dosis total de 2 g antes de la incisión y durante el posoperatorio (RR 0,21; IC del 95%: 0,00 a 9,12; evidencia de certeza baja) y de ATX por vía intravenosa e intraarticular a una dosis total superior a 3 g antes de la incisión, durante el posoperatorio y durante el posoperatorio (RR 0,13; IC del 95%: 0,01 a 3,11; evidencia de certeza baja). La aprotinina no mostró ser tan eficaz en comparación con el ATX (RR 0,67; ICr del 95%: 0,28 a 1,62; evidencia de certeza muy baja).

No fue posible realizar un MAR para los desenlaces secundarios embolia pulmonar, infarto de miocardio ni ACV (accidente cerebrovascular) dentro de los 30 días, número medio de episodios de transfusión por persona (hasta 30 días), reintervención por hemorragia (dentro de los siete días) o duración de la estancia hospitalaria, debido al gran número de estudios con cero eventos, o porque el desenlace no fue informado por suficientes estudios para construir una red.

Hay 30 ensayos en curso que planean reclutar a 3776 participantes, la mayoría examinando el ATX (26 ensayos).

Conclusiones de los autores

Se determinó que, de todas las intervenciones estudiadas, el ATX es probablemente la intervención más eficaz para prevenir las hemorragias en personas sometidas a cirugía de reemplazo de cadera o rodilla. La aprotinina y el EACA podrían no ser tan eficaces como el ATX para prevenir la necesidad de transfusión de sangre alogénica. No fue posible establecer conclusiones sólidas sobre la dosis, la vía ni el momento adecuado de administración del ATX. Se observó que el ATX administrado a dosis más altas tendía a ocupar un lugar más alto en la jerarquía de tratamiento, y también se observó que podría ser más beneficioso utilizar una vía de administración mixta (oral e intrarticular, oral e intravenosa, o intravenosa e intrarticular). La administración oral podría ser tan eficaz como la administración intravenosa de ATX. Se encontró poca o ninguna evidencia de efectos perjudiciales asociados con dosis más altas de ácido tranexámico en el riesgo de TVP. Sin embargo, no es posible establecer estas conclusiones de forma definitiva sobre la base de los ensayos incluidos en esta revisión.

PICO

Population
Intervention
Comparison
Outcome

El uso y la enseñanza del modelo PICO están muy extendidos en el ámbito de la atención sanitaria basada en la evidencia para formular preguntas y estrategias de búsqueda y para caracterizar estudios o metanálisis clínicos. PICO son las siglas en inglés de cuatro posibles componentes de una pregunta de investigación: paciente, población o problema; intervención; comparación; desenlace (outcome).

Para saber más sobre el uso del modelo PICO, puede consultar el Manual Cochrane.

¿Cuál es la mejor medicación para detener las hemorragias en las personas sometidas a una cirugía no urgente de cadera o rodilla?

Mensajes clave

• El ácido tranexámico podría ser un medicamento eficaz para ayudar a la coagulación de la sangre durante la cirugía de prótesis de cadera o rodilla, lo que reduce las hemorragias y la necesidad de una transfusión sanguínea (sustitución de la sangre perdida por sangre donada).

• Una dosis alta de este medicamento y administrarlo de más de una forma (por ejemplo, en forma de comprimido e inyectado en la articulación al final de la cirugía) parece funcionar mejor.

• El ácido tranexámico es potencialmente tan eficaz cuando se administra en forma de comprimido como cuando se inyecta en vena.

• Existe poca o ninguna evidencia que indique que dosis más altas de ácido tranexámico aumenten el riesgo de coágulos sanguíneos en las piernas u otros efectos perjudiciales.

Antecedentes

¿Por qué es importante detener las hemorragias durante una operación de cadera o rodilla?

Controlar las hemorragias durante la intervención reduce la probabilidad de que la persona desarrolle anemia y necesite una transfusión de sangre, lo que conlleva el riesgo de complicaciones. La anemia se produce cuando el número de glóbulos rojos (hemoglobina) disponibles para transportar oxígeno es inferior al normal. Esto provoca síntomas como fatiga, debilidad, mareos, dificultad para respirar y, en casos graves, puede poner en peligro la vida. Evitar la pérdida de sangre durante una cirugía mejora los desenlaces clínicos, reduce los costes sanitarios y preserva las limitadas reservas de sangre donada.

¿Hay algún medicamento que ayude a controlar la hemorragia?

Numerosos estudios de investigación han estudiado si determinados medicamentos, como el ácido tranexámico, pueden ayudar a reducir la pérdida de sangre durante la cirugía. La mayoría de los estudios prueban diferentes dosis de medicamentos, diferentes métodos de administración y diferentes momentos de uso, ya sea antes, durante o después de la operación.

¿Qué se quiso averiguar?

Se quiso averiguar si la medicación puede reducir la pérdida de sangre y la necesidad de transfusiones sanguíneas en personas sometidas a cirugía de prótesis de cadera o rodilla. También se quería saber cuál es la forma más eficaz de administrar estos medicamentos a los pacientes.

¿Qué se hizo?

Se buscaron estudios que compararan diferentes medicamentos que pudieran ayudar a reducir la hemorragia en adultos sometidos a cirugía programada de reemplazo de cadera o rodilla. También se buscaron estudios que compararan la medicación con un placebo. Un placebo es un medicamento "falso" de aspecto o sabor idéntico al medicamento que se está probando.

¿Qué se encontró?

Se encontraron 102 estudios. Doce estudios no proporcionaron el número de participantes incluidos; en los otros 90 estudios, hubo 8418 participantes incluidos. Como promedio, las personas tenían entre 50 y 77 años y el 64% eran mujeres. En el estudio más pequeño participaron 16 personas y en el más grande 300. Los estudios se realizaron en todo el mundo, con el mayor número en Europa y Asia. De los estudios que indicaron una fuente de financiación, siete estaban totalmente financiados y cinco parcialmente financiados por compañías farmacéuticas (de medicamentos). Todos los estudios investigaron medicamentos que ayudaban a la coagulación de la sangre. Sin embargo, la mayoría de los estudios evaluaron la eficacia y seguridad del ácido tranexámico administrado por vía intravenosa (inyectado en una vena), por vía oral (ingiriendo un comprimido o líquido), inyectado en la articulación durante la cirugía, o con una combinación de estos métodos.

Resultados principales

La revisión de los estudios mostró lo siguiente:

• El ácido tranexámico fue el más eficaz para controlar la hemorragia en comparación con otros medicamentos.

• Los adultos operados de prótesis de cadera o rodilla necesitaron menos transfusiones de sangre si se les administró ácido tranexámico.

• El ácido tranexámico administrado en dosis más altas utilizando varios métodos de administración, como por vía oral e inyectado en la articulación durante la cirugía, podría tener más probabilidades de prevenir las hemorragias.

• Tomar ácido tranexámico por vía oral es probablemente tan eficaz para prevenir una transfusión de sangre como inyectar el medicamento en una vena.

No fue posible determinar la dosis óptima, qué combinación de métodos es mejor para administrar el ácido tranexámico ni cuándo es más beneficioso utilizarlo (antes, durante y después de la cirugía). No se encontró evidencia que indique que dosis más altas de ácido tranexámico aumentaran el riesgo de desarrollar un coágulo sanguíneo, o cualquier otro efecto perjudicial.

¿Cuáles son las limitaciones de la evidencia?

No es posible establecer conclusiones definitivas sobre la base de los ensayos incluidos en esta revisión. Se tiene poca confianza en los datos de algunos desenlaces y no se confía en absoluto en los de otros. Esto se debe a que es posible que los participantes de los estudios conocieran el tratamiento que estaban recibiendo. Además, los estudios fueron pequeños y no todos aportaron datos sobre todos los desenlaces de interés para la revisión.

Estudios en curso y actualizaciones futuras

Actualmente están en curso 30 estudios con un total previsto de 3776 participantes. Estos estudios deberían completarse y publicarse en los próximos años. Una vez que los autores publiquen sus datos, se podrán actualizar los análisis y ofrecer respuestas más sólidas que las que se pueden ofrecer en estos momentos.

¿Cuál es el grado de actualización de esta evidencia?

La evidencia está actualizada hasta el 18 de octubre de 2022.

Authors' conclusions

Implications for practice

Tranexamic acid (TXA) probably reduces the need for blood transfusion in people undergoing hip or knee replacement surgery. Other antifibrinolytics (aprotinin and epsilon‐aminocaproic acid) are not as effective at reducing the need for allogeneic blood transfusion as tranexamic acid. We are not able to draw strong conclusions about the optimal dose, route and timing of administration. We found that tranexamic acid given at higher doses tended to rank higher in the treatment hierarchy, and we also found that it may be more beneficial to use a mixed route of administration (oral and intra‐articular, or intravenous and intra‐articular). Oral administration may be as effective as intravenous administration of tranexamic acid at reducing the risk of allogeneic blood transfusion. Although cost‐effectiveness was not directly assessed in this review, oral tranexamic acid is widely known to be cheaper than intravenous and this may provide a cheaper alternative to intravenous tranexamic acid with similar efficacy. We found little to no evidence of harm associated with higher doses of tranexamic acid in the risk of deep vein thrombosis (DVT). However, we are not able to definitively draw these conclusions based on the trials included within this review.

Implications for research

The majority of trials included in this review had a small number of participants, which affected the quality of the network meta‐analysis. Larger, adequately powered randomised controlled trials, conducted in a way that reduces bias, need to be carried out in order for us to ascertain the optimal dose, route and timing of administration of tranexamic acid. Studies including people undergoing revision hip and knee replacement, for whom blood loss is higher, are also needed to evaluate the optimal dose, route and timing of tranexamic acid. Currently, there are no ongoing trials identified that are studying people undergoing revision hip or knee replacement surgery.

Summary of findings

Open in table viewer
Summary of findings 1. Summary of findings: Risk of a blood transfusion up to 30 days post‐surgery

Estimates of effects, credible intervals and certainty of the evidence for the prevention of bleeding in hip and knee replacement patients

Patient or population: individuals undergoing planned hip or knee replacement surgery

Interventions: antifibrinolytics (tranexamic acid, aprotinin or epsilon‐aminocaproic acid), fibrin sealants

Comparator (reference): placebo

Outcome: risk of requiring a blood transfusion within 30 days of surgery

Setting: elective orthopaedic surgery

(See Figure 1)

Total studies: 47

Total participants: 4398

Relative effect*

(95% CrI)

Anticipated absolute effect**

Certainty of evidence

(Table 1)

Median nodal ranking (95% CrI)***

Probability of ranking 1st (%)****

Without intervention

With intervention

Difference

TXA given orally and intra‐articularly at a total dose of greater than 3 g pre‐incision, intraoperatively and postoperatively

0.02 (0 0.31)

150 per 1000

3 per 1000

147 fewer per 1000 (150 fewer to 104 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to reporting bias)

1 (1 to 13)

53%

TXA given orally at a total dose of 3 g pre‐incision and postoperatively

0.06 (0 to 1.34)

150 per 1000

9 per 1000

141 fewer per 1000 (150 fewer to 51 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

5 (1 to 28)

18%

TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively

0.1 (0.02 to 0.55)

150 per 1000

15 per 1000

135 fewer per 1000 (147 fewer to 68 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias, heterogeneity)

6 (1 to 21)

5%

TXA given intravenously at a total dose of 2 g pre‐incision

0.09 (0.02 to 0.56)

150 per 1000

14 per 1000

136 fewer per 1000 (147 fewer to 66 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias)

6 (1 to 21)

5%

TXA given intravenously and intra‐articularly at a total dose of 2 g intraoperatively

0.09 (0.03 to 0.3)

150 per 1000

14 per 1000

136 fewer per 1000 (146 fewer to 105 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias)

5 (1 to 14)

4%

TXA given intravenously and orally at a total dose of greater than 3 g pre‐incision and postoperatively

0.21 (0.02 to 2.08)

150 per 1000

32 per 1000

118 fewer per 1000 (147 fewer to 162 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (1 to 29)

3%

TXA given intravenously at a total dose of 1 g pre‐incision and postoperatively

0.18 (0.03 to 1.11)

150 per 1000

27 per 1000

123 fewer per 1000 (146 fewer to 17 more per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias and imprecision)

11 (2 to 29)

2%

TXA given intravenously and intra‐articularly at a total dose of greater than 3 g pre‐incision, intraoperatively and postoperatively

0.18 (0.03 to 1.17)

150 per 1000

27 per 1000

123 fewer per 1000 (146 fewer to 26 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (2 to 28)

2%

TXA given intra‐articularly at a total dose of 2 g intraoperatively

0.17 (0.02 to 1.47)

150 per 1000

26 per 1000

124 fewer per 1000 (147 fewer to 71 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

10 (2 to 28)

2%

TXA given intravenously at a total dose of 1 g intraoperatively and postoperatively

0.15 (0.03 to 0.74)

150 per 1000

23 per 1000

127 fewer per 1000 (146 fewer to 39 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias and imprecision)

8 (2 to 24)

2%

TXA given orally at a total dose of greater than 3 g pre‐incision and postoperatively

0.16 (0.03 to 0.84)

150 per 1000

24 per 1000

126 fewer per 1000 (146 fewer to 24 fewer per 1000)

⊕⊝⊝⊝

Very low

(due to within‐study bias and imprecision)

9 (2 to 25)

1%

TXA given orally at a total dose of 2 g pre‐incision

0.33 (0.05 to 2.12)

150 per 1000

50 per 1000

100 fewer per 1000 (143 fewer to 168 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

15 (2 to 29)

1%

TXA given intra‐articularly at a total dose of 1 g intraoperatively

0.16 (0.04 to 0.58)

150 per 1000

24 per 1000

126 fewer per 1000 (144 fewer to 63 fewer per 1000)

Low

(due to within‐study bias)

8 (2 to 23)

0%

TXA given intravenously at a total dose of greater than 3 g intraoperatively and postoperatively

0.34 (0.1 to 1.19)

150 per 1000

51 per 1000

99 fewer per 1000 (135 fewer to 29 more per 1000)

⊕⊕⊕⊝

Moderate

(due to imprecision and heterogeneity)

15 (4 to 28)

0%

TXA given intravenously and intra‐articularly at a total dose of 2 g pre‐incision and intraoperatively

0.36 (0.1 to 1.26)

150 per 1000

54 per 1000

96 fewer per 1000 (135 fewer to 39 more per 1000)

⊕⊝⊝⊝

Very low

(due to within‐study bias and imprecision)

17 (5 to 28)

0%

TXA given orally at a total dose of 2 g pre‐incision and postoperatively

0.29 (0.1 to 0.84)

150 per 1000

44 per 1000

106 fewer per 1000 (135 fewer to 24 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias, imprecision and heterogeneity)

14 (5 to 25)

0%

TXA given intravenously at a total dose of 2 g pre‐incision and intraoperatively

0.42 (0.12 to 1.43)

150 per 1000

63 per 1000

87 fewer per 1000 (132 fewer to 65 more per 1000)

⊕⊝⊝⊝

Very low

(due to within‐study bias and imprecision)

19 (6 to 28)

0%

TXA given intravenously at a total dose of 1 g pre‐incision and intraoperatively

0.29 (0.11 to 0.78)

150 per 1000

44 per 1000

106 fewer per 1000 (134 fewer to 33 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias and heterogeneity)

14 (5 to 24)

0%

Aprotinin given intravenously

0.59 (0.36 to 0.96)

150 per 1000

89 per 1000

61 fewer per 1000 (96 fewer to 6 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias and heterogeneity)

23 (15 to 27)

0%

Desmopressin given intravenously

1.41 (0.23 to 8.53)

150 per 1000

212 per 1000

62 more per 1000 (116 fewer to 1130 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

28 (12 to 29)

0%

EACA given intravenously

0.6 (0.29 to 1.27)

150 per 1000

90 per 1000

60 fewer per 1000 (107 fewer to 41 more per 1000)

⊕⊝⊝⊝

Very low

(due to within‐study bias and imprecision)

23 (12 to 28)

0%

Fibrin (topical)

0.86 (0.25 to 2.93)

150 per 1000

129 per 1000

21 fewer per 1000 (113 fewer to 290 more per 1000)

⊕⊝⊝⊝

Very low

(due to within‐study bias and imprecision)

26 (12 to 29)

0%

TXA given intravenously at a total dose of 1 g intraoperatively

0.37 (0.19 to 0.73)

150 per 1000

56 per 1000

94 fewer per 1000 (122 fewer to 41 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias, imprecision and incoherence)

17 (9 to 24)

0%

TXA given intravenously at a total dose of 1 g pre‐incision

0.47 (0.31 to 0.73)

150 per 1000

71 per 1000

79 fewer per 1000 (104 fewer to 41 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias and heterogeneity)

20 (14 to 25)

0%

TXA given intravenously at a total dose of 1 g pre‐incision, intraoperatively and postoperatively

0.7 (0.26 to 1.87)

150 per 1000

105 per 1000

45 fewer per 1000 (111 fewer to 131 more per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias and imprecision)

25 (12 to 29)

0%

TXA given intravenously at a total dose of 2 g intraoperatively and postoperatively

0.32 (0.17 to 0.61)

150 per 1000

48 per 1000

102 fewer per 1000 (125 fewer to 59 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias)

15 (7 to 24)

0%

TXA given intravenously at a total dose of 2 g pre‐incision and postoperatively

0.39 (0.19 to 0.77)

150 per 1000

59 per 1000

91 fewer per 1000 (122 fewer to 35 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias and heterogeneity)

17 (9 to 25)

0%

TXA given intravenously at a total dose of 3 g intraoperatively and postoperatively

0.4 (0.17 to 0.91)

150 per 1000

60 per 1000

90 fewer per 1000 (125 fewer to 14 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias and heterogeneity)

18 (8 to 26)

0%

CrI: credible interval; EACA: epsilon‐aminocaproic acid; TXA: tranexamic acid

*Results are expressed as risk ratios with credible intervals as opposed to confidence intervals, since a Bayesian analysis has been conducted.
**Anticipated absolute effect. The anticipated absolute effect compares two risks by calculating the difference between the risk in the intervention group and the risk in the control group.
***Median rank with empirical 95% confidence interval, based on SUCRA scores. The SUCRA score for rank n is the probability that the treatment ranks at least nth.
****Probability of treatment ranking first.


Network plot allogeneic blood transfusion

Network plot allogeneic blood transfusion

Open in table viewer
1. CINeMA grading for comparisons of intervention vs placebo (risk of allogeneic blood transfusion)

Comparison

Number of studies

Within‐study bias

Reporting bias

Indirectness

Imprecision

Heterogeneity

Incoherence

Confidence rating

Reason(s) for downgrading

Mixed evidence

Aprotinin vs placebo

5

Some concerns

Some concerns

No concerns

No concerns

Major concerns

No concerns

Low

Within‐study bias (1 point), heterogeneity (1 point)

EACA vs placebo

3

Major concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

Fibrin topical vs placebo

1

Major concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

TXA_IA_1g_intra vs placebo

2

Major concerns

Some concerns

No concerns

No concerns

No concerns

No concerns

Low

Within‐study bias (2 points)

TXA_IV_1g_intra vs placebo

2

Some concerns

Some concerns

No concerns

No concerns

Some concerns

Major concerns

Low

Within‐study bias and heterogeneity (1 point), incoherence (1 point)

TXA_IV_1g_intra_post vs placebo

1

Major concerns

Some concerns

No concerns

Some concerns

Some concerns

No concerns

Low

Within‐study bias (1 point), imprecision (1 point)

TXA_IV_1g_preI vs placebo

7

Some concerns

Some concerns

No concerns

No concerns

Some concerns

No concerns

Moderate

Within‐study bias and heterogeneity (1 point)

TXA_IV_1g_preI_intra_post vs placebo

1

Some concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Within‐study bias (1 point), imprecision (1 point)

TXA_IV_1g_preI_post vs placebo

1

Some concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Within‐study bias (1 point), imprecision (1 point)

TXA_IV_2g_intra_post vs placebo

4

Major concerns

Some concerns

No concerns

No concerns

No concerns

No concerns

Low

Within‐study bias (2 points)

TXA_IV_2g_preI vs placebo

1

Some concerns

Some concerns

No concerns

No concerns

No concerns

No concerns

Moderate

Within‐study bias (1 point)

TXA_IV_2g_preI_post vs placebo

4

Some concerns

Some concerns

No concerns

No concerns

Some concerns

No concerns

Moderate

Within‐study bias and heterogeneity (1 point)

TXA_IV_3g_intra_post vs placebo

2

Some concerns

Some concerns

No concerns

No concerns

Some concerns

No concerns

Moderate

Within‐study bias and heterogeneity (1 point)

TXA_IV_IA_2g_intra vs placebo

1

Some concerns

Some concerns

No concerns

No concerns

No concerns

No concerns

Moderate

Within‐study bias (1 point)

TXA_IV_IA_grt_than_3g_preI_intra_post vs placebo

1

No concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_grt_than_3g_intra_post vs placebo

1

No concerns

Some concerns

No concerns

Some concerns

Some concerns

No concerns

Moderate

Imprecision and heterogeneity (1 point)

TXA_oral_2g_preI_post vs placebo

1

Major concerns

Some concerns

No concerns

Some concerns

Some concerns

No concerns

Low

Within‐study bias (1 point), imprecision and heterogeneity (1 point)

Indirect evidence

Desmopressin vs placebo

0

Some concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IA_2g_intra vs placebo

0

No concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_1g_preI_intra vs placebo

0

Some concerns

Some concerns

No concerns

No concerns

Some concerns

No concerns

Moderate

Within‐study bias and heterogeneity (1 point)

TXA_IV_2g_preI_intra vs placebo

0

Major concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

TXA_IV_IA_2g_preI_intra vs placebo

0

Major concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

TXA_IV_oral_grt_than_3g_intra_post vs placebo

0

Major concerns

Some concerns

No concerns

Some concerns

Some concerns

No concerns

Low

Within‐study bias (1 point), heterogeneity (1 point)

TXA_IV_oral_grt_than_3g_preI_post vs placebo

0

No concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_oral_2g_preI vs placebo

0

Some concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Within‐study bias (1 point), imprecision (1 point)

TXA_oral_3g_preI_post vs placebo

0

No concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_oral_IA_grt_than_3g_preI_intra_post vs placebo

0

No concerns

Some concerns

No concerns

No concerns

No concerns

No concerns

Moderate

Reporting bias (1 point)

TXA_oral_grt_than_3g_preI_post vs placebo

0

Major concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

EACA: epsilon aminocaproic acid; grt_than_3g: greater than 3 g; IA: intra‐articular; intra: intraoperative dose; IV: intravenous; post: postoperative dose; preI: pre‐incision dose; top: topical; TXA: tranexamic acid

Open in table viewer
Summary of findings 2. Summary of findings: Risk of deep vein thrombosis (DVT) up to 90 days post‐surgery

Estimates of effects, credible intervals and certainty of the evidence for the prevention of bleeding in hip and knee replacement patients

Patient or population: individuals undergoing planned hip or knee replacement surgery

Interventions: antifibrinolytics (tranexamic acid, aprotinin)

Comparator (reference): placebo

Outcome: risk of deep vein thrombosis within 90 days of surgery

Setting: elective orthopaedic surgery

(See Figure 2)

Total studies: 19

Total participants: 2395

Relative effect*

(95% CrI)

Anticipated absolute effect**

Certainty of evidence

(Table 2)

Median nodal ranking (95% CrI)***

Probability of ranking 1st (%)

Without intervention

With intervention

Difference

TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively

0.16

(0.02 to 1.43)

80 per 1000

13 per 1000

67 fewer per 1000 (78 fewer to 34 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

3 (1 to 16)

26%

TXA given intravenously and intra‐articularly at a total dose of 2 g pre‐incision and intraoperatively

0.21

(0 to 9.12)

80 per 1000

17 per 1000

63 fewer per 1000 (80 fewer to 650 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

5 (1 to 18)

17%

TXA given intravenously and intra‐articularly at a total dose of greater than 3 g pre‐incision, intraoperatively and postoperatively

0.13

(0.01 to 3.11)

80 per 1000

10 per 1000

70 fewer per 1000 (79 fewer to 169 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

4 (1 to 17)

15%

TXA given intravenously at a total dose of greater than 3 g intraoperatively and postoperatively

0.29

(0.01 to 5.47)

80 per 1000

23 per 1000

57 fewer per 1000 (79 fewer to 358 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

6 (1 to 18)

15%

TXA given intravenously and orally at a total dose of greater than 3 g pre‐incision and postoperatively

0.27

(0.01 to 6.44)

80 per 1000

22 per 1000

58 fewer per 1000 (79 fewer to 435 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

7 (1 to 18)

6%

TXA given intravenously at a total dose of 3 g intraoperatively and postoperatively

0.56

(0.07 to 4.73)

80 per 1000

45 per 1000

35 fewer per 1000 (74 fewer to 298 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

9 (1 to 18)

5%

TXA given intra‐articularly at a total dose of 2 g intraoperatively

0.35

(0.09 to 1.45)

80 per 1000

28 per 1000

52 fewer per 1000 (73 fewer to 36 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

6 (1 to 16)

5%

TXA given orally and intra‐articularly at a total dose of greater than 3 g pre‐incision, intraoperatively and postoperatively

0.9

(0.05, 15.45)

80 per 1000

72 per 1000

8 fewer per 1000 (76 fewer to 920 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (1 to 18)

4%

TXA given intravenously at a total dose of 2 g pre‐incision and postoperatively

0.19

(0.01 to 2.91)

80 per 1000

15 per 1000

65 fewer per 1000 (79 fewer to 153 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

6 (1 to 17)

3%

TXA given intravenously at a total dose of 1 g postoperatively

0.75

(0.13 to 4.47)

80 per 1000

60 per 1000

20 fewer per 1000 (70 fewer to 278 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (2 to 18)

2%

TXA given intravenously at a total dose of 2 g postoperatively

1.02

(0.2 to 5.22)

80 per 1000

82 per 1000

2 more per 1000 (64 fewer to 338 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

13 (3 to 18)

1%

TXA given intravenously at a total dose of 2 g intraoperatively and postoperatively

0.77

(0.27 to 2.16)

80 per 1000

62 per 1000

18 fewer per 1000 (58 fewer to 93 more per 1000)

⊕⊝⊝⊝

Very low

(due to imprecision and within‐study bias)

11 (3 to 18)

0%

Aprotinin given intravenously

0.67

(0.28 to 1.62)

80 per 1000

54 per 1000

26 fewer per 1000 (58 fewer to 50 more per 1000)

⊕⊝⊝⊝

Very low

(due to imprecision and within‐study bias)

10 (3 to 17)

0%

TXA given intra‐articularly at a total dose of 1 g intraoperatively

0.77

(0.09 to 6.48)

80 per 1000

62 per 1000

18 fewer per 1000 (73 fewer to 438 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (2 to 17)

0%

TXA given intravenously at a total dose of 1 g pre‐incision

0.73

(0.3 to 1.76)

80 per 1000

58 per 1000

22 fewer per 1000 (56 fewer to 61 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (5 to 17)

0%

TXA given intravenously at a total dose of 1 g pre‐incision and intraoperatively

0.83

(0.35 to 1.97)

80 per 1000

66 per 1000

14 fewer per 1000 (52 fewer to 78 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

12 (5 to 18)

0%

TXA given intravenously at a total dose of 1 g intraoperatively

0.76

(0.32 to 1.79)

80 per 1000

61 per 1000

19 fewer per 1000 (54 fewer to 63 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (4 to 17)

0%

CrI: credible interval; TXA: tranexamic acid

*Results are expressed as risk ratios with credible intervals as opposed to confidence intervals, since a Bayesian analysis has been conducted.
**Anticipated absolute effect. The anticipated absolute effect compares two risks by calculating the difference between the risk in the intervention group and the risk in the control group.
***Median rank with empirical 95% confidence interval, based on SUCRA scores. The SUCRA score for rank n is the probability that the treatment ranks at least nth.
****Probability of treatment ranking first.


Network plot deep vein thrombosis

Network plot deep vein thrombosis

Open in table viewer
2. CINeMA grading for comparisons of intervention vs placebo (risk of deep vein thrombosis)

Comparison

Number of studies

Within‐study bias

Reporting bias

Indirectness

Imprecision

Heterogeneity

Incoherence

Confidence rating

Reason(s) for downgrading

Mixed evidence

Aprotinin vs placebo

2

Major concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

TXA_IA_2g_intra vs placebo

1

No concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_1g_intra vs placebo

2

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_1g_post vs placebo

1

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_1g_preI vs placebo

2

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_1g_preI_intra vs placebo

1

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_2g_intra_post vs placebo

3

Major concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

TXA_IV_2g_post vs placebo

1

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_2g_preI_post vs placebo

1

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_3g_intra_post vs placebo

1

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_grt_than_3g_intra_post vs placebo

1

No concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

Indirect evidence

TXA_IA_1g_intra vs placebo

0

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_IA_2g_preI_intra vs placebo

0

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_IA_grt_than_3g_preI_intra_post vs placebo

0

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_oral_grt_than_3g_intra_post vs placebo

0

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_oral_grt_than_3g_preI_post vs placebo

0

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_oral_IA_grt_than_3g_preI_intra_post vs placebo

0

No concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

grt_than_3g: greater than 3 g; IA: intra‐articular; intra: intraoperative dose; IV: intravenous; post: postoperative dose; preI: pre‐incision dose; top: topical; TXA: tranexamic acid

Background

Description of the condition

Musculoskeletal conditions such as osteoarthritis represent a major international public health challenge. Osteoarthritis affecting the hip or knee was reported as being the 11th highest contributor to global disability in the Global Burden of Disease Study (Cross 2014).

Hip or knee replacement surgery is a well‐established means of improving quality of life and offers effective pain relief, as well as restoration of function in people suffering from hip or knee disease. Data from the National Joint Registry in the UK demonstrate that 85.6% of people having hip replacement surgery and 70.8% of people having knee replacement surgery report being ‘much better’ following their surgery (NJR 2017a; NJR 2017b).

Internationally, the number of total hip replacements is increasing. In a study across 20 OECD (Organisation for Economic Co‐operation and Development) countries, the annual growth rate of hip replacement surgery is projected to rise from 1.8 million hip replacements per year in 2015 to 2.8 million per year in 2050. The mean incidence of hip replacement is expected to increase from 184 per 100,000 population to 275 per 100,000 population (Pabinger 2018). In 2015, the incidence of knee replacements was 150 per 100,000 population; it is anticipated that this figure will increase four‐fold by the year 2030 (Pabinger 2015).

Despite the benefits, hip or knee replacement surgery is associated with significant risk. In the UK, mortality from primary hip replacement within 90 days of surgery ranges from 0.2% in younger people, to 3.1% in older people, with even higher risk following revision surgery (NJR 2018). It is estimated that one‐third of people undergoing primary joint replacement are anaemic preoperatively (Munoz 2017). Hip or knee surgery can result in significant blood loss and up to 90% of patients are anaemic following surgery (Lasocki 2015; Park 2013). For revision surgery, the prevalence of preoperative anaemia and the average blood loss may be even greater (Palmer 2020). The increased prevalence of preoperative anaemia amongst people undergoing revision surgery is probably because the people who require revision surgery are older, and so more likely to suffer with chronic diseases and to be malnourished, all of which are factors that contribute to anaemia (Clevenger 2015).

As a consequence, people undergoing orthopaedic surgery receive 3.9% of all packed red blood cell transfusions in the UK and, of those, hip or knee replacement surgery uses 77% (Tinegate 2016). Bleeding and the need for allogeneic blood transfusions (donated blood from other people) has been shown to increase the risk of surgical site infection and mortality (Kim 2017). In addition, it is associated with an increased duration of hospital stay, and increased costs associated with surgery (Monsef 2014; Stokes 2011).

Prevention of bleeding during surgery offers the opportunity to reduce the risk of allogeneic blood transfusion, reduce cost and improve patients' outcomes following surgery. Several interventions are available and are currently employed as part of routine clinical care. These interventions include pharmacological therapies that have been proven to reduce blood loss from surgery (Li 2016; Schulman 2012).

Description of the intervention

There are many pharmacological interventions that can be administered to reduce bleeding during surgery (Schulman 2012). This review focuses on several interventions including antifibrinolytics, desmopressin, factor VIIa and factor XIII, fibrinogen and sealants. Antifibrinolytics include tranexamic acid, aprotinin and epsilon‐aminocaproic acid. Tranexamic acid and epsilon‐aminocaproic acid are synthetic derivatives of the amino acid lysine and aprotinin is a non‐specific serine protease inhibitor derived from bovine lung. Antifibrinolytics are widely used in cardiac surgery to prevent bleeding (Henry 2011). Sealants can be grouped into fibrin containing sealants and non‐fibrin containing sealants. Fibrin sealants are composed of blood clotting agents and are applied to the wound to reduce blood loss; they have been found to be most effective when used in orthopaedic surgery (Carless 2003). Non‐fibrin sealants tend to function through mechanical expansion and prevent bleeding in a similar way to the application of pressure to a wound (Baird 2015). These interventions provide an advantage over blood transfusion through a reduction in the risk of the infective and compatibility complications associated with blood transfusion. In addition, there is a greater availability of pharmacological interventions than of blood transfusions. Finally, pharmacological interventions are versatile; they can be administered in a variety of different ways, including intravenously, orally, topically and nasally (see Appendix 1).

How the intervention might work

When blood loss from hip or knee surgery results in a haemoglobin level below a certain threshold and the onset of associated symptoms, patients are often transfused with red blood cells, even though this procedure is associated with significant risk. All of the interventions described above aim to reduce bleeding and minimise blood loss. Each intervention and its mode of action, along with any limitations or potential risks, is described below.

Antifibrinolytics (tranexamic acid, aprotinin and epsilon‐aminocaproic acid)

During surgery, the clotting mechanism is activated. Antifibrinolytic drugs block the process of blood clot breakdown (fibrinolysis), therefore increasing clot strength and stability, which prevents excessive bleeding (Okamoto 1997). The most commonly used antifibrinolytic agents include tranexamic acid, aprotinin and epsilon‐aminocaproic acid (Henry 2011). In the UK, tranexamic acid is used in 42% of planned surgical cases (NCABT 2017). These medicines may be given orally, intravenous or topically (BNF 2022). Most have few side effects, however there is a theoretical increased risk of venous thromboembolism with their use (Levy 2018; Myers 2019).

Desmopressin

Desmopressin functions as a vasopressin analogue that increases the levels of von Willebrand factor and factor VIII (Pearson 2016). Von Willebrand factor and factor VIII enable platelets to adhere to wound sites and form clots to prevent bleeding. Desmopressin may be administered intravenously, subcutaneously or intranasally (BNF 2022). Side effects include facial flushing and possibly low blood sodium levels, especially with repeated doses (Desborough 2017a; Desborough 2017b).

Recombinant factor VIIa and factor XIII

Recombinant factor VIIa (rFVIIa) is an intervention licensed for use in people with haemophilia, congenital factor VII deficiency and inhibitory alloantibodies. However, it has also been used off‐license to prevent bleeding in surgery where the potential for blood loss is expected to be high (Simpson 2012). Despite its use, the efficacy of the drug in people without haemophilia remains uncertain. Factor XIII protects a developing clot from fibrinolysis and improves clot strength. Recombinant factor XIII (rFXIII) has been shown to mediate clot formation in a dose‐dependent manner, and it has been suggested that maintaining higher levels of rFXIII levels may prevent bleeding (Aleman 2014).

Fibrinogen

Fibrinogen concentrate is a blood component that is administered intravenously. Fibrinogen is converted to fibrin by thrombin and forms the structural basis of a clot. As it is derived from blood, there is a small risk of viral infection with its use, however due to its manufacturing process this is unlikely to result in infection (Franchini 2012).

Fibrin sealants

Fibrin sealants are derived from plasma and may be applied to actively bleeding bony surfaces or the wound. They usually consist of fibrinogen, thrombin, factor XIII, an antifibrinolytic agent and calcium chloride. However, some sealants do not contain an antifibrinolytic agent (Fischer 2011). Allergy is a rare complication (Aguilera 2013). Although fibrin sealants are derived from blood plasma, they have a lower risk of transmitting infections than allogeneic blood transfusions (Carless 2003).

Non‐fibrin sealants

Non‐fibrin sealants tend to be low‐viscosity liquids that polymerise to form a film that enables platelet activation and aggregation. This allows a clot to form, but relies on the patient’s own fibrin to create the clot. Other forms of non‐fibrin sealants include dressings, powders or bandages. Non‐fibrin sealants may enable clot formation where the use of a tourniquet is impractical. Adverse events that have been reported with their use are either associated with expansion of the sealant, e.g. nerve compression, or are the result of allergy (Baird 2015).

Why it is important to do this review

A key objective for global health agencies such as the World Health Organization (WHO) is to ensure that every country is able to provide universal access to safe and adequate blood supplies to help save lives (WHO Factsheet 2017). Undertaking unnecessary transfusions and using unsafe transfusion practices can expose people to transfusion‐transmitted infections and serious adverse transfusion reactions, as well as consuming blood products that could be better used in those who are in need (WHO Factsheet 2017). This review will focus on the question of which pharmacological bleeding prevention treatment is most effective at preventing blood transfusion and blood loss. Bleeding and the need for blood transfusion may lead to costly adverse events such as infections and increased length of hospital stay (Monsef 2014; Stokes 2011). Reducing the number of blood transfusions is important to reduce these risks and to help preserve an already limited resource. Saving blood by reducing bleeding during surgery through pharmacological interventions may offer a lower‐risk option and will be cheaper than transfusing blood. For example, an ampoule of tranexamic acid or desmopressin costs approximately GBP 1.50 (BNF 2022), whereas one unit of red blood cells costs GBP 153.30, an increase of GBP 24.30 since 2019 (NHSBT).

To date, audits in orthopaedic hip or knee surgery suggest that there is still limited use of alternatives to allogeneic blood transfusion (NCABT 2017). In addition, there is some concern around using pharmacological interventions such as tranexamic acid due to a theoretical risk of unwanted blood clots, such as deep vein thrombosis or pulmonary embolism (blood clots in the lungs, which can affect breathing). In other populations, the timing of the dose has been shown to be of importance when considering adverse events. In the CRASH‐2 trial (a large multicentre international trial of tranexamic acid versus placebo), patients with significant bleeding from trauma had an increased risk of mortality if tranexamic acid was given after three hours (Roberts 2013). The dose of the intervention is also important from a cost perspective, as well as minimising the side‐effect profile of the agent. Safety concerns in people at increased risk of stroke or myocardial infarction have led to limited use of alternative interventions (Danninger 2015). In addition, topical alternatives may aid haemostasis while reducing systemic exposure to the treatment (Xu 2019a).

At protocol stage (Gibbs 2023), we anticipated that it would be unlikely that we would identify any trials that compared timing, dose and route of all these interventions directly, and that this would lead to uncertainty for decision‐makers. Therefore, in order to lessen this uncertainty and provide the highest level of evidence for treatment decisions in those undergoing orthopaedic surgery, we planned a network meta‐analysis to synthesise direct and indirect evidence to enable the evaluation of different treatment strategies for the prevention of bleeding in hip or knee surgery.

Description of network meta‐analysis

We carried out a network meta‐analysis (NMA) to allow the comparison of more than two treatments (Lu 2004). The evidence for each comparison is represented within a network map where each treatment is represented by a node (vertex), with lines connecting treatments to be compared (Jansen 2011). We have used solid lines to represent ‘direct’ comparisons where the treatments in question have been compared in clinical trials. We have used absent lines to represent ‘indirect’ comparisons, and indicate there are no clinical trials that made that comparison (Bucher 1997; Jansen 2011).

We used the data from the ‘direct’ comparisons to infer and estimate the effects of the missing comparisons ‘indirectly’ (Caldwell 2005; Jansen 2011; Jansen 2013; Song 2003). By doing this, we were able to bridge gaps in the evidence by combining data from direct comparisons in clinical trials with missing comparison information in the network structure, enabling more precise estimates to be obtained by using data from across the network (Krahn 2013; Salanti 2014). We only included data in the network that was similar enough in terms of effect modifiers across all direct comparisons to draw robust conclusions (Jansen 2013).

We presented results in a tabular format specifying treatment and outcome, to enable clinical decision‐making (Hoaglin 2011; Jansen 2011; Sutton 2008; van der Valk 2009).

Objectives

To determine the relative efficacy of pharmacological interventions for preventing blood loss in elective primary or revision hip or knee replacement, and to identify the optimal administration of interventions regarding timing, dose and route, using network meta‐analysis methodology.

Methods

Criteria for considering studies for this review

Types of studies

We included randomised controlled trials (RCTs). If the process of randomisation was unclear, we contacted the trial authors to obtain further information. If we were unable to contact the authors, we included the trial in the review and considered it to be at unclear risk of bias. To be eligible, trials had to compare at least one of the active interventions of interest versus placebo or versus another active treatment. We used both abstracts and full‐text publications if they reported adequate information about study design, participant characteristics and interventions.

We did not include quasi‐randomised trials (assigned to a treatment, procedure or intervention by methods that are not random) due to lack of proper randomisation.

We only included trials that had been prospectively registered, unless the final trial report was published before 2010. The decision to exclude unregistered (or retrospectively registered) trials was taken due to the evidence highlighting issues surrounding false data (Carlisle 2021; Roberts 2015) and has now become the policy of Cochrane Injuries (Broughton 2021; Cochrane policy). Prospective registration reduces the chance of publication bias, and has been compulsory for randomised controlled trials since 2005, suggesting that those that have not been registered (or were registered retrospectively) since then are less likely to be of high quality (Roberts 2015). We have used a cut‐off of 2010 as this allowed studies that commenced before the introduction of compulsory registration in 2005 to complete and publish.

Types of participants

We included any person who had undergone an elective hip or knee replacement or revision surgery. We included people who had total knee replacements, partial or unicondylar knee replacements, hip replacements, and revision hip or knee surgery. We excluded people with known bleeding disorders such as haemophilia. We placed no restrictions on ethnicity or gender.

If an eligible trial contained a mixed population of people, then we only used data contributed from our population of interest. If no subgroup data were given, and we were unable to contact the corresponding author to provide this information, at least 80% of the sample size had to be from our population of interest for the trial to be eligible for inclusion.

Types of interventions

We included trials that compared one or more of the following interventions:

  • antifibrinolytics:

    • tranexamic acid;

    • aprotinin;

    • epsilon‐aminocaproic acid;

  • desmopressin;

  • factor VIIa and factor XIII;

  • fibrinogen;

  • fibrin sealants/glue (not including surface dressings);

  • non‐fibrin sealants (not including surface dressings).

Drugs and treatments that are not listed above were not used in the NMA. Acceptable comparators included placebo or one of the active interventions listed above. We excluded trials that used standard of care as the comparator.

We considered interventions given at a range of threshold doses, and as single or multiple doses via intravenous, subcutaneous, intranasal, oral or topical routes of administration. We also considered the timing of the interventions.

Types of outcome measures

We assessed the relative hierarchy ranking of the interventions using the following outcome measures.

Primary outcomes

  • Risk of an allogeneic blood transfusion (up to 30 days)

  • All‐cause mortality (deaths occurring up to 30 days after the operation)

Secondary outcomes

  • Mean number of transfusion episodes per person (up to 30 days)

  • Re‐operation due to bleeding (within seven days)

  • Length of hospital stay

  • Adverse events:

    • Risk of thromboembolism (deep vein thrombosis, pulmonary embolism, myocardial infarction, stroke): within 30 days

    • Risk of transfusion reactions (acute): within 24 hours

    • Risk of suspected serious drug reactions: within 30 days

We collected quality of life and cost data reported in the included studies. We did not perform an analysis of quality of life data or a formal economic evaluation with the collected information.

Search methods for identification of studies

The Systematic Review Initiative (SRI, Oxford, UK) Information Specialist (CD) formulated the search strategies in collaboration with Cochrane Injuries.

Electronic searches

Bibliographic databases

We developed a thorough and sensitive search strategy to search for RCTs and systematic reviews from database inception to 18 October 2022, in the following databases:

  • the Cochrane Central Register of Controlled Trials (CENTRAL 2022, Issue 10), in the Cochrane Library;

  • MEDLINE (Ovid; 1946 to 18 October 2022);

  • Embase (Ovid; 1974 to 18 October 2022);

  • CINAHL (EBSCOhost; 1937 to 18 October 2022);

  • Transfusion Evidence Library (Evidentia Publishing, 1950 to 18 October 2022) (www.transfusionevidencelibrary.com);

  • ClinicalTrials.gov (www.clinicaltrials.gov);

  • World Health Organization International Clinical Trials Registry Platform (ICTRP) (apps.who.int/trialsearch).

Search strategies developed specifically for this review consisted of index terms, text words and word variations for the concepts of population (hip and knee surgery) and intervention/comparator (pharmacological interventions for the prevention of bleeding). We combined our searches in MEDLINE, Embase and CINAHL with adaptations of the recommended Cochrane RCT filter (Lefebvre 2011), and of the SIGN systematic review filters (www.sign.ac.uk/search-filters.html). We did not limit searches by language, year of publication or publication type. Search strategies for all databases are presented in Appendix 2.

Searching other resources

To complement the database searches, we handsearched the reference lists of recent systematic reviews to identify additional trials potentially missed by the electronic searches, but also to ensure that we collected as much of the available evidence as possible. We contacted the corresponding authors of the reviews to determine whether they were aware of any further trials in this area. In addition, we contacted authors of ongoing trials to obtain any unpublished data. We also examined any relevant retraction statements and errata for the included studies.

Data collection and analysis

We performed the review according to the methods stated in Chapter 7 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011a). We summarised the direct (pairwise) evidence using Review Manager Web (RevMan Web) (Review Manager Web), and performed the network meta‐analysis using BUGSnet (BUGSnet).

Selection of studies

Independently, two review authors (VNG, RC) screened all titles and abstracts identified by the electronic searches for eligibility and they excluded any citations deemed irrelevant. Independently, these review authors (VNG, RC) screened the full texts of all potentially relevant trials for eligibility against the criteria set out in the protocol. We resolved disagreements through discussion or, if required, through consultation with a third review author (LJE). We requested information from trial authors when there was insufficient information from trial reports to make a decision about eligibility. We kept the records of the selection process, as well as details of our reasons for exclusion at the full‐text stage. These were used to populate a PRISMA flowchart to demonstrate the selection of studies (Moher 2009; Page 2021). We used colleagues or Cochrane resources such as Task Exchange for translation of articles written in languages that the review authors cannot read and we thank and acknowledge these colleagues.

Data extraction and management

Independently, VNG and RC undertook data extraction of the included trials, using standardised, piloted forms designed according to the methods described in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011a). The review authors were not blinded to institutions, authors or outcomes of the trials. Colleagues who provided translation of studies written in languages other than English also extracted data from these studies. We piloted the data extraction forms on a random sample of 10 included trials (split equally between the review authors) and made adjustments. If a trial was identified as relevant by one author but not by the other, the authors discussed the rationale behind their assessments. If a consensus was not reached between the two authors, LJE served as the arbitrator. We contacted the corresponding authors of included trials up to three times to request additional trial data. If no response was received within four weeks, we deemed the data unobtainable. If there was conflict over data sources, we gave preference to published data over unpublished, as published data have been through a peer review process.

There were a large number of possible combinations for each intervention and data synthesis was difficult to determine prior to data extraction. Taxonomy of interventions took place prior to outcome data extraction, with help from an external expert panel to create clinically meaningful groups ready for data analysis. The external panel consisted of two haematologists (blood specialist doctors), two orthopaedic surgeons (bone and joint specialist doctors) and two anaesthetists. The panel were blinded to the outcome data and were given information on the study design, types of studies included and intervention information. The panel recommended nodes consisting of intervention name, mode of administration, total dose of intervention and timing. For tranexamic acid, the panel recommended doses were grouped into 1 g, 2 g, 3 g and > 3 g, and for the interventions EACA, aprotinin and desmopressin they recommended grouping all the studies together, as they are likely to be weight‐adjusted doses. The panel recommended timing be subdivided into pre‐incision (prior to making a surgical incision), intraoperative, postoperative within six hours of surgery, and postoperative administered within 6 to 24 hours. Where a study reported weighted doses of the interventions (e.g. mg/kg), we converted these doses to a uniform dose. We used the average weight of the patient population of the country in which the study was conducted according to published literature (Walpole 2012).

We extracted the following information.

  • General information: name of review author carrying out data extraction; date of when data extraction was done; study ID (and any other unique trial identifiers); surname and contact address of first author of included trial; citation of included trial; language of trial and details of any duplicate publications.

  • Trial information: trial design ‐ type of RCT; location of trial; setting; sample size; duration of trial; power calculation; treatment arms; randomisation; inclusion and exclusion criteria; comparability of groups and length of follow‐up.

  • Characteristics of participants: age; sex; ethnicity; breakdown of total numbers for those recruited, randomised and analysed; type of surgery; numbers lost to follow‐up; dropouts (percentage in each arm) with reasons; protocol violations and co‐morbidities.

  • Characteristics of interventions: number of treatment arms; description of experimental arm(s); description of control arm; timing, dose and route of administration of intervention; and other differences between intervention arms.

  • Outcomes: need for blood transfusion within 30 days postoperatively; number of units of red blood cells transfused; mortality due to any cause within 30 days postoperatively; proportion of participants requiring each type of transfusion; and adverse effects (transfusion reactions, thromboembolism and drug reactions), re‐operation due to bleeding and length of hospital stay. (We extracted exactly how ‘adverse effects’ and ‘serious adverse effects’ were defined in each study.)

  • Quality assessment: allocation concealment; blinding (participants, personnel, outcome assessors); incomplete outcome data; selective outcome reporting; other sources of bias. (Blinding was not possible for some comparisons.)

We utilised arm‐level data rather than study‐level data from both abstracts and full‐text papers. We obtained maximal data by extracting data from all publications available but used one data extraction form per trial. We contacted the primary or corresponding author of a trial, study groups or companies for additional data, if insufficient information was provided in the trial reports.

We also collected and have presented data on costs reported in the included studies. Although this does not constitute a formal economic evaluation, it provides useful additional information that may be of value in a decision‐making context.

Three review authors (VNG, RC, CK) entered the data into RevMan 5 and cross‐checked entries for accuracy.

Data on potential risk modifiers

From every included trial we extracted data on the following characteristics, which may act as treatment risk modifiers.

  • Type of surgery(primary hip or knee replacement or hip or knee revision): surgery may have an impact on allogeneic transfusion and mortality, as often revision joint surgery results in more blood loss than primary joint replacement (Kasivisvanathan 2016). This is likely due to revision surgery taking longer and being more complex than primary joint replacement.

  • Reason for surgery: the indication for surgery may also affect blood loss during surgery as, although most primary replacements are performed for arthritis, people who have replacements performed for other reasons such as bony cancer, may bleed more due to the tumour being more vascular than normal bone (Kumar 2014).

  • Duration of surgery: longer surgery is likely to result in more bleeding.

  • Incidence of preoperative anaemia: people with anaemia have a higher risk of blood transfusion following surgery (Kasivisvanathan 2016; Park 2013).

  • Type of anaesthetic used (general or spinal): general anaesthesia has been associated with increased risk of blood transfusion, which may be due to loss of maintenance of venous pressure when the anaesthetic agents are administered (Basques 2015).

  • Use of tourniquet (in knee replacement surgery): tourniquet use may reduce intraoperative blood loss, however some studies suggest that this may not affect total blood loss (Zhang 2014).

  • Use of anticoagulation: participants on anticoagulants are likely to bleed more.

Assessment of risk of bias in included studies

We performed quality assessment on all the included trials using the methods described in Chapter 8 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011b). We used the Cochrane risk of bias tool (RoB tool) (Higgins 2016). We tested the RoB tool in a small, random sample of trials. Three review authors (VNG, RC, CK) independently assessed risk of bias for each trial to assign each a classification of high, low or unclear risk. We created a Characteristics of included studies table and outlined the judgement process. We compared the review authors’ statements and reached a consensus on the classification of risk of bias. If necessary, a third author (LJE) was consulted.

Using this information, we explored statistical heterogeneity in each study and performed a sensitivity analysis. We followed the Cochrane methods for assessing risk of bias and addressed the following domains:

  • selection bias (random sequence generation and allocation concealment);

  • reporting bias (selective reporting);

  • attrition bias (incomplete outcome data);

  • performance bias (blinding of participants, personnel and outcome assessors);

  • detection bias (blinding of outcome assessment);

  • other forms of bias.

We assigned each of the domains listed above a classification of risk:

  • low risk ‐ if the criterion has been adequately fulfilled in the study;

  • high risk ‐ if the criterion has not been fulfilled in the study;

  • unclear risk ‐ if the study report does not provide enough information with which to reach a clear decision.

We resolved any conflicts through discussion between the review authors (VNG, RC, CK) or by involving another author (LJE).

If a publication stated that participants were randomised but the method of randomisation used was not described, we contacted the trial authors. If this information was unobtainable, then we included the trial and considered it to be at an 'unclear' risk of bias as per the Cochrane risk of bias tool (Higgins 2011b).

We included both abstracts and full‐text publications.

Measures of treatment effect

When extracting data for dichotomous outcomes (number of participants with at least one bleeding episode, number of participants with at least one severe or life‐threatening bleeding episode, mortality, proportion of participants needing an allogeneic blood transfusion, adverse events), we documented the number of events and number of participants in the intervention and control arms.

For continuous outcomes (number of units of allogeneic blood transfused per participant, length of hospital stay), we documented the mean, standard deviation and total number of participants in both the intervention and control arms. If only study‐level data were available we recorded the reported effect size and the associated standard error.

We presented direct treatment comparisons and grouped the comparisons by treatment nodes; we compared and produced the forest plots using RevMan (Review Manager Web). We produced these to provide transparency on all outcome data collected for all studies.

Unit of analysis issues

In pairwise meta‐analyses, we treated trials with multiple treatment group comparisons as individual, independent two‐arm studies. The placebo group acted as a node in the NMA, which helped with indirect analyses and formation of a hierarchy of interventions. In the NMA, we included all comparisons where there were sufficient data to do so. These trials were analysed appropriately to take into account the respective treatment effects. The NMA method accounted correctly for correlations in relative effects from trials with more than two arms. We performed our analyses using the participant as the unit of analysis.

In future updates, in the event that we include one or more cluster‐RCTs, we will follow the guidance in Chapter 23 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2022), using a method of generic inverse variance in RevMan. We will also carefully consider the potential risk of bias associated with the method of randomisation described.

Dealing with missing data

Where there were missing data from any study, we contacted a corresponding author, by email, to obtain missing data. We attempted to contact the authors, by email, up to a maximum of three times to obtain the information. If we were still unable to obtain the information, and where missing data were thought to introduce serious bias, we performed a sensitivity analysis to evaluate the impact of missing outcome data.

We recorded the number of participants lost to follow‐up in each trial. In trials that also included other populations, such as those undergoing non‐elective hip or knee replacement, we extracted data for the elective hip or knee subgroup.

Continuous outcomes are often reported as a median and a measure of spread, such as a range or interquartile range (IQR) when the distribution is skewed. We considered using an assumption of log‐normality to obtain estimates of mean and SD from medians and range/IQR. However, neither of our continuous outcomes (units of blood product transfused and length of hospital stay) are granular enough for this approach to be reasonable, and small sample sizes posed an additional problem where range was the only available measure of spread.

Assessment of heterogeneity

Assessment of clinical and methodological heterogeneity within treatment comparisons

If we deemed the data to be homogenous, we combined them and performed a meta‐analysis. We assessed whether clinical and methodological heterogeneity were present within each comparison by looking at trial and participant characteristics across all included trials within the nodes. If significant clinical and methodological heterogeneity were found within a particular comparison, which meant that a meta‐analysis could not be performed, or that the summary statistic could not be reported, we provided a descriptive summary.

Network meta‐analysis

An assumption underlying NMA is that effect modifiers are similarly distributed across comparisons in the network. That means that an effect modifier should be similar in AB and BC trials in order to obtain a valid AC estimate. Equivalent formulations of the transitivity assumption are presented in Salanti 2012. In order to verify this assumption, for each comparison we compiled a table of important trial and patient characteristics and visually inspected the similarity of factors we considered likely to modify treatment effect. We also assessed the inclusion and exclusion criteria of every trial in the network to ensure that patients, trial protocols, etc. were similar in those aspects that might modify the treatment effect.

In the NMA we assumed a common estimate for heterogeneity across our comparisons and estimated a total I2 value for the network. We assessed statistical heterogeneity in the entire network based on the magnitude of the heterogeneity variance parameter (Tau2), which was estimated from the NMA models. We performed a likelihood ratio test for the null hypothesis of no heterogeneity versus presence of heterogeneity. For pairwise meta‐analyses, we estimated different heterogeneity variances for each pairwise comparison. We calculated the heterogeneity within each pair using the I2 statistic and 95% CI (I2 > 50% indicating moderate heterogeneity), which describes the variability that cannot be due to random error. We planned to explore heterogeneity by performing subgroup meta‐regression, but this was not possible.

Assessment of reporting biases

At the protocol stage, we planned to explore the existence of small‐study effects in our pairwise meta‐analyses (when there were more than 10 studies) by producing funnel plots, and by using meta‐regression in our NMA. We deemed a P value below the threshold of 0.10 to be statistically significant. The association between study effect size and funnel plot asymmetry is affected by several factors. We assumed that a lack of studies in areas of non‐significance would be indicative of publication bias. In the event, we were unable to action these plans, due to insufficient numbers of studies in the pairwise analyses.

Data synthesis

Relative treatment effects

We performed a Bayesian NMA using the BUGSnet package in R (v1.1.0) with default priors, producing estimated treatment effects for each comparison along with 95% credible intervals (CrIs). For the network meta‐analysis, we grouped interventions into clinically meaningful groups during the first stage of the data extraction, and treated each group as a single node within the network analysis. The large number of tranexamic acid regimens were grouped by dose, route and timing. Two review authors (VNG and RC) entered the data into the software and cross‐checked for accuracy.

For NMA of binary outcomes, we excluded direct comparisons with zero events, or zero non‐events, in one or both arms. Zero event studies are highly likely to lead to numerical instability and lack of convergence as this can affect connectivity (Dias 2010; Dias 2018).

For both continuous and binary outcomes, we used a random‐effects consistency model with 1000 adaptations, 50,000 burn‐ins and 100,000 iterations to ensure good convergence, and compared this with the equivalent inconsistency model to check that the model assumptions were reasonable.

Relative treatment ranking

We performed a Bayesian NMA using the BUGSnet package in R (v1.1.0) with default priors, producing rankings based on Surface Under the Cumulative RAnking curve (SUCRA). Two review authors (VNG and RC) entered the data into the software and cross‐checked for accuracy.

Subgroup analysis and investigation of heterogeneity

Subgroup analysis

We were unable to perform any subgroup analyses due to a lack of data and the number of interventions (23) included within the NMA compared with the number of studies (43).

We had planned to perform subgroup analyses and network meta‐regression for each of the following variables in order to explain heterogeneity, inconsistency, or both.

  • Participants with preoperative anaemia

  • Type of surgery (hip or knee primary replacement or hip or knee revision)

  • Type of anaesthesia (general or spinal)

  • Duration of surgery

  • Use of tourniquet in knee replacement surgery

  • Reason for surgery

  • Use of anticoagulation

Investigation of heterogeneity

We estimated heterogeneity within direct comparisons grouped into broadly clinically consistent groups. We assessed statistical heterogeneity using Tau2, Cochran's Q and the I2 statistic.

Assessment of transitivity and inconsistency

We reported event rates or means for each node in the networks for each outcome and compared the model fit of a random‐effects consistency model to a random‐effects inconsistency model to check for potential problems with the transitivity assumption.

Sensitivity analysis

If trials contained mixed populations (e.g. included those requiring trauma surgery), then we used data only from the elective hip and knee subgroups, if available. If no subgroup data were presented and the corresponding author was not contactable for the information, we specified that at least 80% of the sample size had to be from our population of interest for the trial to be included.

We planned to assess the strength of the overall results by performing sensitivity analyses excluding trials deemed to be at high risk of bias. In the event, the network was too fragile to allow sensitivity analysis; we considered risk of bias in our interpretation of results.

Summary of findings and assessment of the certainty of the evidence

We did not specify any information related to the summary of findings table in our protocol. We produced an NMA summary of findings table as recommended by Yepes‐Nuez et al (Yepes‐Nuñez 2019).

We used the CINeMA framework (Confidence in Network Meta‐Analysis) to evaluate the confidence of the evidence for the summary of findings table (Nikolakopoulou 2020). We used the CINeMA framework rather than GRADEpro (Schünemann 2022) to develop a summary of findings table as the CINeMA framework has been created specifically to assess confidence in the results of a network meta‐analysis where there are a large number of interventions.

We used the online CINeMA tool to assess confidence for each comparison within the network based on: within‐study bias, across‐studies bias, indirectness, imprecision, heterogeneity and incoherence. We provide justifications in the summary of findings table for any decisions made to downgrade the certainty of the evidence to aid the reader's understanding of the review. We also included the relative effect with 95% credible intervals, the anticipated absolute effect with 95% credible intervals, the median nodal ranking point with 95% credible intervals and the probability of intervention ranking first (%).

Results

Description of studies

See Characteristics of included studies; Characteristics of excluded studies; Characteristics of studies awaiting classification; Characteristics of ongoing studies.

Results of the search

Our search, conducted on 18 October 2022, retrieved 6889 records. After removing all duplicates, we screened 3493 records based on their titles and abstracts.

We excluded 2870 records that did not meet the prespecified inclusion criteria at title and abstract stage and following full‐text screening we excluded a further 241 studies (from 251 publications). We identified 102 eligible completed trials (from 158 publications), 30 ongoing trials (from 31 publications) and 166 trials (from 183 publications) awaiting assessment. For further details, see Characteristics of included studies; Characteristics of studies awaiting classification; Characteristics of ongoing studies.

The study flow diagram Figure 3 illustrates the study selection process according to PRISMA guidelines (Moher 2009).


PRISMA diagram

PRISMA diagram

Included studies

See Characteristics of included studies for full details of each trial.

Study selection

We included 102 RCTs in the review. For an overview of the studies included, see Table 3 and Table 4. TXA was the most common drug studied. The trials were mostly conducted in primary hip and knee replacement surgery. The most common route of administration studied was intravenous alone, followed by intra‐articular and then combined (intravenous and intra‐articular or oral and intra‐articular).

Open in table viewer
Table 3. Overview of characteristics of included studies

Study

Number of male participants

Number of female participants

Total number of participants

Outcomes reported

All‐cause mortality

Blood trans

Mean units

CVA

DVT

MI

PE

LOHS

Alvarez 2008

17

78

95

N

Y

Y*

N

Y

N

Y

N

Alvarez 2019 hip

7

15

22

Y

Y

N

Y

Y

Y

Y

N

Alvarez 2019 knee

5

17

22

Y

Y

N

Y

Y

Y

Y

N

Benoni 1996

23

63

86

N

Y

Y*

N

Y

N

Y

N

Benoni 2000

17

22

39

N

Y

N

N

Y

N

Y

N

Benoni 2001

19

19

38

N

Y

Y*

Y

Y

Y

Y

N

Boese 2017

54

140

194

N

Y

Y*

Y

Y*

N

Y

Y

Bradley 2019 hip

42

48

90

N

Y

N

Y

Y

Y

Y

Y

Bradley 2019 knee

53

92

145

N

Y

N

Y

Y

Y

Y

Y

Camarasa 2006

25

102

127

N

Y

Y

Y

Y

Y

Y

N

Cao 2018

69

83

152

N

Y

Y*

Y

Y

Y

Y

N

Chang 2022

12

129

141

N

Y

N

N

Y

N

Y

N

Chin 2020

NR

NR

NR

N

Y

Y*

N

N

Y

Y

Y*

Claeys 2007

12

28

40

N

Y

Y*

N

Y

N

N

N

Clave 2019

98

131

229

N

Y

N

N

Y

Y

Y

Y

Colwell 2007

172

180

352

Y

Y

Y

Y

Y

Y

Y

N

Compostella 1997

NR

NR

NR

N

N

Y*

N

N

N

N

N

Cui 2019

35

37

72

N

Y

N

N

Y

N

Y

N

D'Ambrosio 1999

14

16

30

N

Y

Y*

N

N

N

N

N

Dorji 2021

20

11

31

N

Y

N

N

N

N

N

N

Ekback 2000

20

20

40

N

Y

Y*

N

Y

Y

N

N

Ellis 2001

11

29

40

N

Y

Y*

N

Y

N

Y

Y

Engel 2001

7

17

24

N

Y

Y*

N

Y

N

N

N

Flordal 1992

24

26

50

N

N

Y

N

N

N

N

N

Garcia Enguita 1998

NR

NR

NR

N

N

Y

N

N

N

N

N

Garneti 2004

NR

NR

NR

N

Y

Y

N

Y

N

Y

N

Georgiadis 2013

31

70

101

N

Y

Y*

N

Y

N

Y

Y

Gill 2009

3

7

10

N

Y

Y

N

Y

N

Y

Y*

Gomez Barrena 2014

27

51

78

Y

Y

Y*

N

Y

N

Y

Y

Gonzalez Osuna 2021

4

20

24

N

Y

Y

Y

Y

Y

Y

N

Good 2003

15

36

51

N

Y

Y*

N

Y

N

N

N

Goyal 2017

78

90

168

N

Y

Y*

N

Y

N

N

Y

Harley 2002

21

34

55

N

Y

Y*

N

Y

N

Y

N

Hayes 1996

15

27

42

N

N

Y

N

Y

N

N

N

Hiippala 1995

5

23

28

N

Y

Y

N

Y

Y

N

N

Hiippala 1997

12

65

77

Y

Y

Y

N

Y

Y

Y

N

Husted 2003

6

14

20

N

Y

Y*

N

Y

N

Y

N

Jansen 1999

8

34

42

N

Y

Y

N

Y

N

N

N

Janssens 1994

16

24

40

N

Y*

Y

N

Y

N

Y

Y

Jeserschek 2003

7

9

16

N

Y

Y

N

Y

N

N

N

Johansson 2005

53

47

100

N

Y

Y*

N

Y

N

Y

N

Jules‐Elysee 2019

31

32

63

Y

N

N

N

N

N

N

Y*

Kakar 2009 Bilateral TKR

14

36

50

N

N

Y*

N

Y

N

N

N

Kakar 2009 Unilateral TKR

14

36

50

N

N

Y*

N

Y

N

N

N

Kang 2021a

10

87

97

N

Y

Y*

N

Y

Y

Y

N

Kang 2021b

56

244

300

N

Y

Y*

N

Y

N

Y

N

Karnezis 1994 knee

16

20

36

Y

N

N

N

Y

Y

N

Y

Karnezis 1994 hip

26

30

56

Y

N

N

N

Y

Y

N

Y

Kayupov 2017a

24

47

71

N

Y

Y

N

Y

N

Y

Y

Kayupov 2017b

42

41

83

N

Y

N

N

Y

N

Y

Y

King 2019

26

27

53

N

Y

N

N

Y

N

N

Y*

Langdown 2000

NR

NR

NR

N

N

N

N

N

N

N

N

Lei 2017

27

132

159

N

Y

Y*

Y

Y

Y

Y

Y

Lei 2018

61

89

150

N

Y

Y*

Y

Y

Y

Y

Y

Lei 2020

26

124

150

N

Y

N

Y

Y

Y

Y

Y*

Lemay 2004

25

14

39

N

Y

N

N

Y

N

Y

N

Levine 2014

15

25

40

Y

Y

Y*

N

Y

N

Y

N

Llau 1998

NR

NR

NR

N

Y

Y*

N

Y

N

N

N

Lopez Picado 2017

57

51

108

N

Y

Y

N

Y

N

N

Y

Luo 2022

48

52

100

N

Y

N

Y

Y

Y

Y

Y

Molloy 2007

NR

NR

NR

Y

Y

Y

N

Y

N

Y

Y

Morales‐Avalos 2021

50

52

102

Y

Y

N

Y

Y

Y

Y

N

Murkin 1995

20

33

53

N

Y

Y

Y

Y

N

N

Y

Murkin 2000

139

141

280

Y

Y

N

N

Y

Y

N

N

NCT02922582

6

9

15

Y

Y

N

Y

N

N

N

N

Niskanen 2005

13

26

39

N

Y

Y*

N

Y

N

Y

Y*

North 2016

77

61

138

N

Y

N

N

Y

Y

Y

N

Orpen 2006

11

18

29

N

Y

N

N

Y

N

Y

N

Painter 2018

65

75

140

Y

Y

N

Y

Y

Y

Y

Y

Peng 2021

13

80

93

N

Y

N

Y

Y

Y

Y

N

Petsatodis 2006

NR

NR

NR

N

Y

Y

N

Y

N

N

N

Ray 2005

NR

NR

NR

N

Y

N

N

Y

N

Y

N

Schott 1995

35

44

79

N

N

Y

N

N

Y

Y

N

Sershon 2020

86

89

175

N

Y

N

Y

Y

N

Y

Y*

Staniforth 2017

NR

NR

NR

N

N

N

N

N

N

N

N

Stowers 2017

59

75

134

N

Y

Y*

N

Y

N

Y

Y

Tanaka 2001

31

68

99

N

Y

Y

N

Y

N

Y

N

Tsukada 2019

16

61

77

N

Y

N

N

Y

N

Y

N

Tsukada 2020

23

77

100

N

Y

Y*

Y

Y

Y

Y

N

Utada 1997

3

18

21

N

N

Y

N

N

N

N

N

Veien 2002

5

25

30

N

Y

Y*

N

Y

N

Y

N

Veien 2005

14

17

31

N

Y

Y*

N

Y

N

Y

N

Vles 2020

NR

NR

NR

N

N

N

N

N

N

N

N

Wang 2018

61

139

200

N

Y

N

Y

Y

Y

Y

Y

Wang 2019b

59

141

200

Y

Y

N

Y

Y

N

Y

Y*

Wang 2019c

112

188

300

Y

Y

N

Y

Y

Y

Y

Y*

Wang 2019a

26

92

118

Y

Y

N

N

Y

N

N

Y*

Wu 2018

59

41

100

N

Y

Y*

N

Y

N

Y

Y

Xie 2016

41

110

151

N

Y

Y*

Y

Y

Y

Y

Y

Xie 2017

60

90

150

N

Y

N

Y

Y

Y

Y

Y

Xu 2023

23

109

162**

Y

Y

Y

Y

Y

Y

Y

N

Xue 2021

38

118

156

N

Y

Y

Y

Y

Y

Y

N

Yamasaki 2004

37

3

40

N

Y

Y*

N

Y

N

Y

N

Yang 2020

24

70

94

N

Y

N

N

Y

N

Y

N

Yasli 2019

40

20

60

N

N

N

N

Y

N

Y

Y

Yen 2017

23

70

93

Y

Y

N

N

Y

N

Y

Y

Yen 2021

15

88

103

Y

Y

Y*

Y

Y

N

Y

Y*

Zeng 2017

60

40

100

N

Y

Y*

N

Y

N

Y

Y

Zeng 2018

23

37

60

N

Y

Y*

N

Y

N

Y

Y

Zhang 2007

NR

NR

NR

N

Y

Y

N

Y

N

N

N

Zhao 2018

70

50

120

N

Y

Y*

N

Y

N

Y

Y

Zohar 2004

18

42

60

N

Y

Y

N

Y

N

Y

Y

Y*: Represents where data were not included in the analysis due to being either incomplete or unusable (for example, due to differing units or inability to transform data to mean and SD).

**: The numbers of males and females in Xu 2023 do not add up to the total number of patients. The author has been emailed for clarification but no response as yet (17 January 2023).

CVA: cerebrovascular accident; DVT: deep vein thrombosis; LOHS: length of hospital stay; MI: myocardial infarction; N: no; NR: not reported; PE: pulmonary embolism; trans: transfusion; Y: yes

Open in table viewer
Table 4. Baseline characteristics for included studies

Study population

Frequency

%

Primary THA

46

45

Primary TKA

43

42

Mixed primary THA and TKA

1

1

Revision THA

4

4

Mixed revision THA and TKA

2

2

Bilateral TKA

1

1

Mixed primary and bilateral TKA

1

1

Mixed primary and revision THA and TKA

4

4

RCT origin

Number of studies

Europe

35

34

Asia

37

36

North America

21

21

Australia

6

6

South America

1

1

New Zealand

2

2

Routes of interventions

Study arms

IV

170

71

IA

23

10

IV and IA

17

7

Oral and IA

12

5

Oral

11

5

IV and oral

5

2

IV, IA and oral

1

<1

Drug type

Study arms

Tranexamic acid

150

83

Aprotinin

17

10

EACA

7

4

Desmopressin

5

3

Fibrin

2

1

EACA: epsilon‐aminocaproic acid; IA: intra‐articular; IV: intravenous; RCT: randomised controlled trial; THA: total hip arthroplasty; TKA: total knee arthroplasty

Design

All included trials were RCTs. There were 12 multi‐arm studies included in the primary outcome NMA (risk of an allogeneic blood transfusion) (Stowers 2017, Camarasa 2006; Clave 2019; Lopez Picado 2017; Ray 2005; Sershon 2020; Tanaka 2001; Wang 2019c; Xu 2023; Xue 2021; Yen 2021; Zhao 2018) and 36 two‐arm studies.

Setting

The included trials were published between 1992 and 2022. Ten included studies were multicentre studies (Benoni 2001; Clave 2019; Colwell 2007; Johansson 2005; Lopez Picado 2017; Murkin 2000; NCT02922582; Painter 2018; Sershon 2020; Stowers 2017), 30 studies did not report this information (Alvarez 2019 hip; Alvarez 2019 knee; Benoni 1996; Benoni 2000; Claeys 2007; Compostella 1997; Ekback 2000; Engel 2001; Flordal 1992; Good 2003; Hayes 1996; Hiippala 1997; Husted 2003; Jansen 1999; Jeserschek 2003; Kakar 2009 Bilateral TKR; Kakar 2009 Unilateral TKR; Langdown 2000; Lemay 2004; Luo 2022; Molloy 2007; Murkin 1995; Petsatodis 2006; Schott 1995; Veien 2002; Veien 2005; Vles 2020; Yasli 2019; Zhang 2007; Zohar 2004), and the remaining 62 were single‐centre studies. One study was conducted across two countries (America and Canada) (Colwell 2007). We found a global spread of trials, with the highest number of trials being conducted in Europe and Asia (Table 4). Four studies included were translated into English for the review (Cui 2019; Utada 1997; Veien 2005; Zhang 2007).

Trial size

The number of participants enrolled in the included studies ranged from 16 (NCT02922582) to 300 (Wang 2019c). Power calculations were included in 47 studies (Alvarez 2019 hip; Benoni 2000; Benoni 2001; Camarasa 2006; Cao 2018; Chang 2022; Clave 2019; Dorji 2021; Gill 2009; Gomez Barrena 2014; Good 2003; Goyal 2017; Harley 2002; Husted 2003; Jeserschek 2003; Johansson 2005; Jules‐Elysee 2019; Kayupov 2017a; Kayupov 2017b; King 2019; Lei 2017; Lei 2018; Lei 2020; Lopez Picado 2017; Luo 2022; Molloy 2007; Morales‐Avalos 2021; Niskanen 2005; Painter 2018; Peng 2021; Sershon 2020; Stowers 2017; Tsukada 2019; Tsukada 2020; Wang 2018; Wang 2019a; Wang 2019b; Wang 2019c; Wu 2018; Xie 2016; Xie 2017; Xu 2023; Xue 2021; Yasli 2019; Yen 2017; Yen 2021; Zohar 2004). In one study it was unclear whether the investigators had achieved their target sample size (Hiippala 1995), and in 30 studies a sample size was not reported (Claeys 2007; Compostella 1997; D'Ambrosio 1999; Ekback 2000; Ellis 2001; Flordal 1992; Garcia Enguita 1998; Garneti 2004; Georgiadis 2013; Gonzalez Osuna 2021; Hayes 1996; Hiippala 1997; Jansen 1999; Janssens 1994; Kakar 2009 Bilateral TKR; Kakar 2009 Unilateral TKR; Karnezis 1994 hip; Karnezis 1994 knee; Langdown 2000; Llau 1998; Petsatodis 2006; Staniforth 2017; Tanaka 2001; Utada 1997; Veien 2005; Vles 2020; Yamasaki 2004; Zeng 2017; Zeng 2018; Zhao 2018). The remaining 24 studies did not achieve their target sample size.

Characteristics of participants

We summarised the characteristics of the participants in each trial in the Characteristics of included studies table and provided an overview of the characteristics of the included studies in Table 3. The mean age of participants in the included trials ranged from 50 to 77 years of age (Lei 2018; Tsukada 2019, respectively). Trials included more women (5388 (64%)) than men (3030 (36%)). (There is a discrepancy in the number of males and females in Xu 2023; the authors were contacted for clarification). Five studies reported ethnicity, and of those the majority of included participants were white (Caucasian) (Table 3).

Characteristics of outcomes reported

Twenty studies reported the primary outcome mortality within 30 days and 86 studies reported the primary outcome of risk of requiring a blood transfusion within 30 days. Sixty‐four studies reported the secondary outcome mean number of units transfused within 30 days. For adverse events, 28 studies reported on the outcome cerebrovascular event, 89 reported on the outcome deep vein thrombosis, 32 reported on the outcome myocardial infarction and 70 reported on the adverse outcome pulmonary embolism. There were 42 studies reporting on the length of hospital stay (Table 3).

Characteristics of interventions

The majority of the included studies examined tranexamic acid (150 arms, 83%). Aprotinin was the next most studied intervention (17 arms, 9%), followed by epsilon‐aminocaproic acid (EACA) (seven arms, 4%), desmopressin (five arms, 3%) and fibrin (two arms, 1%) (see Table 4).

Sources of support

In total, 81 studies declared a funding source and of those seven were funded by pharmaceutical companies (Clave 2019; Colwell 2007; Molloy 2007; Murkin 2000; NCT02922582; Niskanen 2005; Schott 1995), and five were reported as being partly funded via pharmaceutical companies and partly non‐pharmaceutical (Benoni 2001; Ekback 2000; Gomez Barrena 2014; Hayes 1996; Jansen 1999).

Twenty‐one studies did not report a funding source (Chang 2022; Claeys 2007; Compostella 1997; Ellis 2001; Engel 2001; Georgiadis 2013; Harley 2002; Hiippala 1997; Husted 2003; Janssens 1994; Kakar 2009 Bilateral TKR; Kakar 2009 Unilateral TKR; Lei 2017; Lei 2018; Llau 1998; Orpen 2006; Veien 2002; Wang 2019a; Xue 2021; Zhang 2007; Zohar 2004).

Ongoing studies

We identified 30 ongoing studies (from 31 publications):

Studies awaiting assessment

We identified 166 studies (from 183 publications) for which a decision on eligibility could not be made. Full details are provided in Characteristics of studies awaiting classification.

Excluded studies

After full‐text screening, we excluded 241 studies (within 251 publications) from the review. Full details are provided in the Characteristics of excluded studies with a summary of the reasons for exclusion below:

Risk of bias in included studies

For a visual representation of the assessments of risk of bias across all trials, see Figure 4 and Figure 5. For further information regarding bias detected in individual trials, see Characteristics of included studies.


Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Random sequence generation (selection bias)

We considered no trial to be at high risk of bias and 39 trials to be at unclear risk of bias, as they did not provide sufficient information on sequence generation (Benoni 1996; Benoni 2000; Benoni 2001; Cao 2018; Claeys 2007; Compostella 1997; D'Ambrosio 1999; Ekback 2000; Engel 2001; Flordal 1992; Garcia Enguita 1998; Gomez Barrena 2014; Harley 2002; Hayes 1996; Hiippala 1995; Hiippala 1997; Janssens 1994; Jeserschek 2003; Kakar 2009 Bilateral TKR; Kakar 2009 Unilateral TKR; Lei 2017; Lei 2020; Levine 2014; Llau 1998; Murkin 2000; Niskanen 2005; North 2016; Orpen 2006; Petsatodis 2006; Ray 2005; Schott 1995; Staniforth 2017; Stowers 2017; Tanaka 2001; Utada 1997; Xie 2016; Xie 2017; Yang 2020; Zhang 2007).

We judged 63 trials to be at low risk of bias as they provided clear and detailed information on sequence generation (Alvarez 2008; Alvarez 2019 hip; Alvarez 2019 knee; Boese 2017; Bradley 2019 hip; Bradley 2019 knee; Camarasa 2006; Chang 2022; Chin 2020; Clave 2019; Colwell 2007; Cui 2019; Dorji 2021; Ellis 2001; Garneti 2004; Georgiadis 2013; Gill 2009; Gonzalez Osuna 2021; Good 2003; Goyal 2017; Husted 2003; Jansen 1999; Johansson 2005; Jules‐Elysee 2019; Kang 2021a; Kang 2021b; Karnezis 1994 hip; Karnezis 1994 knee; Kayupov 2017a; Kayupov 2017b; King 2019; Langdown 2000; Lei 2018; Lemay 2004; Lopez Picado 2017; Luo 2022; Molloy 2007; Morales‐Avalos 2021; Murkin 1995; NCT02922582; Painter 2018; Peng 2021; Sershon 2020; Tsukada 2019; Tsukada 2020; Veien 2002; Veien 2005; Vles 2020; Wang 2018; Wang 2019a; Wang 2019b; Wang 2019c; Wu 2018; Xu 2023; Xue 2021; Yamasaki 2004; Yasli 2019; Yen 2017; Yen 2021; Zeng 2017; Zeng 2018; Zhao 2018; Zohar 2004).

Allocation concealment (selection bias)

We considered no trial to be at high risk of bias and 74 trials to have unclear risk of bias due to lack of information on allocation concealment (Alvarez 2008; Alvarez 2019 hip; Alvarez 2019 knee; Benoni 1996; Benoni 2001; Bradley 2019 hip; Bradley 2019 knee; Camarasa 2006; Cao 2018; Claeys 2007; Compostella 1997; Cui 2019; D'Ambrosio 1999; Dorji 2021; Ekback 2000; Ellis 2001; Engel 2001; Flordal 1992; Garcia Enguita 1998; Goyal 2017; Harley 2002; Hayes 1996; Hiippala 1995; Hiippala 1997; Husted 2003; Jansen 1999; Janssens 1994; Jeserschek 2003; Jules‐Elysee 2019; Kakar 2009 Bilateral TKR; Kakar 2009 Unilateral TKR; Kang 2021b; Karnezis 1994 hip; Karnezis 1994 knee; Kayupov 2017a; Kayupov 2017b; King 2019; Langdown 2000; Lei 2017; Lei 2018; Lei 2020; Levine 2014; Llau 1998; Luo 2022; Molloy 2007; Morales‐Avalos 2021; Murkin 1995; NCT02922582; Niskanen 2005; Orpen 2006; Peng 2021; Petsatodis 2006; Ray 2005; Schott 1995; Sershon 2020; Staniforth 2017; Stowers 2017; Tanaka 2001; Tsukada 2019; Utada 1997; Veien 2002; Veien 2005; Vles 2020; Wu 2018; Xie 2016; Xie 2017; Yamasaki 2004; Yasli 2019; Zeng 2017; Zeng 2018; Zhang 2007; Zhao 2018; Zohar 2004).

We judged 28 trials to be at low risk of bias as they provided clear and detailed information on allocation concealment (Benoni 2000; Boese 2017; Chang 2022; Chin 2020; Clave 2019; Colwell 2007; Georgiadis 2013; Gill 2009; Gomez Barrena 2014; Gonzalez Osuna 2021; Good 2003; Johansson 2005; Kang 2021a; Levine 2014; Lopez Picado 2017; Murkin 2000; North 2016; Painter 2018; Tsukada 2020; Wang 2018; Wang 2019a; Wang 2019b; Wang 2019c; Xu 2023; Xue 2021; Yang 2020; Yen 2017; Yen 2021).

Blinding

To assess bias due to a lack of blinding, we separately assessed the risk for objective and subjective outcomes.

We considered objective outcomes to include: mortality, incidence of myocardial infarction (MI), cerebrovascular accident (CVA) or stroke, and pulmonary embolism (PE) due to the clear diagnostic criteria in wide use.

We deemed the remaining outcomes subjective: need for allogeneic blood transfusion, length of hospital stay, incidence of serious drug reactions and the incidence of deep vein thrombosis (DVT), due to the more subjective nature of a DVT diagnosis.

Blinding of participants and personnel (performance bias)

Subjective outcomes

We judged 18 studies to be at high risk of bias due to inadequate blinding (Alvarez 2008; Compostella 1997; Dorji 2021; Engel 2001; Gonzalez Osuna 2021; Goyal 2017; Kang 2021a; King 2019; Lei 2017; Molloy 2007; Murkin 2000; NCT02922582; Sershon 2020; Veien 2005; Xie 2017; Yang 2020; Yen 2021; Zohar 2004), 31 studies were judged to be at unclear risk of bias (Benoni 2000; Bradley 2019 hip; Bradley 2019 knee; Chang 2022; Claeys 2007; Cui 2019; D'Ambrosio 1999; Ekback 2000; Ellis 2001; Flordal 1992; Garcia Enguita 1998; Good 2003; Hayes 1996; Hiippala 1995; Husted 2003; Janssens 1994; Kang 2021b; Llau 1998; Luo 2022; Niskanen 2005; Petsatodis 2006; Ray 2005; Schott 1995; Utada 1997; Xu 2023; Xue 2021; Yamasaki 2004; Yasli 2019; Zeng 2017; Zeng 2018; Zhang 2007), and the remaining 53 studies are low risk of bias (Alvarez 2019 hip; Alvarez 2019 knee; Benoni 1996; Benoni 2001; Boese 2017; Camarasa 2006; Cao 2018; Chin 2020; Clave 2019; Colwell 2007; Garneti 2004; Georgiadis 2013; Gill 2009; Gomez Barrena 2014; Harley 2002; Hiippala 1997; Jansen 1999; Jeserschek 2003; Johansson 2005; Jules‐Elysee 2019; Kakar 2009 Bilateral TKR; Kakar 2009 Unilateral TKR; Karnezis 1994 hip; Karnezis 1994 knee; Kayupov 2017a; Kayupov 2017b; Langdown 2000; Lei 2018; Lei 2020; Lemay 2004; Levine 2014; Lopez Picado 2017; Morales‐Avalos 2021; Murkin 1995; North 2016; Orpen 2006; Painter 2018; Peng 2021; Staniforth 2017; Stowers 2017; Tanaka 2001; Tsukada 2019; Tsukada 2020; Veien 2002; Vles 2020; Wang 2018; Wang 2019a; Wang 2019b; Wang 2019c; Wu 2018; Xie 2016; Yen 2017; Zhao 2018).

Objective outcomes

We judged all trials to be at low risk of bias as we believed that the blinding would not affect the objective outcomes stated in this review.

Blinding of outcome assessment (detection bias)

Subjective outcomes

We judged eight studies to be at high risk of bias (Bradley 2019 hip; Bradley 2019 knee; Dorji 2021; Engel 2001; King 2019; NCT02922582; Sershon 2020; Veien 2002).

We assessed 43 studies as being at unclear risk of bias (Benoni 2000; Chang 2022; Chin 2020; Claeys 2007; Colwell 2007; Compostella 1997; Cui 2019; D'Ambrosio 1999; Ekback 2000; Flordal 1992; Garcia Enguita 1998; Garneti 2004; Gonzalez Osuna 2021; Good 2003; Hayes 1996; Hiippala 1995; Hiippala 1997; Husted 2003; Jansen 1999; Janssens 1994; Jeserschek 2003; Kang 2021b; Langdown 2000; Llau 1998; Luo 2022; Murkin 1995; Murkin 2000; Niskanen 2005; Petsatodis 2006; Ray 2005; Schott 1995; Tanaka 2001; Tsukada 2019; Tsukada 2020; Utada 1997; Veien 2005; Xue 2021; Yamasaki 2004; Yasli 2019; Zeng 2017; Zeng 2018; Zhang 2007; Zohar 2004).

We judged the remaining 51 studies to be at low risk of bias (Alvarez 2008; Alvarez 2019 hip; Alvarez 2019 knee; Benoni 1996; Benoni 2001; Boese 2017; Camarasa 2006; Cao 2018; Clave 2019; Ellis 2001; Georgiadis 2013; Gill 2009; Gomez Barrena 2014; Goyal 2017; Harley 2002; Johansson 2005; Jules‐Elysee 2019; Kakar 2009 Bilateral TKR; Kakar 2009 Unilateral TKR; Kang 2021a; Karnezis 1994 hip; Karnezis 1994 knee; Kayupov 2017a; Kayupov 2017b; Lei 2017; Lei 2018; Lei 2020; Lemay 2004; Levine 2014; Lopez Picado 2017; Molloy 2007; Morales‐Avalos 2021; North 2016; Orpen 2006; Painter 2018; Peng 2021; Staniforth 2017; Stowers 2017; Vles 2020; Wang 2018; Wang 2019a; Wang 2019b; Wang 2019c; Wu 2018; Xie 2016; Xie 2017; Xu 2023; Yang 2020; Yen 2017; Yen 2021; Zhao 2018).

Objective outcomes

We judged all trials to be at low risk of bias as we believed that the blinding would not affect the objective outcomes stated in this review.

Incomplete outcome data

We judged three trials to be at high risk of bias (Camarasa 2006; Chin 2020; Johansson 2005).

We judged 25 trials to be at unclear risk of bias (Benoni 2000; Boese 2017; Bradley 2019 hip; Bradley 2019 knee; Colwell 2007; Compostella 1997; Cui 2019; D'Ambrosio 1999; Ekback 2000; Ellis 2001; Garcia Enguita 1998; Garneti 2004; Goyal 2017; Langdown 2000; Lei 2020; Llau 1998; Lopez Picado 2017; Molloy 2007; Murkin 2000; Ray 2005; Staniforth 2017; Tanaka 2001; Xu 2023Yasli 2019; Yen 2021).

We considered the remaining 74 studies to be at low risk of bias (Alvarez 2008; Alvarez 2019 hip; Alvarez 2019 knee; Benoni 1996; Benoni 2001; Cao 2018; Chang 2022; Claeys 2007; Clave 2019; Dorji 2021; Engel 2001; Flordal 1992; Georgiadis 2013; Gill 2009; Gomez Barrena 2014; Gonzalez Osuna 2021; Good 2003; Harley 2002; Hayes 1996; Hiippala 1995; Hiippala 1997; Husted 2003; Jansen 1999; Janssens 1994; Jeserschek 2003; Jules‐Elysee 2019; Kakar 2009 Bilateral TKR; Kakar 2009 Unilateral TKR; Kang 2021a; Kang 2021b; Karnezis 1994 hip; Karnezis 1994 knee; Kayupov 2017a; Kayupov 2017b; King 2019; Lei 2017; Lei 2018; Lemay 2004; Levine 2014; Luo 2022; Morales‐Avalos 2021; Murkin 1995; NCT02922582; Niskanen 2005; North 2016; Orpen 2006; Painter 2018; Peng 2021; Petsatodis 2006; Schott 1995; Sershon 2020; Stowers 2017; Tsukada 2019; Tsukada 2020; Utada 1997; Veien 2002; Veien 2005; Vles 2020; Wang 2018; Wang 2019a; Wang 2019b; Wang 2019c; Wu 2018; Xie 2016; Xie 2017; Xue 2021; Yamasaki 2004; Yang 2020; Yen 2017; Zeng 2017; Zeng 2018; Zhang 2007; Zhao 2018; Zohar 2004).

Selective reporting

We assessed 35 trials as being at high risk of bias (Benoni 2000; Boese 2017; Clave 2019; Colwell 2007; Cui 2019; Ellis 2001; Garcia Enguita 1998; Goyal 2017; Hiippala 1995; Hiippala 1997; Jansen 1999; Janssens 1994; Kang 2021b; Karnezis 1994 hip; Karnezis 1994 knee; Kayupov 2017a; Kayupov 2017b; Langdown 2000; Lei 2017; Lei 2018; Lemay 2004; Llau 1998; Lopez Picado 2017; Murkin 2000; Niskanen 2005; Peng 2021; Ray 2005; Sershon 2020; Staniforth 2017; Stowers 2017; Vles 2020; Xie 2017; Zeng 2018; Zhao 2018; Zohar 2004).

We assessed 36 studies as at unclear risk of bias (Alvarez 2008; Benoni 1996; Benoni 2001; Camarasa 2006; Cao 2018; Claeys 2007; Compostella 1997; D'Ambrosio 1999; Ekback 2000; Engel 2001; Flordal 1992; Garneti 2004; Gill 2009; Good 2003; Harley 2002; Hayes 1996; Husted 2003; Jeserschek 2003; Johansson 2005; Kakar 2009 Bilateral TKR; Kakar 2009 Unilateral TKR; Levine 2014; Molloy 2007; Murkin 1995; North 2016; Orpen 2006; Petsatodis 2006; Schott 1995; Tanaka 2001; Tsukada 2019; Utada 1997; Veien 2002; Veien 2005; Xue 2021; Yamasaki 2004; Zhang 2007).

We judged the remaining 31 trials to be at low risk of bias (Alvarez 2019 hip; Alvarez 2019 knee; Bradley 2019 hip; Bradley 2019 knee; Chang 2022; Chin 2020; Dorji 2021; Georgiadis 2013; Gomez Barrena 2014; Gonzalez Osuna 2021; Jules‐Elysee 2019; Kang 2021a; King 2019; Lei 2020; Luo 2022; Morales‐Avalos 2021; NCT02922582; Painter 2018; Tsukada 2020; Wang 2018; Wang 2019a; Wang 2019b; Wang 2019c; Wu 2018; Xie 2016; Xu 2023; Yang 2020; Yasli 2019; Yen 2017; Yen 2021; Zeng 2017).

Other potential sources of bias

Other potential biases that we considered included: baseline imbalances, block randomisation in an unblinded trial, and funding and conflict reporting. We also noted where data were being drawn from a non‐peer‐reviewed publication, and any other potential risks.

We judged 17 studies to be at high risk of bias: Benoni 1996 (non‐adherence to protocol, additional TXA given by personal depending on need); Benoni 2000 (baseline imbalances); Boese 2017 (trial stopped early due to data‐dependent process); Colwell 2007 (per protocol analysis); Dorji 2021 (baseline imbalances); Gill 2009 (power calculation re‐done); Harley 2002 (per protocol analysis); Kayupov 2017a (per protocol analysis); Kayupov 2017b (per protocol analysis); Lei 2018 (mismatch between interventions in protocol and in published paper); Molloy 2007 (no demographics reported); Murkin 2000 (other interventions used (EACA and desmopressin) and not reported); NCT02922582 (study terminated early); Niskanen 2005 (per protocol analysis); Ray 2005 (study terminated early and baseline imbalances); Stowers 2017 (conflicts of interest); Veien 2005 (per protocol analysis).

We assessed 46 studies as at unclear risk of bias (Alvarez 2008; Benoni 2001; Bradley 2019 hip; Bradley 2019 knee; Chin 2020; Claeys 2007; Clave 2019; Compostella 1997; Cui 2019; D'Ambrosio 1999; Ellis 2001; Engel 2001; Flordal 1992; Garcia Enguita 1998; Garneti 2004; Good 2003; Goyal 2017; Hayes 1996; Hiippala 1995; Hiippala 1997; Husted 2003; Jansen 1999; Janssens 1994; Jeserschek 2003; Johansson 2005; Kakar 2009 Bilateral TKR; Kakar 2009 Unilateral TKR; Langdown 2000; Lei 2020; Lemay 2004; Llau 1998; Lopez Picado 2017; Luo 2022; Murkin 1995; Orpen 2006; Petsatodis 2006; Staniforth 2017; Tanaka 2001; Utada 1997; Veien 2002; Vles 2020; Yamasaki 2004; Yasli 2019; Zhang 2007; Zhao 2018; Zohar 2004).

We considered the remaining 39 trials at low risk of bias (Alvarez 2019 hip; Alvarez 2019 knee; Camarasa 2006; Cao 2018; Chang 2022; Ekback 2000; Georgiadis 2013; Gomez Barrena 2014; Gonzalez Osuna 2021; Jules‐Elysee 2019; Kang 2021a; Kang 2021b; Karnezis 1994 hip; Karnezis 1994 knee; King 2019; Lei 2017; Levine 2014; Morales‐Avalos 2021; North 2016; Painter 2018; Peng 2021; Schott 1995; Sershon 2020; Tsukada 2019; Tsukada 2020; Wang 2018; Wang 2019a; Wang 2019b; Wang 2019c; Wu 2018; Xie 2016; Xie 2017; Xu 2023; Xue 2021; Yang 2020; Yen 2017; Yen 2021; Zeng 2017; Zeng 2018).

Effects of interventions

See: Summary of findings 1 Summary of findings: Risk of a blood transfusion up to 30 days post‐surgery; Summary of findings 2 Summary of findings: Risk of deep vein thrombosis (DVT) up to 90 days post‐surgery

Results are presented primarily for NMA, which we conducted for four outcomes with a reasonably coherent network available for analysis. Direct comparisons included in the NMAs are summarised in Figure 6; Figure 7; Figure 8; and Figure 9. For completeness, the pairwise results for all trials and outcomes are also shown in forest plots grouped by broadly similar treatment nodes and comparisons. The data in the forest plots are treatment nodes and have not been split for multi‐arm trials; totals are not included in the plots.

The results of each NMA are reported in full in Appendix 3. This includes a summary of each network; a comparison of model fit for random‐effects consistency and inconsistency models; trace plots and convergence diagnostics; results for all comparisons in the network with forest plots for comparisons with placebo; SUCRA curves and rankings based on SUCRA score.

Primary outcomes

Risk of allogeneic blood transfusion
Network meta‐analysis

See Appendix 3 (section 1), summary of findings Table 1 and Table 5.

Open in table viewer
Table 5. Summary of participant characteristics by treatment node (NMA only): risk of a blood transfusion up to 30 days post‐surgery

Node

Description of node

Participants (number of studies)

Characteristic or potential treatment effect modifier

  • Participants (%)

Fraction of studies with participants that have the potential treatment effect modifier (x/y)

Surgery type

Use of tourniquet (proportion of TKR studies)

Transfusion strategy described (proportion of studies)

Proportion receiving allogeneic blood transfusion

Primary total hip replacement

Primary total knee replacement

Mixed including revision/bilateral procedures

Placebo

Equivalent volume of normal saline (0.9% NaCl)

1240 (33)a

767 (18)

367 (11)

106 (4)

11/11

29/33

0.31

Aprotinin

Aprotinin given intravenously

439 (5)b

402 (3)

0 (0)

0 (0)

0/1

3/5

0.13

Desmopressin

Desmopressin given intravenously

20 (1)c

0 (0)

20 (1)

0 (0)

1/1

1/1

0.55

EACA (epsilon‐aminocaproic acid)

EACA given intravenously

120 (4)d

88 (3)

32 (1)

0 (0)

1/1

3/4

0.13

Fibrin_top

Fibrin spray given intra‐articularly

84 (2)e

0 (0)

84 (2)

0 (0)

2/2

2/2

0.12

TXA_IA_1g_intra

TXA given topically (intra‐articularly) at a total dose of 1 g intraoperatively

167 (3)f

60 (1)

107 (2)

0 (0)

2/2

3/3

0.04

TXA_IA_2g_intra

TXA given topically (intra‐articularly) at a total dose of 2 g intraoperatively

69 (1)g

69 (1)

0 (0)

0 (0)

0/0

1/1

0.17

TXA_IV_1g_intra

TXA given intravenously at a total dose of 1 g intraoperatively

192 (6)h

0 (0)

192 (6)

0 (0)

6/6

6/6

0.19

TXA_IV_1g_intra_post

TXA given intravenously at a total dose of 1 g, intraoperatively and postoperatively

66 (2)i

0 (0)

66 (2)

0 (0)

2/2

1/2

0.06

TXA_IV_1g_preI

TXA given intravenously at a total dose of 1 g pre‐incision

304 (9)j

280 (8)

24 (1)

0 (0)

1/1

8/9

0.23

TXA_IV_1g_preI_intra

TXA given intravenously at a total dose of 1 g pre‐incision and intraoperatively

127 (4)k

43 (1)

84 (3)

0 (0)

3/3

4/4

0.15

TXA_IV_1g_preI_intra_post

TXA given intravenously at a total dose of 1 g, pre‐incision, intraoperatively and postoperatively

15 (1)l

0 (0)

15 (1)

0 (0)

1/1

1/1

0.67

TXA_IV_1g_preI_post

TXA given intravenously at a total dose of 1 g, pre‐incision and postoperatively

20 (1)m

20 (1)

0 (0)

0 (0)

0/0

1/1

0.10

TXA_IV_2g_intra_post

TXA given intravenously at a total dose of 2 g intraoperatively and postoperatively

118 (4)n

40 (2)

78 (2)

0 (0)

2/2

4/4

0.16

TXA_IV_2g_preI

TXA given intravenously at a total dose of 2 g pre‐incision

91 (2)o

70 (1)

21 (1)

0 (0)

1/1

2/2

0.11

TXA_IV_2g_preI_intra

TXA given intravenously at a total dose of 2 g pre‐incision and intraoperatively

40 (1)p

40 (1)

0 (0)

0 (0)

0/0

1/1

0.20

TXA_IV_2g_preI_post

TXA given intravenously at a total dose of 2 g pre‐incision and postoperatively

227 (5)q

169 (4)

58 (1)

0 (0)

1/1

5/5

0.07

TXA_IV_3g_intra_post

TXA given intravenously at a total dose of 3 g intraoperatively and postoperatively

94 (3)r

50 (1)

39 (1)

5 (1)

1/1

3/3

0.21

TXA_IV_grt_than_3g_intra_post

TXA given intravenously at a total dose of greater than 3 g intraoperatively and postoperatively

71 (1)s

0 (0)

0 (0)

71 (1)

1/1

1/1

0.08

TXA_IV_IA_2g_intra

TXA given intravenously and topically (intra‐articularly) at a total dose of 2 g intraoperatively

80 (2)t

50 (1)

30 (1)

0 (0)

1/1

2/2

0.06

TXA_IV_IA_2g_preI_intra

TXA given intravenously and topically (intra‐articularly) at a total dose of 2 g pre‐incision and intraoperatively

46 (1)u

0 (0)

0 (0)

46 (1)

0/0

1/1

0.17

TXA_IV_IA_grt_than_3g_preI_intra_post

TXA given intravenously and topically (intra‐articularly) at a total dose of greater than 3 g pre‐incision, intraoperatively and postoperatively

74 (1)v

74 (1)

0 (0)

0 (0)

0/0

1/1

0.03

TXA_IV_oral_grt_than_3g_intra_post

TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively

113 (2)w

0 (0)

113 (2)

0 (0)

2/2

2/2

0.04

TXA_IV_oral_grt_than_3g_preI_post

TXA given intravenously and orally at a total dose of greater than 3 g pre‐incision and postoperatively

60 (1)x

0 (0)

60 (1)

0 (0)

0/1

1/1

0.03

TXA_oral_2g_preI

TXA given orally at a total dose of 2 g, pre‐incision

74 (2)y

40 (1)

34 (1)

0 (0)

1/1

2/2

0.05

TXA_oral_2g_preI_post

TXA given orally at a total dose of 2 g, pre‐incision and postoperatively

86 (2)z

40 (1)

0 (0)

46 (1)

0/0

2/2

0.10

TXA_oral_3g_preI_post

TXA given orally at a total dose of 3 g, pre‐incision and postoperatively

50 (1)aa

50 (1)

0 (0)

0 (0)

0/0

1/1

0.02

TXA_oral_grt_than_3g_preI_post

TXA given orally at a total dose of greater than 3 g, pre‐incision and postoperatively

71 (2)bb

51 (1)

20 (1)

0 (0)

1/1

2/2

0.07

TXA_oral_IA_grt_than_3g_preI_intra_post

TXA given orally and topically (intra‐articularly) at a total dose of greater than 3 g, pre‐incision, intraoperatively and postoperatively

240 (1)cc

240 (1)

0 (0)

0 (0)

0/0

1/1

0.01

DVT: deep vein thrombosis; EACA: epsilon aminocaproic acid; grt_than_3g: greater than 3 g; IA: intra‐articular; intra: intraoperative dose; IV: intravenous; post: postoperative dose; preI: pre‐incision dose; TKR: total knee replacement; top: topical; TXA: tranexamic acid.

aEkback 2000; Ray 2005; Orpen 2006; Gill 2009; Clave 2019; Claeys 2007; Alvarez 2008; Harley 2002; Husted 2003; Jeserschek 2003; Niskanen 2005; Zhao 2018; Benoni 2000; Chin 2020; Murkin 1995; Hiippala 1997; Jansen 1999; Yang 2020; Garneti 2004; Good 2003; Lopez Picado 2017; Painter 2018; Benoni 2001; Murkin 2000; Zeng 2017; Camarasa 2006; Johansson 2005; Benoni 1996; Petsatodis 2006; Tanaka 2001; Hiippala 1995; Colwell 2007; Zhang 2007.

bColwell 2007; Jeserschek 2003; Murkin 1995; Murkin 2000; Ray 2005.

cEllis 2001.

dCamarasa 2006; Harley 2002; Morales‐Avalos 2021; Ray 2005.

eMolloy 2007; Yen 2021.

fStowers 2017; Wang 2019c; Yang 2020.

gNorth 2016.

hChang 2022; Good 2003; Molloy 2007; Orpen 2006; Tanaka 2001; Zeng 2018.

iAlvarez 2008; Zohar 2004.

jBenoni 2001; Chin 2020; Claeys 2007; Garneti 2004; Johansson 2005; Lopez Picado 2017; Luo 2022; Sershon 2020; Tanaka 2001.

kEllis 2001; Kayupov 2017a; Kayupov 2017b; Tanaka 2001.

lHiippala 1995.

mHusted 2003.

nBenoni 1996; Benoni 2000; Camarasa 2006; Ekback 2000.

oJansen 1999; North 2016.

pSershon 2020.

qClave 2019; Lopez Picado 2017; Niskanen 2005; Wang 2019c; Zhao 2018.

rGill 2009; Hiippala 1997; Wu 2018.

sPainter 2018.

tZeng 2017; Zeng 2018.

uSershon 2020.

vClave 2019.

wChang 2022; Zohar 2004.

xWang 2019a ‐ the study stated that tourniquet was not used in any patient.

yKayupov 2017a; Kayupov 2017b.

zSershon 2020; Zhao 2018.

aaWu 2018.

bbMorales‐Avalos 2021; Zohar 2004.

ccWang 2019c.

All included participants had either a primary total hip or knee replacement, unicompartmental knee replacement, bilateral replacements or a revision of a hip or knee replacement.

The NMA included a total of 47 RCTs, involving 4398 participants. There were 406 possible pairwise comparisons and 44 comparisons with direct data and a total of 765 blood transfusions. Trials excluded from the network are summarised in section 1.1.2 of Appendix 3. The direct results for each included treatment node are summarised in Figure 6.

There were considerable differences between nodes in the risk of allogeneic blood transfusion, ranging from 1% to 67%, reflecting increasingly restrictive transfusion policies over time (Appendix 3, sections 1.1.3 and 1.1.4). This may be responsible for some moderate heterogeneity seen within groups of trials making similar comparisons (Figure 6). Garneti 2004, for example, commented: "Perhaps this was because of the different transfusion strategies of the anesthetists, one of whom transfused most patients unless they were young and healthy. We established no defined criteria for administering blood transfusion in this trial, and this could be a source of bias."

There is no evidence that these differences have invalidated the transitivity assumption of our NMA model, with little difference between the consistency and inconsistency models (Appendix 3, section 1.2.2).

Appendix 3, section 1.2.3 shows the forest plot of all interventions included within the network compared to placebo with risk ratios (RRs) and 95% credible intervals (CrIs). There is some evidence of benefit for all but one of the included interventions (desmopressin) but the credible intervals are wide and certainty of the evidence is low. The network is sparsely populated, with not many more trials than there are treatments to compare, with all the trials being small or very small.

Treatment ranking

The SUCRA plot in section 1.2.5 of Appendix 3 plots the cumulative ranking probabilities with treatment nodes involving tranexamic acid identified by line thickness to indicate dose, line colour to indicate route(s) of administration and line style to indicate timing. While the results for individual regimens should be treated with caution due to the limited amount of direct evidence in the network, the SUCRA plot does suggest that higher doses appear more effective, regimens including oral administration perform well and combined routes may be the most effective strategy, although this observation is somewhat confounded by dose.

Pairwise analyses

Data for all studies that reported the primary outcome risk of requiring allogeneic blood transfusion within 30 days are presented in forest plots: TXA intravenous (IV) versus placebo (Analysis 2.1); TXA oral versus placebo (Analysis 3.1); TXA topical versus placebo (Analysis 4.1); TXA IV + TXA topical versus placebo (Analysis 5.1); TXA IV lower dose versus TXA IV higher dose (Analysis 6.1); TXA IV versus TXA oral (Analysis 7.1); TXA IV versus TXA topical (Analysis 8.1); TXA oral lower dose versus TXA oral higher dose (Analysis 9.1); TXA topical lower dose versus TXA topical higher dose (Analysis 10.1); TXA versus aprotinin (Analysis 11.1); TXA IV versus EACA (Analysis 12.1); TXA oral versus EACA oral (Analysis 13.1); TXA IV versus desmopressin (Analysis 14.1); TXA IV versus fibrin topical (Analysis 15.1); TXA topical versus fibrin topical (Analysis 16.1); aprotinin versus placebo (Analysis 17.1); EACA versus placebo (Analysis 18.1); EACA versus aprotinin (Analysis 19.1); fibrin topical versus placebo (Analysis 21.1); TXA IV + TXA oral versus TXA IV (Analysis 22.1); TXA IV + TXA topical versus TXA IV (Analysis 23.1); TXA IV + TXA topical versus TXA oral (Analysis 24.1); TXA IV + TXA topical versus TXA topical (Analysis 25.1); TXA topical versus TXA oral + TXA topical (Analysis 26.1); TXA oral versus TXA combined topical + IV + oral (Analysis 27.1); TXA IV + topical lower dose versus TXA IV + topical higher dose (Analysis 28.1); TXA oral + topical lower dose versus TXA oral + topical higher dose (Analysis 29.1).

All‐cause mortality

We did not have enough data to present an NMA for our primary outcome of mortality within 30 days of surgery.

We presented the available data in pairwise meta‐analyses: TXA IV versus placebo (Analysis 2.2); TXA oral versus placebo (Analysis 3.2); TXA topical versus placebo (Analysis 4.2); TXA IV lower dose versus TXA IV higher dose (Analysis 6.2); TXA IV versus TXA topical (Analysis 8.2); TXA oral lower dose versus TXA oral higher dose (Analysis 9.2); TXA topical lower dose versus TXA topical higher dose (Analysis 10.2); TXA oral versus EACA oral (Analysis 13.2); TXA IV versus fibrin topical (Analysis 15.2); TXA topical versus fibrin topical (Analysis 16.2); aprotinin versus placebo (Analysis 17.2); desmopressin versus placebo (Analysis 20.1); fibrin topical versus placebo (Analysis 21.2); TXA IV + TXA oral versus TXA IV (Analysis 22.2); TXA topical versus TXA oral + TXA topical (Analysis 26.2); TXA oral + topical lower dose versus TXA oral + topical higher dose (Analysis 29.2).

Secondary outcomes

Mean number of red cell units transfused per person (up to 30 days)

We had planned to report the number of transfusion episodes but no studies reported this outcome; instead we reported the number of red cell units transfused per participant.

Network meta‐analysis

See Appendix 3 (section 2).

We were able to conduct an NMA for this outcome. We analysed the number of units per person randomised, using reported means and standard deviations. We included 16 studies and nine interventions in the NMA. There were a total of 1223 participants within the network, with a total of 36 pairwise comparisons, with 10 comparisons containing direct data. The direct results for each included treatment node are summarised in Figure 7.

The mean number of units transfused within each node varied from 0.19 to 1.65, reflecting increasingly restrictive transfusion policies over time. This may be responsible for some moderate heterogeneity seen within two of the groups of trials making similar comparisons (Figure 7). Garneti 2004, for example, commented: "Perhaps this was because of the different transfusion strategies of the anesthetists, one of whom transfused most patients unless they were young and healthy. We established no defined criteria for administering blood transfusion in this trial, and this could be a source of bias."

There is no evidence that these differences have invalidated the transitivity assumption of our NMA model, with little difference between the consistency and inconsistency models (Appendix 3, section 2.2.2).

There is some evidence of reduced volume of blood transfusion in favour of aprotinin and some TXA regimens, with no evidence of benefit for desmopressin or EACA, although all the confidence intervals are wide (Appendix 3, section 2.2.3). The network is sparsely populated, with not many more trials than there are treatments to compare, with all the trials being small or very small.

Treatment ranking

The SUCRA plot in section 2.2.5 of Appendix 3 plots the cumulative ranking probabilities with treatment nodes involving tranexamic acid identified by line thickness to indicate dose, line colour to indicate route(s) of administration and line style to indicate timing. All of the TXA regimens included in this network were IV only. The results for individual regimens should be treated with caution due to the limited amount of direct evidence in the network.

Pairwise analyses

Data for all studies that reported the outcome mean number of red cell units transfused per person up to 30 days are presented in pairwise meta‐analyses: TXA IV versus placebo (Analysis 2.3); TXA IV lower dose versus TXA IV higher dose (Analysis 6.3); TXA IV versus EACA (Analysis 12.2); aprotinin versus placebo (Analysis 17.3); EACA versus placebo (Analysis 18.2); desmopressin versus placebo (Analysis 20.2).

Re‐operation due to bleeding (within seven days)

We did not have enough data to present an NMA for the secondary outcome re‐operation due to bleeding.

Data for all studies that reported the outcome are presented in pairwise meta‐analyses: TXA IV versus placebo (Analysis 2.4); TXA topical versus placebo (Analysis 4.3); TXA IV lower dose versus TXA IV higher dose (Analysis 6.4); TXA IV versus TXA topical (Analysis 8.3); TXA topical lower dose versus TXA topical higher dose (Analysis 10.3); TXA IV versus EACA (Analysis 12.3); TXA oral versus EACA oral (Analysis 13.3); TXA topical versus fibrin topical (Analysis 16.3); aprotinin versus placebo (Analysis 17.4); EACA versus placebo (Analysis 18.3); EACA versus aprotinin (Analysis 19.2); fibrin topical versus placebo (Analysis 21.3); TXA IV + TXA oral versus TXA IV (Analysis 22.3).

Length of hospital stay
Network meta‐analysis

See Appendix 3 (section 4).

We were able to conduct an NMA for this outcome. We included 28 studies and 30 interventions in the NMA. There were a total of 3205 participants within the network with a total of 435 pairwise comparisons, with direct data available for 44 comparisons. The direct results for each included treatment node are summarised in Figure 9.

The mean length of hospital stay varied from 1.97 to 13.9 days, with the single trial of aprotinin reporting a much longer stay than the other trials in the network. There is little heterogeneity within direct comparisons for this outcome, primarily because there were few direct comparisons made by more than one trial.

There is little difference between the consistency and inconsistency models for this outcome (section 4.2.2, Appendix 3).

There is limited evidence of reduced hospital stay for any treatment regimen, although all the confidence intervals are wide (section 4.2.3, Appendix 3). The network is sparsely populated, with not many more trials than there are treatments to compare, with all the trials being small or very small (Appendix 3).

Treatment ranking

The SUCRA plot (section 4.2.5, Appendix 3) shows the cumulative ranking probabilities with treatment nodes involving tranexamic acid identified by line thickness to indicate dose, line colour to indicate route(s) of administration, and line style to indicate timing. The results for individual regimens should be treated with caution due to the limited amount of direct evidence in the network. There is little evidence from the SUCRA plot that dose, route or timing of treatment has any consistent effect on length of hospital stay (Appendix 3).

Pairwise analyses

Data for all studies that reported the outcome are presented in pairwise meta‐analyses: TXA IV versus placebo (Analysis 2.5); TXA oral versus placebo (Analysis 3.3); TXA topical versus placebo (Analysis 4.4); TXA IV + TXA topical versus placebo (Analysis 5.2); TXA IV lower dose versus TXA IV higher dose (Analysis 6.5); TXA IV versus TXA oral (Analysis 7.3); TXA IV versus TXA topical (Analysis 8.4); TXA IV versus EACA (Analysis 12.4); TXA IV versus desmopressin (Analysis 14.2); TXA topical versus fibrin topical (Analysis 16.4); aprotinin versus placebo (Analysis 17.5); fibrin topical versus placebo (Analysis 21.4); TXA IV + TXA oral versus TXA IV (Analysis 22.4); TXA IV + TXA topical versus TXA IV (Analysis 23.2); TXA IV + TXA topical versus TXA oral (Analysis 24.2); TXA topical versus TXA oral + TXA topical (Analysis 26.3); TXA oral versus TXA combined topical + IV + oral (Analysis 27.2); TXA IV + topical lower dose versus TXA IV + topical higher dose (Analysis 28.2); TXA oral + topical lower dose versus TXA oral + topical higher dose (Analysis 29.3).

We could not separate hip and knee data for one study comparing desmopressin versus placebo (Karnezis 1994 hip; Karnezis 1994 knee). The combined result for both hip and knee populations was mean difference (MD) 0.50 (95% confidence interval (CI) ‐1.57 to 0.57, 92 participants).

Adverse events
Deep vein thrombosis

Network meta‐analysis

See Appendix 3 (section 3), summary of findings Table 2 and Table 6.

Open in table viewer
Table 6. Summary of participant characteristics by treatment node (NMA only): risk of deep vein thrombosis (DVT) up to 90 days post‐surgery

Node

Description of node

Participants (number of studies)

Characteristics or potential treatment effect modifier

  • Participants (%)

Fraction of studies with participants that have the potential treatment effect modifier (x/y)

Surgery type

Use of tourniquet (proportion of TKR studies)

Transfusion strategy described (proportion of studies)

Proportion experiencing DVT

Primary total hip replacement

Primary total knee replacement

Mixed including revision/bilateral procedures

Placebo

Equivalent volume of normal saline (0.9% NaCl)

630 (12)a

326 (5)

235 (6)

69 (1)

7/7

12/12

0.05

Aprotinin

Aprotinin given intravenously

408 (3)b

396 (2)

12 (1)

0 (0)

1/1

3/3

0.08

TXA_IA_1g_intra

TXA given topically (intra‐articularly) at a total dose of 1 g intraoperatively

106 (2)c

60 (1)

46 (1)

0 (0)

1/1

2/2

0.03

TXA_IA_2g_intra

TXA given topically (intra‐articularly) at a total dose of 2 g intraoperatively

50 (1)d

0 (0)

50 (1)

0 (0)

1/1

2/2

0.08

TXA_IV_1g_intra

TXA given intravenously at a total dose of 1 g intraoperatively

96 (3)e

0 (0)

96 (3)

0 (0)

3/3

3/3

0.16

TXA_IV_1g_post

TXA given intravenously at a total dose of 1 g postoperatively

50 (1)f

0 (0)

50 (1)

0 (0)

1/1

1/1

0.06

TXA_IV_1g_preI

TXA given intravenously at a total dose of 1 g pre‐incision

106 (3)g

35 (1)

71 (2)

0 (0)

2/2

3/3

0.14

TXA_IV_1g_preI_intra

TXA given intravenously at a total dose of 1 g pre‐incision and intraoperatively

39 (2)h

0 (0)

39 (2)

0 (0)

2/2

2/2

0.38

TXA_IV_2g_intra_post

TXA given intravenously at a total dose of 2 g intraoperatively and postoperatively

83 (3)i

40 (2)

43 (1)

0 (0)

1/1

3/3

0.10

TXA_IV_2g_post

TXA given intravenously at a total dose of 2 g postoperatively

53 (1)j

0 (0)

53 (1)

0 (0)

1/1

1/1

0.08

TXA_IV_2g_preI_post

TXA given intravenously at a total dose of 2 g pre‐incision and postoperatively

128 (3)k

36 (1)

58 (1)

34 (1)

0/2

3/3

0.06

TXA_IV_3g_intra_post

TXA given intravenously at a total dose of 3 g intraoperatively and postoperatively

39 (1)l

0 (0)

39 (1)

0 (0)

1/1

1/1

0.05

TXA_IV_grt_than_3g_intra_post

TXA given intravenously at a total dose of greater than 3 g intraoperatively and postoperatively

71 (1)m

0 (0)

0 (0)

71 (1)

1/1

1/1

0.01

TXA_IV_IA_2g_preI_intra

TXA given intravenously and topically (intra‐articularly) at a total dose of 2 g pre‐incision and intraoperatively

54 (1)n

0 (0)

54 (1)

0 (0)

0/1

1/1

0.04

TXA_IV_IA_grt_than_3g_preI_intra_post

TXA given intravenously at a total dose of greater than 3 g pre‐incision and postoperatively

89 (2)o

0 (0)

46 (1)

43 (1)

0/2

2/2

0.07

TXA_IV_oral_grt_than_3g_intra_post

TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively

93 (1)p

0 (0)

93 (1)

0 (0)

1/1

1/1

0.02

TXA_IV_oral_grt_than_3g_preI_post

TXA given intravenously and orally at a total dose of greater than 3 g pre‐incision and postoperatively

60 (1)q

0 (0)

60 (1)

0 (0)

0/1

1/1

0.08

TXA_oral_IA_grt_than_3g_preI_intra_post

TXA given intravenously and orally at a total dose of greater than 3 g, pre‐incision, intraoperatively and postoperatively

240 (1)r

240 (1)

0 (0)

0 (0)

0/0

1/1

0.03

DVT: deep vein thrombosis; grt_than_3g: greater than 3 g; IA: intra‐articular; intra: intraoperative dose; IV: intravenous; post: postoperative dose; preI: pre‐incision dose; TKR: total knee replacement; top: topical; TXA: tranexamic acid.

aBenoni 1996; Benoni 2000; Colwell 2007; Ekback 2000; Georgiadis 2013; Good 2003; Hiippala 1997; Lopez Picado 2017; Murkin 2000; Painter 2018; Tanaka 2001; Xue 2021.

bColwell 2007; Engel 2001; Murkin 2000.

cPeng 2021; Wang 2019c.

dGeorgiadis 2013.

eChang 2022; Good 2003; Tanaka 2001.

fXue 2021.

gLopez Picado 2017; Peng 2021; Tanaka 2001.

hEngel 2001; Tanaka 2001.

iBenoni 1996; Benoni 2000; Ekback 2000.

jXue 2021.

kLopez Picado 2017; Tsukada 2019 ‐ the study stated that tourniquet was not used in any patient; Wang 2019a ‐ the study stated that tourniquet was not used in any patient.

lHiippala 1997.

mPainter 2018.

nTsukada 2020 ‐ the study stated that tourniquet was not used in any patient.

oTsukada 2019; Tsukada 2020 ‐ the studies stated that tourniquet was not used in any patient.

pChang 2022.

qWang 2019a ‐ the study stated that tourniquet was not used in any patient.

rWang 2019c.

We were able to conduct an NMA for the secondary outcome deep vein thrombosis (DVT). We included 19 studies in the network with a total of 2395 participants. There were 153 possible pairwise comparisons, with direct data available for 23 comparisons. There were 168 events in the network. Trials excluded from the network are summarised in section 3.1.2 of Appendix 3. The direct results for each included treatment node are summarised in Figure 8.

There were considerable differences between nodes in the risk of DVT, ranging from 1% to 38%, which probably reflects the subjectivity of this outcome (Appendix 3, sections 3.1.3 and 3.1.4). There was little evidence of heterogeneity within direct comparisons, primarily because few comparisons included more than one trial.

There is no evidence that the different rates of diagnosis of DVT have affected the transitivity assumption of our NMA model, with little difference between the consistency and inconsistency models (Appendix 3, section 3.2.2)

Appendix 3, section 3.2.3 shows the forest plot of all interventions included within the network compared to placebo with risk ratios (RRs) and 95% credible intervals (CrIs). There is no evidence of harm with respect to the risk of DVT and some evidence overall of a potential protective effect, but the credible intervals are wide and the certainty of the evidence is low.

Pairwise analyses

Data for all studies that reported the outcome are presented in pairwise meta‐analyses: TXA IV versus placebo (Analysis 2.6); TXA oral versus placebo (Analysis 3.4); TXA topical versus placebo (Analysis 4.5); TXA IV + TXA topical versus placebo (Analysis 5.3); TXA IV lower dose versus TXA IV higher dose (Analysis 6.6); TXA IV versus TXA oral (Analysis 7.4); TXA IV versus TXA topical (Analysis 8.5); TXA oral lower dose versus TXA oral higher dose (Analysis 9.3); TXA versus aprotinin (Analysis 11.2); TXA IV versus EACA (Analysis 12.5); TXA oral versus EACA oral (Analysis 13.4); TXA IV versus desmopressin (Analysis 14.3); TXA IV versus fibrin topical (Analysis 15.5); TXA topical versus fibrin topical (Analysis 16.5); aprotinin versus placebo (Analysis 17.6); EACA versus placebo (Analysis 18.4); EACA versus aprotinin (Analysis 19.3); desmopressin versus placebo (Analysis 20.3); fibrin topical versus placebo (Analysis 21.5); TXA IV + TXA oral versus TXA IV (Analysis 22.5); TXA IV + TXA topical versus TXA IV (Analysis 23.3); TXA IV + TXA topical versus TXA oral (Analysis 24.3); TXA topical versus TXA oral + TXA topical (Analysis 26.4); TXA oral versus TXA combined topical + IV + oral (Analysis 27.3); TXA IV + topical lower dose versus TXA IV + topical higher dose (Analysis 28.3); TXA oral + topical lower dose versus TXA oral + topical higher dose (Analysis 29.4).

Pulmonary embolism, myocardial infarction and cerebrovascular event (CVA or stroke)

We did not have enough data to present NMAs for the secondary outcomes pulmonary embolism, myocardial infarction and CVA (stroke) within 30 days.

Pulmonary embolism pairwise analyses

Data for all studies that reported the outcome are presented in pairwise meta‐analyses: TXA IV versus placebo (Analysis 2.7); TXA oral versus placebo (Analysis 3.5); TXA topical versus placebo (Analysis 4.6); TXA IV + TXA topical versus placebo (Analysis 5.4); TXA IV lower dose versus TXA IV higher dose (Analysis 6.7); TXA IV versus TXA oral (Analysis 7.5); TXA IV versus TXA topical (Analysis 8.6); TXA oral lower dose versus TXA oral higher dose (Analysis 9.4); TXA IV versus EACA (Analysis 12.6); TXA oral versus EACA oral (Analysis 13.5); TXA IV versus desmopressin (Analysis 14.4); TXA IV versus fibrin topical (Analysis 15.6); TXA topical versus fibrin topical (Analysis 16.6); aprotinin versus placebo (Analysis 17.7); EACA versus placebo (Analysis 18.5); EACA versus aprotinin (Analysis 19.4); desmopressin versus placebo (Analysis 20.4); fibrin topical versus placebo (Analysis 21.6); TXA IV + TXA topical versus TXA IV (Analysis 23.4); TXA IV + TXA topical versus TXA oral (Analysis 24.4); TXA topical versus TXA oral + TXA topical (Analysis 26.5); TXA IV + topical lower dose versus TXA IV + topical higher dose (Analysis 28.4); TXA oral + topical lower dose versus TXA oral + topical higher dose (Analysis 29.5).

Myocardial infarction pairwise analyses

Data for all studies that reported the outcome are presented in pairwise meta‐analyses: TXA IV versus placebo (Analysis 2.8); TXA oral versus placebo (Analysis 3.6); TXA IV lower dose versus TXA IV higher dose (Analysis 6.8); TXA IV versus TXA topical (Analysis 8.7); TXA oral lower dose versus TXA oral higher dose (Analysis 9.5); TXA IV versus EACA (Analysis 12.7); TXA oral versus EACA oral (Analysis 13.6); aprotinin versus placebo (Analysis 17.8); EACA versus placebo (Analysis 18.6); desmopressin versus placebo (Analysis 20.5); TXA topical versus TXA oral + TXA topical (Analysis 26.6); TXA IV + topical lower dose versus TXA IV + topical higher dose (Analysis 28.5); TXA oral + topical lower dose versus TXA oral + topical higher dose (Analysis 29.6).

Cerebrovascular event (CVA or stroke) pairwise analyses

Data for all studies that reported the outcome are presented in pairwise meta‐analyses: TXA IV versus placebo (Analysis 2.9); TXA oral versus placebo (Analysis 3.7); TXA topical versus placebo (Analysis 4.7); TXA IV lower dose versus TXA IV higher dose (Analysis 6.9); TXA IV versus TXA oral (Analysis 7.6); TXA IV versus TXA topical (Analysis 8.8); TXA oral lower dose versus TXA oral higher dose (Analysis 9.6); TXA topical lower dose versus TXA topical higher dose (Analysis 10.4); TXA IV versus EACA (Analysis 12.8); TXA oral versus EACA oral (Analysis 13.7); TXA topical versus fibrin topical (Analysis 16.7); aprotinin versus placebo (Analysis 17.9); EACA versus placebo (Analysis 18.7); fibrin topical versus placebo (Analysis 21.7); TXA IV + TXA topical versus TXA IV (Analysis 23.5); TXA IV + TXA topical versus TXA oral (Analysis 24.5); TXA topical versus TXA oral + TXA topical (Analysis 26.7); TXA IV + topical lower dose versus TXA IV + topical higher dose (Analysis 28.6); TXA oral + topical lower dose versus TXA oral + topical higher dose (Analysis 29.7).

Transfusion reactions within 24 hours

Only one study reported on transfusion reactions within 24 hours (Yang 2020) and one pairwise analysis was conducted (Analysis 4.8).

Suspected serious drug reactions: within 30 days

Few studies reported the secondary outcome suspected serious drug reaction within 30 days and there was not enough data to conduct an NMA.

Data for all studies that reported the outcome are presented in pairwise meta‐analyses: TXA IV versus placebo (Analysis 2.10); TXA IV lower dose versus TXA IV higher dose (Analysis 6.10); TXA IV versus TXA topical (Analysis 8.9); TXA topical lower dose versus TXA topical higher dose (Analysis 10.5); TXA oral versus EACA oral (Analysis 13.8); aprotinin versus placebo (Analysis 17.10); desmopressin versus placebo (Analysis 20.6).

Cost and quality of life data

We collected information on the cost of interventions and quality of life measures where they were reported. Thirty‐one studies reported information on cost and five studies reported any quality of life data. We summarise the information in Table 7 and Table 8, respectively.

Open in table viewer
Table 7. Table of descriptive cost information

Study

Cost information

None of the included studies reported quantitative cost data. However, some studies have reported descriptive information. Where a direct quote has been taken from the study, we have indicated by the use of speech marks (" ").

Alvarez 2008

"In contrast, results of this study also question the use of presurgical donation of autologous blood in patients undergoing total knee arthroplasty in our institution, because of 11 patients in which this procedure was used, only 3 received blood transfusion. Therefore, the use of presurgically donated units is far from the 70 percent recommended for an adequate cost effectiveness ratio".

Benoni 1996

"At our hospital, one Sagman unit of blood costs 512 SEK (51 GBP). The price of one ampoule of Cyklokapron, containing one gram of tranexamic acid, is 42 SEK (4 GBP). The total cost of blood transfusions plus tranexamic acid was 9756 SEK (976 GBP) in the whole prophylactic group against 21 110 SEK (2111 GBP) in the whole placebo group".

Benoni 2001

"The price of one ampoule of tranexamic acid (1 gram) in Sweden is 5 Euro. In our department, 1 unit of leukocyte‐depleted erythrocyte concentrate costs 77 Euro. The total cost of tranexamic acid and blood transfusions in the TA group was 475 Euro versus 1100 Euro in the placebo group".

Boese 2017

"Antifibrinolytics were added to the blood management program for TKA in June 2012. At that time, TXA was not on the formulary, and its acquisition cost was much higher than that of EACA ($43/g for TXA compared with $0.20/g for EACA). Despite its higher cost, our surgeons preferred administrating TXA over EACA because of the paucity of data on the use of EACA in TKA. However, EACA was administered when TXA was unavailable, with no apparent differences in efficacy or drug‐related adverse events".

Bradley 2019 hip

"At the investigating hospital, TXA costs $465 per patient while EACA costs $60 per patient for the dosages used in this study. Due to the low rate of transfusion and no statistical difference in LOS, there appears to be a difference of about $400 (pharmacy cost) between these two agents. Unfortunately, there have been problems with the availability of EACA: currently, it is not available due to a national shortage".

Chin 2020

"When one considers the financial cost of such treatment, the total drug cost of tranexamic acid (NZ$58) is less than the production cost of a unit of allogenic blood (NZ$158) [12]. However, using the number needed to treat of 67, this study effectively spent $3886 on TXA to save 1 unit of blood. 'is cost was not retrieved in a significantly shorter duration of stay as shown by the time to discharge".

Claeys 2007

"The reduction in the risk associated with the transfusion of allogenic blood, as well as the cost‐effectiveness are obvious

(3 amp TA €5, 1 unit of packed cells €67 ; total cost TA group :€100 vs placebo group:€871)".

Colwell 2007

"We did not examine the costs of using aprotinin. Realizing costs and charges vary, the approximate direct cost of aprotinin we used was $450. This does not, however, take into account the staff time in preparation in the pharmacy and administration in the OR".

Ekback 2000

"As both IAT and PAD are costly and time‐consuming procedures, it seems reasonable to refrain from using one or both of them if TA is to be used, although this was not examined in the present study".

Georgiadis 2013

"We observed a trend towards decreased blood transfusion in the TNA group vs. the placebo group (8% and 0% respectively), but our results were not significant and therefore no “number needed to treat” analysis could be undertaken. Models that reflect the real world costs of blood utilization in the United States estimate that a single unit of allogenic leukoreduced red blood cells costs $950[1]. At our institution one 2 g dose of tranexamic acid can be compounded for $60 USD, and it is readily available internationally for $6 USD per dose. A cost–benefit analysis would be beneficial in determining the realized benefit of TXA administration in preventing allogenic transfusion, as pecuniary considerations become increasingly important and regulated in orthopaedic surgery".

Gill 2009

"The cost of allogenic blood transfusions was reduced by approximately $800 per patient (P<0.03) in the tranexamic acid group. Moreover, only one patient in the tranexamic acid group received a transfusion, whereas four patients received transfusions in the placebo group. This translated into a significantly lower cost in blood products administered in the tranexamic acid group with even taking into account the cost of tranexamic acid".

Gomez Barrena 2014

"Retrospective clinical and economical evaluations have indicated an estimated $1500 savings per primary total knee replacement performed with use of topical TXA, with significant decreases in length of stay, blood bank costs, and total direct costs to the hospital for the total knee replacement. We confirmed that the length of stay was short and blood bank costs were reduced to a minimum when TXA was used in the present study. Indirect cost savings would also result from the avoidance of transfusions that result in complications requiring additional treatment and an increased length of stay".

Good 2003

"In our hospital the dose of tranexamic acid given would cost less than £7, compared with £46 for a unit of banked blood. Thus, the immediate saving in the patients given tranexamic acid would have been about £1100. To our knowledge, giving tranexamic acid is the only blood saving method that is cheaper, per saved unit, than banked blood in this type of surgery. This estimate does not include potential adverse effects from banked blood such as immediate transfusion reactions, transmission of infectious agents and disturbances of the immune system".

Harley 2002

"The cost of the preparation and administration of EACA as described in this study is Can$80 per patient, so this agent represents one of the most cost‐effective modalities currently under investigation".

Husted 2003

"1 blood transfusion costs 93 Euro; 4 ampoules (2 grams) of tranexamic acid cost 18 Euro. The total costs of maintaining or restoring levels of haemoglobin thus amounts to 1092 Euro in the tranexamic group and 2325 Euro in the placebo group".

Janssens 1994

"Although Aprotinin is expensive (in Belgium, about $235 for 3.5 x 10 (6) kIU) the economic benefit of reducing the requirement for blood transfusion may justify the cost".

Jeserschek 2003

"At the current price of aprotinin, approximately £75 (120 euros) per patient was spent on each operation. The price of 1.8 fewer units of blood (approximately £120 (190 euros)), led to a mean saving of £45 (70 euros) per patient".

Johansson 2005

"In this study, 4/5 patients weighed more than 67 kg and would have needed 2 ampoules of TA, since 1 ampoule contains 1,000 mg. If all patients had received TA 15 mg/kg, the average cost would have been (180 ampoules × EUR 5)/ 100 patients = EUR 9 per patient. At our hospitals, the cost for 1 unit of blood is EUR 78. The cost saving for transfusions when tranexamic acid is used would be: EUR 78/unit × reduction in average transfusion (1.08 – 0.36 units) = EUR 56. Thus, if the results from this study were generalized, the cost saving would be EUR 56 – EUR 9 = EUR 47 per patient".

Kakar 2009 Bilateral TKR ;Kakar 2009 Unilateral TKR

"Patients in the tranexamic acid group were given 4 units of blood in total, compared with 26 units in the control group. In our hospital the dose of tranexamic acid given would cost Rs. 166, compared with Rs. 6000 for a unit of leucodepleted banked blood. Thus, the immediate saving in the patients given tranexamic acid would have been about Rs. 5000. •Cost of 1 unit leuco depleted PRBC = Rs. 6000 •Total cost of blood in Control patients ( 26 units) = Rs 1,56,000 •Total cost of blood in TAX patients ( 4 units) = Rs 24, 000 •Cost of 1 ampoule of TXA = Rs 166 •Cost of TXA ( 25 patients) = Rs 8,300 •Cost of blood saved by giving TXA= Rs 1,23,700 •Cost saved per patient = Rs 4958 •Potential savings per year ( 500 patients) = Rs 25,00,000".

Kayupov 2017a

"In the present study, the oral TXA dosage cost $14 compared with $47‐$108 depending on the availability of the generic IV formulation. Given the aging population, the utilization of primary total knee replacements will only grow from the current rate of approximately 700,000 per year in the United States. As a result, the transition to oral TXA could yield total cost savings of between $23 million and $67 million dollars per year for our health care system".

Molloy 2007

"At the time of our study, the cost of the pharmaceutical intervention involved in the topical fibrin group was £380 per patient whereas in the tranexamic acid group it was less than £4".

Murkin 1995

"Currently, the cost of aprotinin in Canada averages $450 ($590 Cdn) for this dosage of 3.8 m KIU. The average reduction in transfusion requirements of 0.9 U PRBC shown here, may not be sufficient to justify this expenditure. If the trend to reduction in DVT, as demonstrated in both recent studies in this high‐risk population, can be confirmed, however, the resultant decrease in morbidity and associated length of stay could render this therapy cost effective".

Murkin 2000

"Notably, the direct cost of one unit of allogeneic blood (approximately $150 [United States dollars] per unit) is comparable with that of the starting dose of aprotinin, with a current hospital acquisition cost for use in a hip replacement of approximately $162 for a low dose of 100 millilitres of aprotinin to $486 for a high dose of 300 millilitres. Moreover, on the basis of the total incremental hospital costs of hip arthroplasty, allogeneic blood transfusion may be associated with $1000 to $1500 per unit in additional costs compared with the cost of no transfusion or of transfusion of one to five units of autologous blood. Thus, use of aprotinin may be of particular clinical and economic benefit in patients at high risk of receiving allogeneic blood, such as those who have not predonated blood or perhaps those with a low baseline haemoglobin level".

Niskanen 2005

"One unit of red cells costs EUR 90, and 6 ampoules of tranexamic acid used for one patient cost EUR 13. Thus, the total cost per patient amounts to EUR 58 in the tranexamic acid group and EUR 81 in the placebo group. If we use only 2 ampoules of tranexamic acid preoperatively and drain only in the placebo group, the costs would amount to EUR 50 and EUR 100. According to the Finnish arthroplasty registry, about 2500 hip operations per year in Finland might be suitable for this kind of policy (Nevalainen et al. 2003). It means a saving of about EUR 32,500–125,000. If we take uncemented and revision cases into account, the saving will increase many fold".

North 2016

"cost analysis using IV TXA demonstrated a savings of $314 USD per patient".

Ray 2005

"The cost of these doses of aprotinin and EACA is Aus $401 and $71 respectively, i.e. aprotinin is more than five times the cost, bears a risk of anaphylactic reaction and has similar effect in reducing bleeding".

Veien 2002

"The blood‐sparing effect of TXA has a high cost‐benefit ratio. The cost of short‐term TXA therapy is significantly less than the cost of autologous and allogenic blood transfusions".

Wang 2018

"An appropriate oral dose can save between $33 and $94 compared with an equivalent intravenous or intra‐articular dose, depending on the formulations of TXA. We came to the same conclusion about the costs. Although several authors have confirmed the enhanced efficacy of higher or additional intravenous administration of TXA in arthroplasty, to our knowledge there have been no prior RCTs determining the optimum regimen for oral TXA, which is associated with great cost savings, ease of administration, and equivalent clinical blood‐conserving efficacy".

Wu 2018

"The total TXA cost in the oral TXA group was significantly less compared to that in the IV TXA group (¥600 and ¥ 3150, P < 0.01)".

Zeng 2018

"The mean hospital charge in the extension, and controlled group was 7070$, and 7140$, respectively, without significant intergroup differences".

Zhao 2018

"The cost associated with oral TXA (546 RMB total patients) was significantly lower than that of intravenous TXA (4573.2 RMB total patients; p = 0.001; Table 2).

The oral TXA dosage cost 6.83 RMB per dose. The cost of 1g of IV TXA was 76.30 RMB, the cost of oral form of TXA is cheaper than the intravenous form, and beside its relatively low cost, the advantage of oral TXA is simple application avoiding IV access, which is requirement for expensive nursing care for IV application. The transfusion cost per two U red blood cells was estimated to be 930 RMB at our hospital.

Costs of TXA and transfusions were significantly lower in the oral group than the intravenous group (p < 0.05). Similarly, the cost of transfusion was significantly lower in the oral group (929.65 RMB total transfusion) than in the intravenous group (1859.3 RMB total transfusion) and control group (8366.8 RMB, total transfusion; p = 0.004; Table 2)".

DVT: deep vein thrombosis; EACA: epsilon‐aminocaproic acid; IAT: intraoperative autotransfusion; LOS: length of stay; IV: intravenous; OR: operating room; PAD: preoperative autologous blood donation; RCT: randomised controlled trial; TKA: total knee arthroplasty; TXA, TA, TNA: tranexamic acid

Open in table viewer
Table 8. Table of descriptive HRQoL information

Study

Intervention

HRQoL information

None of the included studies reported health‐related quality of life data. However, some studies have reported descriptive information.

Chin 2020

TXA, IV, 1 g

There was no significant difference between TXA and placebo groups in the improvement of functional scales, comparing the preoperative to the 1‐year postoperative scores. The Oxford Hip Score showed a mean improvement of 25.9 points in those patients who received TXA, compared with 26.7 points in those who received placebo (P = 0.679). The WOMAC scores were improved by 49.9 points in the TXA group, compared with 50.7 points in the placebo group (P = 0.864). The mean improvement in the HAAS was 7.5 points in the TXA group, compared with 8.2 points in the placebo group (P = 0.278).

Placebo

Morales‐Avalos 2021

TXA, oral

VAS score, Harris hip score. VAS preop 7.88 ± 1.54. HHS (points) 48.10 ± 8.48. VAS postop 30 days 1.38 ± 0.95. HHS postop 30 days 84.99 ± 12.92.

EACA, oral

VAS score, Harris hip score. VAS preop 8.01 ± 1.22. HHS 49.56 ± 9.01. VAS postop 30 days 1.59 ± 1.02. HHS postop 30 days 83.13 ±14.69.

Painter 2018

Placebo

EQ‐5D indexed, median (interquartile range (IQR)) preoperative: 0.38 (0.22 to 0.60), Week 3: 0.64 (0.54 to 0.74), Week 6: 0.67 (0.59 to 0.84), Month 3: 0.73 (0.64 to 0.84), Month 6: 0.77 (0.59 to 0.91). Quality of recovery score, median (IQR) Day 3: 102 (84 to 123), Week 3: 120 (107 to 138), Week 6: 124 (102 to 140) WOMAC® Index, median (IQR) preoperative: 64 (51 to 72), Week 3: 30 (21 to 48), Week 6: 28 (16 to 38), Month 3: 21 (10 to 37), Month 6: 18 (10 to 33). Oxford score (hip or knee), median (IQR) preoperative: 44 (38 to 50), Week 3: 35 (26 to 41), Week 6: 28 (21 to 35), Month 3: 24 (17 to 30), Month 6: 21 (15 to 29).

TXA

EQ‐5D indexed, median (interquartile range (IQR)) preoperative: 0.42 (0.19 to 0.58), Week 3: 0.65 (0.52 to 0.74), Week 6: 0.73 (0.59 to 0.84), Month 3: 0.74 (0.64 to 0.84), Month 6: 0.77 (0.66 to 1.00). Quality of recovery score, median (IQR) Day 3: 106 (88 to 122), Week 3: 119 (104 to 127), Week 6: 129 (116 to 139). WOMAC® Index, median (IQR) preoperative: 61 (54 to 71), Week 3: 35 (25 to 45), Week 6: 28 (16 to 37), Month 3: 19 (12 to 31), Month 6: 17 (8 to 32). Oxford score (hip or knee), median (IQR) preoperative: 43 (39 to 50), Week 3: 32 (28 to 37), Week 6: 26 (21 to 32), Month 3: 23 (19 to 28), Month 6: 23 (17 to 28).

Xie 2017

TXA, IV pre‐op + placebo, IV, postop, repeated dose

VAS score pre‐op day 1: 3.1, VAS score postop day 1: 2.7, VAS score postop day 2: 2.4, VAS score postop day 3: 2.2

TXA, IV pre‐op + TXA, IV, postop + placebo, IV, postop

VAS score pre‐op day 1: 2.9, VAS score postop day 1: 2.5, VAS score postop day 2: 2.2, VAS score postop day 3: 2.2

TXA, IV pre‐op + TXA, IV, postop, repeated dose

VAS score pre‐op day 1: 3.3, VAS score postop day 1: 1.8, VAS score postop day 2: 2.0, VAS score postop day 3: 1.9

Yen 2017

Placebo

Average VAS mean score (1 day postop): 3.89 ± 0.83

TXA, IV

Average VAS mean score (1 day postop): 3.84 ± 0.74

TXA, IA

Average VAS mean score (1 day postop): 3.93 ± 0.84

EACA: epsilon aminocaproic acid; HAAS: High Activity Arthroplasty Score; HHS: Harris Hip Score; HRQoL: health‐related quality of life; IA: intra‐articular; IQR: interquartile range; IV: intravenous; TXA: tranexamic acid; VAS: visual analogue scale; WOMAC: Western Ontario and McMaster Universities Arthritis Index

Subgroup analysis

We were unable to perform any of the subgroup analyses detailed in our protocol (Gibbs 2023), due to the very limited networks remaining after the data were split.

Sensitivity analysis

No included study reported a dropout rate of more than 20%; therefore, we did not perform any further sensitivity analyses. Sensitivity analyses by risk of bias could not be performed as planned. Exclusion of studies with high risk of bias resulted in loss of connectivity.

Discussion

Summary of main results

We aimed to determine the relative efficacy of pharmacological interventions for preventing blood loss in elective primary or revision hip or knee replacement, and to identify optimal administration of interventions regarding timing, dose and route. We identified 102 eligible RCTs including participants undergoing hip or knee replacement surgery. Our primary outcomes were the proportion of participants requiring an allogeneic blood transfusion and all‐cause mortality; secondary outcomes included the mean number of units transfused per participant (up to 30 days), reoperation due to bleeding (within seven days), length of hospital stay and adverse events including DVT, pulmonary embolism, myocardial infarction and stroke, transfusion reactions (acute): within 24 hours and serious suspected serious drug reactions: within 30 days. We also collected cost data and quality of life data, where they were reported in the included studies.

There are relatively few data to support the large number of treatment regimens identified. There is low‐certainty evidence that TXA given at higher doses, intra‐articularly and orally, is likely to be the most effective approach for reducing the need for blood transfusion in people undergoing hip or knee replacement surgery (summary of findings Table 1; Table 5). The ranking of individual treatments should be interpreted with caution given the limited amount of evidence contributing to each comparison.

Tranexamic acid interventions consistently ranked higher than other treatments such as aprotinin, EACA and topical fibrin sealants compared with placebo. We noted that mixed routes of administration (oral and intra‐articular, intravenous and intra‐articular) appear to be more effective than single routes of administration and higher doses of tranexamic acid feature higher up the treatment ranking hierarchy. Oral tranexamic acid appears to perform well, which is an important finding as oral tranexamic acid is cheaper and easier to administer than intravenous tranexamic acid (GBP 6.01 for sixty 500 mg tablets (30 g) versus GBP 15.47 for five 1 g ampoules (5 g), BNF 2022).

Mortality was not reported by many trials, which is likely due to the low risk of death in people undergoing hip or knee replacement surgery.

We found that there was little to no evidence of harm associated with any of the interventions compared with placebo. In particular, the number of thromboembolic events was low in all arms and there is no evidence that higher doses of tranexamic acid increased this risk. In fact, while the estimates are imprecise, what evidence there is suggests that the risk may actually be reduced (summary of findings Table 2; Table 6). This may be due to the anti‐inflammatory effects of TXA (TXA reduces the levels of inflammatory proteins such as C‐reactive protein and interleukin‐6) within people undergoing orthopaedic procedures who receive TXA compared to those receiving no or lower doses of TXA (Okholm 2022).

Overall completeness and applicability of evidence

We excluded all studies published after 2010 that were unregistered, or retrospectively registered, as per our protocol and in line with Cochrane Injuries Editorial Policy (Broughton 2021; Cochrane policy; Roberts 2015). This may have excluded some relevant and useful studies from the review.

Given the ability of studies to compare all the various combinations of drug, route, dose and timing, we conducted an NMA to enable the combination of direct and indirect evidence and to rank different treatment interventions in a methodologically robust way. Our review includes 102 trials assessing a variety of drug regimens for the prevention of bleeding in people undergoing hip or knee surgery. The review includes all pre‐registered trials identifiable through bibliographic databases and trial registries, with no date restrictions.

Our review has limitations. The trials included in this review were small, with a large number of interventions tested, resulting in a sparsely populated network, wide credible intervals and low certainty in the evidence for any specific treatment. Evidence for some of the interventions studied was informed by a single trial, which led to imprecision and low certainty of evidence. The included population was quite homogeneous, as it was limited to people who had undergone a hip or knee replacement. However, some variation in the use of topical tranexamic acid or fibrin sealants in these populations could affect the transitivity assumption as they may have been administered in different ways (e.g. through bathing the joint during surgery or injected within the tissues). Transitivity may have also been affected by transfusion thresholds. The variations in the criteria to trigger a transfusion could have a significant influence on the pooled studies for analysis, especially if in the presence of a network with fewer connections.

Whilst 102 eligible trials were identified, we could only include 47 in the NMA for our primary outcome. Many studies could not be included due to observing zero events in one or more arms, and some did not connect within the network (Appendix 3).

Although we were able to undertake an NMA for our primary outcome (risk of needing an allogeneic blood transfusion), we did not have enough data to conduct an NMA for all‐cause mortality. Only 19 studies reported the outcome all‐cause mortality and many studies reported zero events. Similarly, we did not have enough data to conduct an NMA for reoperation due to bleeding within seven days or adverse events, except for DVT. The rate of adverse events, including reoperation for bleeding, was low and concerns over increased risk of thromboembolic events are not borne out by the evidence we identified.

Our current protocol does not include plans for regular updating (Gibbs 2023); however, we identified 30 ongoing trials planning to recruit 3776 participants, which may allow firmer conclusions to be drawn in future.

Quality of the evidence

The overall degree of certainty of the evidence evaluated ranged from very low to moderate based on grading using the CINeMA assessment. However, in general there was not enough good evidence to draw definitive conclusions. The degree of certainty of the evidence of our top‐ranking TXA treatments was assessed as low, except for TXA given orally and intra‐articularly at a total dose of greater than 3 g pre‐incision, intraoperatively and postoperatively. The main reason for downgrading the certainty of evidence was imprecision (wide credible and/or confidence intervals) and within‐study bias. Many comparisons yielded low‐certainty evidence due to these concerns (Table 1; Table 2). This means that we are not able to draw any firm conclusions on the optimal dose, route and timing of administration of TXA.

Potential biases in the review process

We have attempted to minimise bias in the review process. We conducted a comprehensive search: we searched multiple data sources (including multiple databases and clinical trial registries) to ensure that all relevant studies would be captured. There were no restrictions on the language in which reports were originally published. We assessed the relevance of each publication carefully and performed all screening and data extraction in duplicate. We prespecified all outcomes and subgroups prior to analysis.

We excluded trials that did not prospectively register their protocol (for publications since 2010) to minimise the potential for bias from the included data, although we accept that this may have excluded some relevant and useful studies (Gibbs 2023). However, the decision to exclude unregistered (or retrospectively registered) trials was taken due to the evidence highlighting issues surrounding false data, including the possibility of 'zombie' trials, where a trial did not even take place (Carlisle 2021; Roberts 2015). Prospective registration reduces the chance of publication bias, and has been compulsory for randomised controlled trials since 2005, thus suggesting that those that have not been registered (or registered retrospectively) since then are less likely to be at low risk of bias (Roberts 2015).

We planned subgroup analyses by type of surgery (primary hip or knee replacement or hip or knee revision), reason for surgery, duration of surgery, incidence of preoperative anaemia, type of anaesthetic used (general or spinal), use of tourniquet and use of anticoagulation. However, the data were too limited to allow informative subgroup analyses. Similarly, our sensitivity analyses by risk of bias could not be performed as planned. Exclusion of studies with high risk of bias resulted in loss of connectivity.

There were a large number of interventions tested in a relatively small number of trials, all with small sample sizes. We grouped the interventions according to total dose, route and timing to provide a manageable set for analysis and inevitably some detail is lost, especially for postoperative infusion strategies. There are not sufficient data to establish the most effective regimen of those tested in these trials, only some broad general trends.

Agreements and disagreements with other studies or reviews

Our findings have demonstrated greater efficacy of tranexamic acid compared to placebo and other pharmacological agents studied. TXA has been shown to be effective for preventing bleeding in people undergoing hip or knee replacement surgery in other reviews. Fillingham et al performed a network meta‐analysis of randomised trials using tranexamic acid in people having a primary hip replacement (Fillingham 2018). These authors included 34 studies in their review. They similarly concluded that there was strong evidence to support the use of TXA to reduce blood loss and risk of transfusion; however, they were not able to clearly identify superior routes of administration, dosage, dosing regimen or timing of administration. They found that oral TXA may not have been as effective as other routes of intervention, a finding that this review did not conclude. As with our review, the authors found that many treatments relied on a limited number of studies connecting the nodes and therefore relied more heavily on indirect comparisons.

The same group of authors also conducted an NMA of randomised trials in people undergoing primary knee replacement (Fillingham 2018a). They included 67 studies in their review. They found that there was strong evidence to support the use of TXA to reduce blood loss and the risk of transfusion in people undergoing a primary knee replacement. However, they were not able to conclude a superior route or dose of administration. They did, however, find moderate evidence to support the use of TXA pre‐incision.

Another recent NMA looking at tranexamic acid use in people undergoing both hip and knee replacement found that TXA given intravenously and intra‐articularly provided the best efficacy to prevent transfusion (Xu 2019a). We did not draw this conclusion. Our review found that interventions including intra‐articular administration and oral TXA regimens may be more beneficial in reducing the need for blood transfusion. Importantly, all three reviews studying tranexamic acid report no increased risk of adverse events compared with placebo.

In some countries, EACA is cheaper than TXA and has been preferred for use in people undergoing hip or knee replacement surgery. A meta‐analysis study conducted by Riaz et al focused on the efficacy of EACA compared with TXA in reducing the need for blood transfusion (Riaz 2019). They found three studies comparing TXA and EACA and concluded that TXA was not superior to EACA, and both antifibrinolytic therapies demonstrated similar efficacy in terms of transfusion requirements and blood loss. Our review found that TXA was superior to EACA in terms of reducing the need for blood transfusion.

In this review, we have focused exclusively on people undergoing elective (planned) surgery, excluding those studies that had a mixed population where we could not separate the relevant data. Our sister review focused on non‐elective surgery only (Gibbs 2023).

Network plot allogeneic blood transfusion

Figuras y tablas -
Figure 1

Network plot allogeneic blood transfusion

Network plot deep vein thrombosis

Figuras y tablas -
Figure 2

Network plot deep vein thrombosis

PRISMA diagram

Figuras y tablas -
Figure 3

PRISMA diagram

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Figuras y tablas -
Figure 4

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

original image

Figuras y tablas -
Figure 5

original image

Figuras y tablas -
Figure 6

original image

Figuras y tablas -
Figure 7

original image

Figuras y tablas -
Figure 8

original image

Figuras y tablas -
Figure 9

Comparison 1: Results included in the network meta‐analyses, Outcome 1: Need for allogeneic blood transfusion (only trials included in the NMA)

Figuras y tablas -
Analysis 1.1

Comparison 1: Results included in the network meta‐analyses, Outcome 1: Need for allogeneic blood transfusion (only trials included in the NMA)

Comparison 1: Results included in the network meta‐analyses, Outcome 2: Units of red blood cells transfused (only trials included in the NMA)

Figuras y tablas -
Analysis 1.2

Comparison 1: Results included in the network meta‐analyses, Outcome 2: Units of red blood cells transfused (only trials included in the NMA)

Comparison 1: Results included in the network meta‐analyses, Outcome 3: Risk of experiencing DVT (only trials included in the NMA)

Figuras y tablas -
Analysis 1.3

Comparison 1: Results included in the network meta‐analyses, Outcome 3: Risk of experiencing DVT (only trials included in the NMA)

Comparison 1: Results included in the network meta‐analyses, Outcome 4: Length of hospital stay (only trials included in the NMA)

Figuras y tablas -
Analysis 1.4

Comparison 1: Results included in the network meta‐analyses, Outcome 4: Length of hospital stay (only trials included in the NMA)

Comparison 2: TXA IV vs placebo, Outcome 1: Need for allogeneic blood transfusion

Figuras y tablas -
Analysis 2.1

Comparison 2: TXA IV vs placebo, Outcome 1: Need for allogeneic blood transfusion

Comparison 2: TXA IV vs placebo, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 2.2

Comparison 2: TXA IV vs placebo, Outcome 2: All‐cause mortality

Comparison 2: TXA IV vs placebo, Outcome 3: Units of red blood cells transfused

Figuras y tablas -
Analysis 2.3

Comparison 2: TXA IV vs placebo, Outcome 3: Units of red blood cells transfused

Comparison 2: TXA IV vs placebo, Outcome 4: Reoperation

Figuras y tablas -
Analysis 2.4

Comparison 2: TXA IV vs placebo, Outcome 4: Reoperation

Comparison 2: TXA IV vs placebo, Outcome 5: Length of hospital stay

Figuras y tablas -
Analysis 2.5

Comparison 2: TXA IV vs placebo, Outcome 5: Length of hospital stay

Comparison 2: TXA IV vs placebo, Outcome 6: Risk of experiencing DVT

Figuras y tablas -
Analysis 2.6

Comparison 2: TXA IV vs placebo, Outcome 6: Risk of experiencing DVT

Comparison 2: TXA IV vs placebo, Outcome 7: Risk of experiencing PE

Figuras y tablas -
Analysis 2.7

Comparison 2: TXA IV vs placebo, Outcome 7: Risk of experiencing PE

Comparison 2: TXA IV vs placebo, Outcome 8: Risk of experiencing MI

Figuras y tablas -
Analysis 2.8

Comparison 2: TXA IV vs placebo, Outcome 8: Risk of experiencing MI

Comparison 2: TXA IV vs placebo, Outcome 9: Risk of experiencing CVA

Figuras y tablas -
Analysis 2.9

Comparison 2: TXA IV vs placebo, Outcome 9: Risk of experiencing CVA

Comparison 2: TXA IV vs placebo, Outcome 10: Risk of having suspected serious drug reactions

Figuras y tablas -
Analysis 2.10

Comparison 2: TXA IV vs placebo, Outcome 10: Risk of having suspected serious drug reactions

Comparison 3: TXA oral vs placebo, Outcome 1: Need for allogeneic blood transfusion

Figuras y tablas -
Analysis 3.1

Comparison 3: TXA oral vs placebo, Outcome 1: Need for allogeneic blood transfusion

Comparison 3: TXA oral vs placebo, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 3.2

Comparison 3: TXA oral vs placebo, Outcome 2: All‐cause mortality

Comparison 3: TXA oral vs placebo, Outcome 3: Length of hospital stay

Figuras y tablas -
Analysis 3.3

Comparison 3: TXA oral vs placebo, Outcome 3: Length of hospital stay

Comparison 3: TXA oral vs placebo, Outcome 4: Risk of experiencing DVT

Figuras y tablas -
Analysis 3.4

Comparison 3: TXA oral vs placebo, Outcome 4: Risk of experiencing DVT

Comparison 3: TXA oral vs placebo, Outcome 5: Risk of experiencing PE

Figuras y tablas -
Analysis 3.5

Comparison 3: TXA oral vs placebo, Outcome 5: Risk of experiencing PE

Comparison 3: TXA oral vs placebo, Outcome 6: Risk of experiencing MI

Figuras y tablas -
Analysis 3.6

Comparison 3: TXA oral vs placebo, Outcome 6: Risk of experiencing MI

Comparison 3: TXA oral vs placebo, Outcome 7: Risk of experiencing CVA

Figuras y tablas -
Analysis 3.7

Comparison 3: TXA oral vs placebo, Outcome 7: Risk of experiencing CVA

Comparison 4: TXA topical vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 4.1

Comparison 4: TXA topical vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Comparison 4: TXA topical vs placebo, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 4.2

Comparison 4: TXA topical vs placebo, Outcome 2: All‐cause mortality

Comparison 4: TXA topical vs placebo, Outcome 3: Reoperation

Figuras y tablas -
Analysis 4.3

Comparison 4: TXA topical vs placebo, Outcome 3: Reoperation

Comparison 4: TXA topical vs placebo, Outcome 4: Length of hospital stay

Figuras y tablas -
Analysis 4.4

Comparison 4: TXA topical vs placebo, Outcome 4: Length of hospital stay

Comparison 4: TXA topical vs placebo, Outcome 5: Risk of experiencing DVT

Figuras y tablas -
Analysis 4.5

Comparison 4: TXA topical vs placebo, Outcome 5: Risk of experiencing DVT

Comparison 4: TXA topical vs placebo, Outcome 6: Risk of experiencing PE

Figuras y tablas -
Analysis 4.6

Comparison 4: TXA topical vs placebo, Outcome 6: Risk of experiencing PE

Comparison 4: TXA topical vs placebo, Outcome 7: Risk of experiencing CVA

Figuras y tablas -
Analysis 4.7

Comparison 4: TXA topical vs placebo, Outcome 7: Risk of experiencing CVA

Comparison 4: TXA topical vs placebo, Outcome 8: Risk of transfusion reactions

Figuras y tablas -
Analysis 4.8

Comparison 4: TXA topical vs placebo, Outcome 8: Risk of transfusion reactions

Comparison 5: TXA IV + TXA topical vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 5.1

Comparison 5: TXA IV + TXA topical vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Comparison 5: TXA IV + TXA topical vs placebo, Outcome 2: Length of hospital stay

Figuras y tablas -
Analysis 5.2

Comparison 5: TXA IV + TXA topical vs placebo, Outcome 2: Length of hospital stay

Comparison 5: TXA IV + TXA topical vs placebo, Outcome 3: Risk of experiencing DVT

Figuras y tablas -
Analysis 5.3

Comparison 5: TXA IV + TXA topical vs placebo, Outcome 3: Risk of experiencing DVT

Comparison 5: TXA IV + TXA topical vs placebo, Outcome 4: Risk of experiencing PE

Figuras y tablas -
Analysis 5.4

Comparison 5: TXA IV + TXA topical vs placebo, Outcome 4: Risk of experiencing PE

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 6.1

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 1: Risk of allogeneic blood transfusion

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 6.2

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 2: All‐cause mortality

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 3: Units of red blood cells transfused

Figuras y tablas -
Analysis 6.3

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 3: Units of red blood cells transfused

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 4: Reoperation

Figuras y tablas -
Analysis 6.4

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 4: Reoperation

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 5: Length of hospital stay

Figuras y tablas -
Analysis 6.5

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 5: Length of hospital stay

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 6: Risk of experiencing DVT

Figuras y tablas -
Analysis 6.6

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 6: Risk of experiencing DVT

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 7: Risk of experiencing PE

Figuras y tablas -
Analysis 6.7

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 7: Risk of experiencing PE

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 8: Risk of experiencing MI

Figuras y tablas -
Analysis 6.8

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 8: Risk of experiencing MI

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 9: Risk of experiencing CVA

Figuras y tablas -
Analysis 6.9

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 9: Risk of experiencing CVA

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 10: Risk of suspected serious drug reactions

Figuras y tablas -
Analysis 6.10

Comparison 6: TXA IV lower dose vs TXA IV higher dose, Outcome 10: Risk of suspected serious drug reactions

Comparison 7: TXA IV vs TXA oral, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 7.1

Comparison 7: TXA IV vs TXA oral, Outcome 1: Risk of allogeneic blood transfusion

Comparison 7: TXA IV vs TXA oral, Outcome 2: Units of red blood cells transfused

Figuras y tablas -
Analysis 7.2

Comparison 7: TXA IV vs TXA oral, Outcome 2: Units of red blood cells transfused

Comparison 7: TXA IV vs TXA oral, Outcome 3: Length of hospital stay

Figuras y tablas -
Analysis 7.3

Comparison 7: TXA IV vs TXA oral, Outcome 3: Length of hospital stay

Comparison 7: TXA IV vs TXA oral, Outcome 4: Risk of experiencing DVT

Figuras y tablas -
Analysis 7.4

Comparison 7: TXA IV vs TXA oral, Outcome 4: Risk of experiencing DVT

Comparison 7: TXA IV vs TXA oral, Outcome 5: Risk of experiencing PE

Figuras y tablas -
Analysis 7.5

Comparison 7: TXA IV vs TXA oral, Outcome 5: Risk of experiencing PE

Comparison 7: TXA IV vs TXA oral, Outcome 6: Risk of experiencing CVA

Figuras y tablas -
Analysis 7.6

Comparison 7: TXA IV vs TXA oral, Outcome 6: Risk of experiencing CVA

Comparison 8: TXA IV vs TXA topical, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 8.1

Comparison 8: TXA IV vs TXA topical, Outcome 1: Risk of allogeneic blood transfusion

Comparison 8: TXA IV vs TXA topical, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 8.2

Comparison 8: TXA IV vs TXA topical, Outcome 2: All‐cause mortality

Comparison 8: TXA IV vs TXA topical, Outcome 3: Reoperation

Figuras y tablas -
Analysis 8.3

Comparison 8: TXA IV vs TXA topical, Outcome 3: Reoperation

Comparison 8: TXA IV vs TXA topical, Outcome 4: Length of hospital stay

Figuras y tablas -
Analysis 8.4

Comparison 8: TXA IV vs TXA topical, Outcome 4: Length of hospital stay

Comparison 8: TXA IV vs TXA topical, Outcome 5: Risk of experiencing DVT

Figuras y tablas -
Analysis 8.5

Comparison 8: TXA IV vs TXA topical, Outcome 5: Risk of experiencing DVT

Comparison 8: TXA IV vs TXA topical, Outcome 6: Risk of experiencing PE

Figuras y tablas -
Analysis 8.6

Comparison 8: TXA IV vs TXA topical, Outcome 6: Risk of experiencing PE

Comparison 8: TXA IV vs TXA topical, Outcome 7: Risk of experiencing MI

Figuras y tablas -
Analysis 8.7

Comparison 8: TXA IV vs TXA topical, Outcome 7: Risk of experiencing MI

Comparison 8: TXA IV vs TXA topical, Outcome 8: Risk of experiencing CVA

Figuras y tablas -
Analysis 8.8

Comparison 8: TXA IV vs TXA topical, Outcome 8: Risk of experiencing CVA

Comparison 8: TXA IV vs TXA topical, Outcome 9: Risk of suspected serious drug reactions

Figuras y tablas -
Analysis 8.9

Comparison 8: TXA IV vs TXA topical, Outcome 9: Risk of suspected serious drug reactions

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 9.1

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 1: Risk of allogeneic blood transfusion

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 9.2

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 2: All‐cause mortality

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 3: Risk of experiencing DVT

Figuras y tablas -
Analysis 9.3

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 3: Risk of experiencing DVT

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 4: Risk of experiencing PE

Figuras y tablas -
Analysis 9.4

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 4: Risk of experiencing PE

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 5: Risk of experiencing MI

Figuras y tablas -
Analysis 9.5

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 5: Risk of experiencing MI

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 6: Risk of experiencing CVA

Figuras y tablas -
Analysis 9.6

Comparison 9: TXA oral lower dose vs TXA oral higher dose, Outcome 6: Risk of experiencing CVA

Comparison 10: TXA topical lower dose vs TXA topical higher dose, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 10.1

Comparison 10: TXA topical lower dose vs TXA topical higher dose, Outcome 1: Risk of allogeneic blood transfusion

Comparison 10: TXA topical lower dose vs TXA topical higher dose, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 10.2

Comparison 10: TXA topical lower dose vs TXA topical higher dose, Outcome 2: All‐cause mortality

Comparison 10: TXA topical lower dose vs TXA topical higher dose, Outcome 3: Reoperation

Figuras y tablas -
Analysis 10.3

Comparison 10: TXA topical lower dose vs TXA topical higher dose, Outcome 3: Reoperation

Comparison 10: TXA topical lower dose vs TXA topical higher dose, Outcome 4: Risk of experiencing CVA

Figuras y tablas -
Analysis 10.4

Comparison 10: TXA topical lower dose vs TXA topical higher dose, Outcome 4: Risk of experiencing CVA

Comparison 10: TXA topical lower dose vs TXA topical higher dose, Outcome 5: Risk of suspected serious drug reactions

Figuras y tablas -
Analysis 10.5

Comparison 10: TXA topical lower dose vs TXA topical higher dose, Outcome 5: Risk of suspected serious drug reactions

Comparison 11: TXA IV vs aprotinin, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 11.1

Comparison 11: TXA IV vs aprotinin, Outcome 1: Risk of allogeneic blood transfusion

Comparison 11: TXA IV vs aprotinin, Outcome 2: Risk of experiencing DVT

Figuras y tablas -
Analysis 11.2

Comparison 11: TXA IV vs aprotinin, Outcome 2: Risk of experiencing DVT

Comparison 12: TXA IV vs EACA, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 12.1

Comparison 12: TXA IV vs EACA, Outcome 1: Risk of allogeneic blood transfusion

Comparison 12: TXA IV vs EACA, Outcome 2: Units of red blood cells transfused

Figuras y tablas -
Analysis 12.2

Comparison 12: TXA IV vs EACA, Outcome 2: Units of red blood cells transfused

Comparison 12: TXA IV vs EACA, Outcome 3: Reoperation

Figuras y tablas -
Analysis 12.3

Comparison 12: TXA IV vs EACA, Outcome 3: Reoperation

Comparison 12: TXA IV vs EACA, Outcome 4: Length of hospital stay

Figuras y tablas -
Analysis 12.4

Comparison 12: TXA IV vs EACA, Outcome 4: Length of hospital stay

Comparison 12: TXA IV vs EACA, Outcome 5: Risk of experiencing DVT

Figuras y tablas -
Analysis 12.5

Comparison 12: TXA IV vs EACA, Outcome 5: Risk of experiencing DVT

Comparison 12: TXA IV vs EACA, Outcome 6: Risk of experiencing PE

Figuras y tablas -
Analysis 12.6

Comparison 12: TXA IV vs EACA, Outcome 6: Risk of experiencing PE

Comparison 12: TXA IV vs EACA, Outcome 7: Risk of experiencing MI

Figuras y tablas -
Analysis 12.7

Comparison 12: TXA IV vs EACA, Outcome 7: Risk of experiencing MI

Comparison 12: TXA IV vs EACA, Outcome 8: Risk of experiencing CVA

Figuras y tablas -
Analysis 12.8

Comparison 12: TXA IV vs EACA, Outcome 8: Risk of experiencing CVA

Comparison 13: TXA oral vs EACA oral, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 13.1

Comparison 13: TXA oral vs EACA oral, Outcome 1: Risk of allogeneic blood transfusion

Comparison 13: TXA oral vs EACA oral, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 13.2

Comparison 13: TXA oral vs EACA oral, Outcome 2: All‐cause mortality

Comparison 13: TXA oral vs EACA oral, Outcome 3: Reoperation

Figuras y tablas -
Analysis 13.3

Comparison 13: TXA oral vs EACA oral, Outcome 3: Reoperation

Comparison 13: TXA oral vs EACA oral, Outcome 4: Risk of experiencing DVT

Figuras y tablas -
Analysis 13.4

Comparison 13: TXA oral vs EACA oral, Outcome 4: Risk of experiencing DVT

Comparison 13: TXA oral vs EACA oral, Outcome 5: Risk of experiencing PE

Figuras y tablas -
Analysis 13.5

Comparison 13: TXA oral vs EACA oral, Outcome 5: Risk of experiencing PE

Comparison 13: TXA oral vs EACA oral, Outcome 6: Risk of experiencing MI

Figuras y tablas -
Analysis 13.6

Comparison 13: TXA oral vs EACA oral, Outcome 6: Risk of experiencing MI

Comparison 13: TXA oral vs EACA oral, Outcome 7: Risk of experiencing CVA

Figuras y tablas -
Analysis 13.7

Comparison 13: TXA oral vs EACA oral, Outcome 7: Risk of experiencing CVA

Comparison 13: TXA oral vs EACA oral, Outcome 8: Risk of suspected serious drug reactions

Figuras y tablas -
Analysis 13.8

Comparison 13: TXA oral vs EACA oral, Outcome 8: Risk of suspected serious drug reactions

Comparison 14: TXA IV vs desmopressin, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 14.1

Comparison 14: TXA IV vs desmopressin, Outcome 1: Risk of allogeneic blood transfusion

Comparison 14: TXA IV vs desmopressin, Outcome 2: Length of hospital stay

Figuras y tablas -
Analysis 14.2

Comparison 14: TXA IV vs desmopressin, Outcome 2: Length of hospital stay

Comparison 14: TXA IV vs desmopressin, Outcome 3: Risk of experiencing DVT

Figuras y tablas -
Analysis 14.3

Comparison 14: TXA IV vs desmopressin, Outcome 3: Risk of experiencing DVT

Comparison 14: TXA IV vs desmopressin, Outcome 4: Risk of experiencing PE

Figuras y tablas -
Analysis 14.4

Comparison 14: TXA IV vs desmopressin, Outcome 4: Risk of experiencing PE

Comparison 15: TXA IV vs fibrin topical, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 15.1

Comparison 15: TXA IV vs fibrin topical, Outcome 1: Risk of allogeneic blood transfusion

Comparison 15: TXA IV vs fibrin topical, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 15.2

Comparison 15: TXA IV vs fibrin topical, Outcome 2: All‐cause mortality

Comparison 15: TXA IV vs fibrin topical, Outcome 3: Units of red blood cells transfused

Figuras y tablas -
Analysis 15.3

Comparison 15: TXA IV vs fibrin topical, Outcome 3: Units of red blood cells transfused

Comparison 15: TXA IV vs fibrin topical, Outcome 5: Risk of experiencing DVT

Figuras y tablas -
Analysis 15.5

Comparison 15: TXA IV vs fibrin topical, Outcome 5: Risk of experiencing DVT

Comparison 15: TXA IV vs fibrin topical, Outcome 6: Risk of experiencing PE

Figuras y tablas -
Analysis 15.6

Comparison 15: TXA IV vs fibrin topical, Outcome 6: Risk of experiencing PE

Comparison 16: TXA topical vs fibrin topical, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 16.1

Comparison 16: TXA topical vs fibrin topical, Outcome 1: Risk of allogeneic blood transfusion

Comparison 16: TXA topical vs fibrin topical, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 16.2

Comparison 16: TXA topical vs fibrin topical, Outcome 2: All‐cause mortality

Comparison 16: TXA topical vs fibrin topical, Outcome 3: Reoperation

Figuras y tablas -
Analysis 16.3

Comparison 16: TXA topical vs fibrin topical, Outcome 3: Reoperation

Comparison 16: TXA topical vs fibrin topical, Outcome 4: Length of hospital stay

Figuras y tablas -
Analysis 16.4

Comparison 16: TXA topical vs fibrin topical, Outcome 4: Length of hospital stay

Comparison 16: TXA topical vs fibrin topical, Outcome 5: Risk of experiencing DVT

Figuras y tablas -
Analysis 16.5

Comparison 16: TXA topical vs fibrin topical, Outcome 5: Risk of experiencing DVT

Comparison 16: TXA topical vs fibrin topical, Outcome 6: Risk of experiencing PE

Figuras y tablas -
Analysis 16.6

Comparison 16: TXA topical vs fibrin topical, Outcome 6: Risk of experiencing PE

Comparison 16: TXA topical vs fibrin topical, Outcome 7: Risk of experiencing CVA

Figuras y tablas -
Analysis 16.7

Comparison 16: TXA topical vs fibrin topical, Outcome 7: Risk of experiencing CVA

Comparison 17: Aprotinin vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 17.1

Comparison 17: Aprotinin vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Comparison 17: Aprotinin vs placebo, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 17.2

Comparison 17: Aprotinin vs placebo, Outcome 2: All‐cause mortality

Comparison 17: Aprotinin vs placebo, Outcome 3: Units of red blood cells transfused

Figuras y tablas -
Analysis 17.3

Comparison 17: Aprotinin vs placebo, Outcome 3: Units of red blood cells transfused

Comparison 17: Aprotinin vs placebo, Outcome 4: Reoperation

Figuras y tablas -
Analysis 17.4

Comparison 17: Aprotinin vs placebo, Outcome 4: Reoperation

Comparison 17: Aprotinin vs placebo, Outcome 5: Length of hospital stay

Figuras y tablas -
Analysis 17.5

Comparison 17: Aprotinin vs placebo, Outcome 5: Length of hospital stay

Comparison 17: Aprotinin vs placebo, Outcome 6: Risk of experiencing DVT

Figuras y tablas -
Analysis 17.6

Comparison 17: Aprotinin vs placebo, Outcome 6: Risk of experiencing DVT

Comparison 17: Aprotinin vs placebo, Outcome 7: Risk of experiencing PE

Figuras y tablas -
Analysis 17.7

Comparison 17: Aprotinin vs placebo, Outcome 7: Risk of experiencing PE

Comparison 17: Aprotinin vs placebo, Outcome 8: Risk of experiencing MI

Figuras y tablas -
Analysis 17.8

Comparison 17: Aprotinin vs placebo, Outcome 8: Risk of experiencing MI

Comparison 17: Aprotinin vs placebo, Outcome 9: Risk of experiencing CVA

Figuras y tablas -
Analysis 17.9

Comparison 17: Aprotinin vs placebo, Outcome 9: Risk of experiencing CVA

Comparison 17: Aprotinin vs placebo, Outcome 10: Risk of suspected serious drug reactions

Figuras y tablas -
Analysis 17.10

Comparison 17: Aprotinin vs placebo, Outcome 10: Risk of suspected serious drug reactions

Comparison 18: EACA vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 18.1

Comparison 18: EACA vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Comparison 18: EACA vs placebo, Outcome 2: Units of red blood cells transfused

Figuras y tablas -
Analysis 18.2

Comparison 18: EACA vs placebo, Outcome 2: Units of red blood cells transfused

Comparison 18: EACA vs placebo, Outcome 3: Reoperation

Figuras y tablas -
Analysis 18.3

Comparison 18: EACA vs placebo, Outcome 3: Reoperation

Comparison 18: EACA vs placebo, Outcome 4: Risk of experiencing DVT

Figuras y tablas -
Analysis 18.4

Comparison 18: EACA vs placebo, Outcome 4: Risk of experiencing DVT

Comparison 18: EACA vs placebo, Outcome 5: Risk of experiencing PE

Figuras y tablas -
Analysis 18.5

Comparison 18: EACA vs placebo, Outcome 5: Risk of experiencing PE

Comparison 18: EACA vs placebo, Outcome 6: Risk of experiencing MI

Figuras y tablas -
Analysis 18.6

Comparison 18: EACA vs placebo, Outcome 6: Risk of experiencing MI

Comparison 18: EACA vs placebo, Outcome 7: Risk of experiencing CVA

Figuras y tablas -
Analysis 18.7

Comparison 18: EACA vs placebo, Outcome 7: Risk of experiencing CVA

Comparison 19: EACA vs aprotinin, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 19.1

Comparison 19: EACA vs aprotinin, Outcome 1: Risk of allogeneic blood transfusion

Comparison 19: EACA vs aprotinin, Outcome 2: Reoperation

Figuras y tablas -
Analysis 19.2

Comparison 19: EACA vs aprotinin, Outcome 2: Reoperation

Comparison 19: EACA vs aprotinin, Outcome 3: Risk of experiencing DVT

Figuras y tablas -
Analysis 19.3

Comparison 19: EACA vs aprotinin, Outcome 3: Risk of experiencing DVT

Comparison 19: EACA vs aprotinin, Outcome 4: Risk of experiencing PE

Figuras y tablas -
Analysis 19.4

Comparison 19: EACA vs aprotinin, Outcome 4: Risk of experiencing PE

Comparison 20: Desmopressin vs placebo, Outcome 1: All‐cause mortality

Figuras y tablas -
Analysis 20.1

Comparison 20: Desmopressin vs placebo, Outcome 1: All‐cause mortality

Comparison 20: Desmopressin vs placebo, Outcome 2: Units of red blood cells transfused

Figuras y tablas -
Analysis 20.2

Comparison 20: Desmopressin vs placebo, Outcome 2: Units of red blood cells transfused

Comparison 20: Desmopressin vs placebo, Outcome 3: Risk of experiencing DVT

Figuras y tablas -
Analysis 20.3

Comparison 20: Desmopressin vs placebo, Outcome 3: Risk of experiencing DVT

Comparison 20: Desmopressin vs placebo, Outcome 4: Risk of experiencing PE

Figuras y tablas -
Analysis 20.4

Comparison 20: Desmopressin vs placebo, Outcome 4: Risk of experiencing PE

Comparison 20: Desmopressin vs placebo, Outcome 5: Risk of experiencing MI

Figuras y tablas -
Analysis 20.5

Comparison 20: Desmopressin vs placebo, Outcome 5: Risk of experiencing MI

Comparison 20: Desmopressin vs placebo, Outcome 6: Risk of suspected serious drug reactions

Figuras y tablas -
Analysis 20.6

Comparison 20: Desmopressin vs placebo, Outcome 6: Risk of suspected serious drug reactions

Comparison 20: Desmopressin vs placebo, Outcome 7: Length of hospital stay

Figuras y tablas -
Analysis 20.7

Comparison 20: Desmopressin vs placebo, Outcome 7: Length of hospital stay

Comparison 21: Fibrin topical vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 21.1

Comparison 21: Fibrin topical vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Comparison 21: Fibrin topical vs placebo, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 21.2

Comparison 21: Fibrin topical vs placebo, Outcome 2: All‐cause mortality

Comparison 21: Fibrin topical vs placebo, Outcome 3: Reoperation

Figuras y tablas -
Analysis 21.3

Comparison 21: Fibrin topical vs placebo, Outcome 3: Reoperation

Comparison 21: Fibrin topical vs placebo, Outcome 4: Length of hospital stay

Figuras y tablas -
Analysis 21.4

Comparison 21: Fibrin topical vs placebo, Outcome 4: Length of hospital stay

Comparison 21: Fibrin topical vs placebo, Outcome 5: Risk of experiencing DVT

Figuras y tablas -
Analysis 21.5

Comparison 21: Fibrin topical vs placebo, Outcome 5: Risk of experiencing DVT

Comparison 21: Fibrin topical vs placebo, Outcome 6: Risk of experiencing PE

Figuras y tablas -
Analysis 21.6

Comparison 21: Fibrin topical vs placebo, Outcome 6: Risk of experiencing PE

Comparison 21: Fibrin topical vs placebo, Outcome 7: Risk of experiencing CVA

Figuras y tablas -
Analysis 21.7

Comparison 21: Fibrin topical vs placebo, Outcome 7: Risk of experiencing CVA

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 22.1

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 1: Risk of allogeneic blood transfusion

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 22.2

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 2: All‐cause mortality

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 3: Reoperation

Figuras y tablas -
Analysis 22.3

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 3: Reoperation

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 4: Length of hospital stay

Figuras y tablas -
Analysis 22.4

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 4: Length of hospital stay

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 5: Risk of experiencing DVT

Figuras y tablas -
Analysis 22.5

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 5: Risk of experiencing DVT

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 6: Risk of experiencing PE

Figuras y tablas -
Analysis 22.6

Comparison 22: TXA IV + TXA oral vs TXA IV, Outcome 6: Risk of experiencing PE

Comparison 23: TXA IV + TXA topical vs TXA IV, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 23.1

Comparison 23: TXA IV + TXA topical vs TXA IV, Outcome 1: Risk of allogeneic blood transfusion

Comparison 23: TXA IV + TXA topical vs TXA IV, Outcome 2: Length of hospital stay

Figuras y tablas -
Analysis 23.2

Comparison 23: TXA IV + TXA topical vs TXA IV, Outcome 2: Length of hospital stay

Comparison 23: TXA IV + TXA topical vs TXA IV, Outcome 3: Risk of experiencing DVT

Figuras y tablas -
Analysis 23.3

Comparison 23: TXA IV + TXA topical vs TXA IV, Outcome 3: Risk of experiencing DVT

Comparison 23: TXA IV + TXA topical vs TXA IV, Outcome 4: Risk of experiencing PE

Figuras y tablas -
Analysis 23.4

Comparison 23: TXA IV + TXA topical vs TXA IV, Outcome 4: Risk of experiencing PE

Comparison 23: TXA IV + TXA topical vs TXA IV, Outcome 5: Risk of experiencing CVA

Figuras y tablas -
Analysis 23.5

Comparison 23: TXA IV + TXA topical vs TXA IV, Outcome 5: Risk of experiencing CVA

Comparison 24: TXA IV + TXA topical vs TXA oral, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 24.1

Comparison 24: TXA IV + TXA topical vs TXA oral, Outcome 1: Risk of allogeneic blood transfusion

Comparison 24: TXA IV + TXA topical vs TXA oral, Outcome 2: Length of hospital stay

Figuras y tablas -
Analysis 24.2

Comparison 24: TXA IV + TXA topical vs TXA oral, Outcome 2: Length of hospital stay

Comparison 24: TXA IV + TXA topical vs TXA oral, Outcome 3: Risk of experiencing DVT

Figuras y tablas -
Analysis 24.3

Comparison 24: TXA IV + TXA topical vs TXA oral, Outcome 3: Risk of experiencing DVT

Comparison 24: TXA IV + TXA topical vs TXA oral, Outcome 4: Risk of experiencing PE

Figuras y tablas -
Analysis 24.4

Comparison 24: TXA IV + TXA topical vs TXA oral, Outcome 4: Risk of experiencing PE

Comparison 24: TXA IV + TXA topical vs TXA oral, Outcome 5: Risk of experiencing CVA

Figuras y tablas -
Analysis 24.5

Comparison 24: TXA IV + TXA topical vs TXA oral, Outcome 5: Risk of experiencing CVA

Comparison 25: TXA IV + TXA topical vs TXA topical, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 25.1

Comparison 25: TXA IV + TXA topical vs TXA topical, Outcome 1: Risk of allogeneic blood transfusion

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 26.1

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 1: Risk of allogeneic blood transfusion

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 26.2

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 2: All‐cause mortality

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 3: Length of hospital stay

Figuras y tablas -
Analysis 26.3

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 3: Length of hospital stay

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 4: Risk of experiencing DVT

Figuras y tablas -
Analysis 26.4

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 4: Risk of experiencing DVT

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 5: Risk of experiencing PE

Figuras y tablas -
Analysis 26.5

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 5: Risk of experiencing PE

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 6: Risk of experiencing MI

Figuras y tablas -
Analysis 26.6

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 6: Risk of experiencing MI

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 7: Risk of experiencing CVA

Figuras y tablas -
Analysis 26.7

Comparison 26: TXA topical vs TXA oral + TXA topical, Outcome 7: Risk of experiencing CVA

Comparison 27: TXA oral vs TXA combined topical + IV + oral, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 27.1

Comparison 27: TXA oral vs TXA combined topical + IV + oral, Outcome 1: Risk of allogeneic blood transfusion

Comparison 27: TXA oral vs TXA combined topical + IV + oral, Outcome 2: Length of hospital stay

Figuras y tablas -
Analysis 27.2

Comparison 27: TXA oral vs TXA combined topical + IV + oral, Outcome 2: Length of hospital stay

Comparison 27: TXA oral vs TXA combined topical + IV + oral, Outcome 3: Risk of experiencing DVT

Figuras y tablas -
Analysis 27.3

Comparison 27: TXA oral vs TXA combined topical + IV + oral, Outcome 3: Risk of experiencing DVT

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 28.1

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 1: Risk of allogeneic blood transfusion

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 2: Length of hospital stay

Figuras y tablas -
Analysis 28.2

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 2: Length of hospital stay

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 3: Risk of experiencing DVT

Figuras y tablas -
Analysis 28.3

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 3: Risk of experiencing DVT

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 4: Risk of experiencing PE

Figuras y tablas -
Analysis 28.4

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 4: Risk of experiencing PE

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 5: Risk of experiencing MI

Figuras y tablas -
Analysis 28.5

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 5: Risk of experiencing MI

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 6: Risk of experiencing CVA

Figuras y tablas -
Analysis 28.6

Comparison 28: TXA IV + topical lower dose vs TXA IV + topical higher dose, Outcome 6: Risk of experiencing CVA

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 29.1

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 1: Risk of allogeneic blood transfusion

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 2: All‐cause mortality

Figuras y tablas -
Analysis 29.2

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 2: All‐cause mortality

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 3: Length of hospital stay

Figuras y tablas -
Analysis 29.3

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 3: Length of hospital stay

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 4: Risk of experiencing DVT

Figuras y tablas -
Analysis 29.4

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 4: Risk of experiencing DVT

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 5: Risk of experiencing PE

Figuras y tablas -
Analysis 29.5

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 5: Risk of experiencing PE

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 6: Risk of experiencing MI

Figuras y tablas -
Analysis 29.6

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 6: Risk of experiencing MI

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 7: Risk of experiencing CVA

Figuras y tablas -
Analysis 29.7

Comparison 29: TXA oral + topical lower dose vs TXA oral + topical higher dose, Outcome 7: Risk of experiencing CVA

Comparison 30: TXA IV + TXA, oral days 1 to 2 vs TXA IV + TXA, oral days 1 to 5, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 30.1

Comparison 30: TXA IV + TXA, oral days 1 to 2 vs TXA IV + TXA, oral days 1 to 5, Outcome 1: Risk of allogeneic blood transfusion

Comparison 30: TXA IV + TXA, oral days 1 to 2 vs TXA IV + TXA, oral days 1 to 5, Outcome 2: Risk of experiencing DVT

Figuras y tablas -
Analysis 30.2

Comparison 30: TXA IV + TXA, oral days 1 to 2 vs TXA IV + TXA, oral days 1 to 5, Outcome 2: Risk of experiencing DVT

Comparison 30: TXA IV + TXA, oral days 1 to 2 vs TXA IV + TXA, oral days 1 to 5, Outcome 3: Risk of experiencing PE

Figuras y tablas -
Analysis 30.3

Comparison 30: TXA IV + TXA, oral days 1 to 2 vs TXA IV + TXA, oral days 1 to 5, Outcome 3: Risk of experiencing PE

Comparison 31: TXA, IV + TXA, IV vs TXA, IV + placebo, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 31.1

Comparison 31: TXA, IV + TXA, IV vs TXA, IV + placebo, Outcome 1: Risk of allogeneic blood transfusion

Comparison 31: TXA, IV + TXA, IV vs TXA, IV + placebo, Outcome 2: Risk of experiencing MI

Figuras y tablas -
Analysis 31.2

Comparison 31: TXA, IV + TXA, IV vs TXA, IV + placebo, Outcome 2: Risk of experiencing MI

Comparison 31: TXA, IV + TXA, IV vs TXA, IV + placebo, Outcome 3: Risk of experiencing CVA

Figuras y tablas -
Analysis 31.3

Comparison 31: TXA, IV + TXA, IV vs TXA, IV + placebo, Outcome 3: Risk of experiencing CVA

Comparison 31: TXA, IV + TXA, IV vs TXA, IV + placebo, Outcome 4: Risk of experiencing DVT

Figuras y tablas -
Analysis 31.4

Comparison 31: TXA, IV + TXA, IV vs TXA, IV + placebo, Outcome 4: Risk of experiencing DVT

Comparison 31: TXA, IV + TXA, IV vs TXA, IV + placebo, Outcome 5: Risk of experiencing PE

Figuras y tablas -
Analysis 31.5

Comparison 31: TXA, IV + TXA, IV vs TXA, IV + placebo, Outcome 5: Risk of experiencing PE

Comparison 32: TXA, IV + TXA, IV vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 32.1

Comparison 32: TXA, IV + TXA, IV vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Comparison 32: TXA, IV + TXA, IV vs placebo, Outcome 2: Risk of experiencing MI

Figuras y tablas -
Analysis 32.2

Comparison 32: TXA, IV + TXA, IV vs placebo, Outcome 2: Risk of experiencing MI

Comparison 32: TXA, IV + TXA, IV vs placebo, Outcome 3: Risk of experiencing CVA

Figuras y tablas -
Analysis 32.3

Comparison 32: TXA, IV + TXA, IV vs placebo, Outcome 3: Risk of experiencing CVA

Comparison 32: TXA, IV + TXA, IV vs placebo, Outcome 4: Risk of experiencing DVT

Figuras y tablas -
Analysis 32.4

Comparison 32: TXA, IV + TXA, IV vs placebo, Outcome 4: Risk of experiencing DVT

Comparison 32: TXA, IV + TXA, IV vs placebo, Outcome 5: Risk of experiencing PE

Figuras y tablas -
Analysis 32.5

Comparison 32: TXA, IV + TXA, IV vs placebo, Outcome 5: Risk of experiencing PE

Comparison 33: TXA IV + placebo vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Figuras y tablas -
Analysis 33.1

Comparison 33: TXA IV + placebo vs placebo, Outcome 1: Risk of allogeneic blood transfusion

Comparison 33: TXA IV + placebo vs placebo, Outcome 2: Risk of experiencing MI

Figuras y tablas -
Analysis 33.2

Comparison 33: TXA IV + placebo vs placebo, Outcome 2: Risk of experiencing MI

Comparison 33: TXA IV + placebo vs placebo, Outcome 3: Risk of experiencing CVA

Figuras y tablas -
Analysis 33.3

Comparison 33: TXA IV + placebo vs placebo, Outcome 3: Risk of experiencing CVA

Comparison 33: TXA IV + placebo vs placebo, Outcome 4: Risk of experiencing DVT

Figuras y tablas -
Analysis 33.4

Comparison 33: TXA IV + placebo vs placebo, Outcome 4: Risk of experiencing DVT

Comparison 33: TXA IV + placebo vs placebo, Outcome 5: Risk of experiencing PE

Figuras y tablas -
Analysis 33.5

Comparison 33: TXA IV + placebo vs placebo, Outcome 5: Risk of experiencing PE

Summary of findings 1. Summary of findings: Risk of a blood transfusion up to 30 days post‐surgery

Estimates of effects, credible intervals and certainty of the evidence for the prevention of bleeding in hip and knee replacement patients

Patient or population: individuals undergoing planned hip or knee replacement surgery

Interventions: antifibrinolytics (tranexamic acid, aprotinin or epsilon‐aminocaproic acid), fibrin sealants

Comparator (reference): placebo

Outcome: risk of requiring a blood transfusion within 30 days of surgery

Setting: elective orthopaedic surgery

(See Figure 1)

Total studies: 47

Total participants: 4398

Relative effect*

(95% CrI)

Anticipated absolute effect**

Certainty of evidence

(Table 1)

Median nodal ranking (95% CrI)***

Probability of ranking 1st (%)****

Without intervention

With intervention

Difference

TXA given orally and intra‐articularly at a total dose of greater than 3 g pre‐incision, intraoperatively and postoperatively

0.02 (0 0.31)

150 per 1000

3 per 1000

147 fewer per 1000 (150 fewer to 104 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to reporting bias)

1 (1 to 13)

53%

TXA given orally at a total dose of 3 g pre‐incision and postoperatively

0.06 (0 to 1.34)

150 per 1000

9 per 1000

141 fewer per 1000 (150 fewer to 51 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

5 (1 to 28)

18%

TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively

0.1 (0.02 to 0.55)

150 per 1000

15 per 1000

135 fewer per 1000 (147 fewer to 68 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias, heterogeneity)

6 (1 to 21)

5%

TXA given intravenously at a total dose of 2 g pre‐incision

0.09 (0.02 to 0.56)

150 per 1000

14 per 1000

136 fewer per 1000 (147 fewer to 66 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias)

6 (1 to 21)

5%

TXA given intravenously and intra‐articularly at a total dose of 2 g intraoperatively

0.09 (0.03 to 0.3)

150 per 1000

14 per 1000

136 fewer per 1000 (146 fewer to 105 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias)

5 (1 to 14)

4%

TXA given intravenously and orally at a total dose of greater than 3 g pre‐incision and postoperatively

0.21 (0.02 to 2.08)

150 per 1000

32 per 1000

118 fewer per 1000 (147 fewer to 162 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (1 to 29)

3%

TXA given intravenously at a total dose of 1 g pre‐incision and postoperatively

0.18 (0.03 to 1.11)

150 per 1000

27 per 1000

123 fewer per 1000 (146 fewer to 17 more per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias and imprecision)

11 (2 to 29)

2%

TXA given intravenously and intra‐articularly at a total dose of greater than 3 g pre‐incision, intraoperatively and postoperatively

0.18 (0.03 to 1.17)

150 per 1000

27 per 1000

123 fewer per 1000 (146 fewer to 26 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (2 to 28)

2%

TXA given intra‐articularly at a total dose of 2 g intraoperatively

0.17 (0.02 to 1.47)

150 per 1000

26 per 1000

124 fewer per 1000 (147 fewer to 71 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

10 (2 to 28)

2%

TXA given intravenously at a total dose of 1 g intraoperatively and postoperatively

0.15 (0.03 to 0.74)

150 per 1000

23 per 1000

127 fewer per 1000 (146 fewer to 39 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias and imprecision)

8 (2 to 24)

2%

TXA given orally at a total dose of greater than 3 g pre‐incision and postoperatively

0.16 (0.03 to 0.84)

150 per 1000

24 per 1000

126 fewer per 1000 (146 fewer to 24 fewer per 1000)

⊕⊝⊝⊝

Very low

(due to within‐study bias and imprecision)

9 (2 to 25)

1%

TXA given orally at a total dose of 2 g pre‐incision

0.33 (0.05 to 2.12)

150 per 1000

50 per 1000

100 fewer per 1000 (143 fewer to 168 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

15 (2 to 29)

1%

TXA given intra‐articularly at a total dose of 1 g intraoperatively

0.16 (0.04 to 0.58)

150 per 1000

24 per 1000

126 fewer per 1000 (144 fewer to 63 fewer per 1000)

Low

(due to within‐study bias)

8 (2 to 23)

0%

TXA given intravenously at a total dose of greater than 3 g intraoperatively and postoperatively

0.34 (0.1 to 1.19)

150 per 1000

51 per 1000

99 fewer per 1000 (135 fewer to 29 more per 1000)

⊕⊕⊕⊝

Moderate

(due to imprecision and heterogeneity)

15 (4 to 28)

0%

TXA given intravenously and intra‐articularly at a total dose of 2 g pre‐incision and intraoperatively

0.36 (0.1 to 1.26)

150 per 1000

54 per 1000

96 fewer per 1000 (135 fewer to 39 more per 1000)

⊕⊝⊝⊝

Very low

(due to within‐study bias and imprecision)

17 (5 to 28)

0%

TXA given orally at a total dose of 2 g pre‐incision and postoperatively

0.29 (0.1 to 0.84)

150 per 1000

44 per 1000

106 fewer per 1000 (135 fewer to 24 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias, imprecision and heterogeneity)

14 (5 to 25)

0%

TXA given intravenously at a total dose of 2 g pre‐incision and intraoperatively

0.42 (0.12 to 1.43)

150 per 1000

63 per 1000

87 fewer per 1000 (132 fewer to 65 more per 1000)

⊕⊝⊝⊝

Very low

(due to within‐study bias and imprecision)

19 (6 to 28)

0%

TXA given intravenously at a total dose of 1 g pre‐incision and intraoperatively

0.29 (0.11 to 0.78)

150 per 1000

44 per 1000

106 fewer per 1000 (134 fewer to 33 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias and heterogeneity)

14 (5 to 24)

0%

Aprotinin given intravenously

0.59 (0.36 to 0.96)

150 per 1000

89 per 1000

61 fewer per 1000 (96 fewer to 6 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias and heterogeneity)

23 (15 to 27)

0%

Desmopressin given intravenously

1.41 (0.23 to 8.53)

150 per 1000

212 per 1000

62 more per 1000 (116 fewer to 1130 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

28 (12 to 29)

0%

EACA given intravenously

0.6 (0.29 to 1.27)

150 per 1000

90 per 1000

60 fewer per 1000 (107 fewer to 41 more per 1000)

⊕⊝⊝⊝

Very low

(due to within‐study bias and imprecision)

23 (12 to 28)

0%

Fibrin (topical)

0.86 (0.25 to 2.93)

150 per 1000

129 per 1000

21 fewer per 1000 (113 fewer to 290 more per 1000)

⊕⊝⊝⊝

Very low

(due to within‐study bias and imprecision)

26 (12 to 29)

0%

TXA given intravenously at a total dose of 1 g intraoperatively

0.37 (0.19 to 0.73)

150 per 1000

56 per 1000

94 fewer per 1000 (122 fewer to 41 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias, imprecision and incoherence)

17 (9 to 24)

0%

TXA given intravenously at a total dose of 1 g pre‐incision

0.47 (0.31 to 0.73)

150 per 1000

71 per 1000

79 fewer per 1000 (104 fewer to 41 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias and heterogeneity)

20 (14 to 25)

0%

TXA given intravenously at a total dose of 1 g pre‐incision, intraoperatively and postoperatively

0.7 (0.26 to 1.87)

150 per 1000

105 per 1000

45 fewer per 1000 (111 fewer to 131 more per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias and imprecision)

25 (12 to 29)

0%

TXA given intravenously at a total dose of 2 g intraoperatively and postoperatively

0.32 (0.17 to 0.61)

150 per 1000

48 per 1000

102 fewer per 1000 (125 fewer to 59 fewer per 1000)

⊕⊕⊝⊝

Low

(due to within‐study bias)

15 (7 to 24)

0%

TXA given intravenously at a total dose of 2 g pre‐incision and postoperatively

0.39 (0.19 to 0.77)

150 per 1000

59 per 1000

91 fewer per 1000 (122 fewer to 35 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias and heterogeneity)

17 (9 to 25)

0%

TXA given intravenously at a total dose of 3 g intraoperatively and postoperatively

0.4 (0.17 to 0.91)

150 per 1000

60 per 1000

90 fewer per 1000 (125 fewer to 14 fewer per 1000)

⊕⊕⊕⊝

Moderate

(due to within‐study bias and heterogeneity)

18 (8 to 26)

0%

CrI: credible interval; EACA: epsilon‐aminocaproic acid; TXA: tranexamic acid

*Results are expressed as risk ratios with credible intervals as opposed to confidence intervals, since a Bayesian analysis has been conducted.
**Anticipated absolute effect. The anticipated absolute effect compares two risks by calculating the difference between the risk in the intervention group and the risk in the control group.
***Median rank with empirical 95% confidence interval, based on SUCRA scores. The SUCRA score for rank n is the probability that the treatment ranks at least nth.
****Probability of treatment ranking first.

Figuras y tablas -
Summary of findings 1. Summary of findings: Risk of a blood transfusion up to 30 days post‐surgery
Table 1. CINeMA grading for comparisons of intervention vs placebo (risk of allogeneic blood transfusion)

Comparison

Number of studies

Within‐study bias

Reporting bias

Indirectness

Imprecision

Heterogeneity

Incoherence

Confidence rating

Reason(s) for downgrading

Mixed evidence

Aprotinin vs placebo

5

Some concerns

Some concerns

No concerns

No concerns

Major concerns

No concerns

Low

Within‐study bias (1 point), heterogeneity (1 point)

EACA vs placebo

3

Major concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

Fibrin topical vs placebo

1

Major concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

TXA_IA_1g_intra vs placebo

2

Major concerns

Some concerns

No concerns

No concerns

No concerns

No concerns

Low

Within‐study bias (2 points)

TXA_IV_1g_intra vs placebo

2

Some concerns

Some concerns

No concerns

No concerns

Some concerns

Major concerns

Low

Within‐study bias and heterogeneity (1 point), incoherence (1 point)

TXA_IV_1g_intra_post vs placebo

1

Major concerns

Some concerns

No concerns

Some concerns

Some concerns

No concerns

Low

Within‐study bias (1 point), imprecision (1 point)

TXA_IV_1g_preI vs placebo

7

Some concerns

Some concerns

No concerns

No concerns

Some concerns

No concerns

Moderate

Within‐study bias and heterogeneity (1 point)

TXA_IV_1g_preI_intra_post vs placebo

1

Some concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Within‐study bias (1 point), imprecision (1 point)

TXA_IV_1g_preI_post vs placebo

1

Some concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Within‐study bias (1 point), imprecision (1 point)

TXA_IV_2g_intra_post vs placebo

4

Major concerns

Some concerns

No concerns

No concerns

No concerns

No concerns

Low

Within‐study bias (2 points)

TXA_IV_2g_preI vs placebo

1

Some concerns

Some concerns

No concerns

No concerns

No concerns

No concerns

Moderate

Within‐study bias (1 point)

TXA_IV_2g_preI_post vs placebo

4

Some concerns

Some concerns

No concerns

No concerns

Some concerns

No concerns

Moderate

Within‐study bias and heterogeneity (1 point)

TXA_IV_3g_intra_post vs placebo

2

Some concerns

Some concerns

No concerns

No concerns

Some concerns

No concerns

Moderate

Within‐study bias and heterogeneity (1 point)

TXA_IV_IA_2g_intra vs placebo

1

Some concerns

Some concerns

No concerns

No concerns

No concerns

No concerns

Moderate

Within‐study bias (1 point)

TXA_IV_IA_grt_than_3g_preI_intra_post vs placebo

1

No concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_grt_than_3g_intra_post vs placebo

1

No concerns

Some concerns

No concerns

Some concerns

Some concerns

No concerns

Moderate

Imprecision and heterogeneity (1 point)

TXA_oral_2g_preI_post vs placebo

1

Major concerns

Some concerns

No concerns

Some concerns

Some concerns

No concerns

Low

Within‐study bias (1 point), imprecision and heterogeneity (1 point)

Indirect evidence

Desmopressin vs placebo

0

Some concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IA_2g_intra vs placebo

0

No concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_1g_preI_intra vs placebo

0

Some concerns

Some concerns

No concerns

No concerns

Some concerns

No concerns

Moderate

Within‐study bias and heterogeneity (1 point)

TXA_IV_2g_preI_intra vs placebo

0

Major concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

TXA_IV_IA_2g_preI_intra vs placebo

0

Major concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

TXA_IV_oral_grt_than_3g_intra_post vs placebo

0

Major concerns

Some concerns

No concerns

Some concerns

Some concerns

No concerns

Low

Within‐study bias (1 point), heterogeneity (1 point)

TXA_IV_oral_grt_than_3g_preI_post vs placebo

0

No concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_oral_2g_preI vs placebo

0

Some concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Within‐study bias (1 point), imprecision (1 point)

TXA_oral_3g_preI_post vs placebo

0

No concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_oral_IA_grt_than_3g_preI_intra_post vs placebo

0

No concerns

Some concerns

No concerns

No concerns

No concerns

No concerns

Moderate

Reporting bias (1 point)

TXA_oral_grt_than_3g_preI_post vs placebo

0

Major concerns

Some concerns

No concerns

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

EACA: epsilon aminocaproic acid; grt_than_3g: greater than 3 g; IA: intra‐articular; intra: intraoperative dose; IV: intravenous; post: postoperative dose; preI: pre‐incision dose; top: topical; TXA: tranexamic acid

Figuras y tablas -
Table 1. CINeMA grading for comparisons of intervention vs placebo (risk of allogeneic blood transfusion)
Summary of findings 2. Summary of findings: Risk of deep vein thrombosis (DVT) up to 90 days post‐surgery

Estimates of effects, credible intervals and certainty of the evidence for the prevention of bleeding in hip and knee replacement patients

Patient or population: individuals undergoing planned hip or knee replacement surgery

Interventions: antifibrinolytics (tranexamic acid, aprotinin)

Comparator (reference): placebo

Outcome: risk of deep vein thrombosis within 90 days of surgery

Setting: elective orthopaedic surgery

(See Figure 2)

Total studies: 19

Total participants: 2395

Relative effect*

(95% CrI)

Anticipated absolute effect**

Certainty of evidence

(Table 2)

Median nodal ranking (95% CrI)***

Probability of ranking 1st (%)

Without intervention

With intervention

Difference

TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively

0.16

(0.02 to 1.43)

80 per 1000

13 per 1000

67 fewer per 1000 (78 fewer to 34 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

3 (1 to 16)

26%

TXA given intravenously and intra‐articularly at a total dose of 2 g pre‐incision and intraoperatively

0.21

(0 to 9.12)

80 per 1000

17 per 1000

63 fewer per 1000 (80 fewer to 650 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

5 (1 to 18)

17%

TXA given intravenously and intra‐articularly at a total dose of greater than 3 g pre‐incision, intraoperatively and postoperatively

0.13

(0.01 to 3.11)

80 per 1000

10 per 1000

70 fewer per 1000 (79 fewer to 169 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

4 (1 to 17)

15%

TXA given intravenously at a total dose of greater than 3 g intraoperatively and postoperatively

0.29

(0.01 to 5.47)

80 per 1000

23 per 1000

57 fewer per 1000 (79 fewer to 358 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

6 (1 to 18)

15%

TXA given intravenously and orally at a total dose of greater than 3 g pre‐incision and postoperatively

0.27

(0.01 to 6.44)

80 per 1000

22 per 1000

58 fewer per 1000 (79 fewer to 435 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

7 (1 to 18)

6%

TXA given intravenously at a total dose of 3 g intraoperatively and postoperatively

0.56

(0.07 to 4.73)

80 per 1000

45 per 1000

35 fewer per 1000 (74 fewer to 298 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

9 (1 to 18)

5%

TXA given intra‐articularly at a total dose of 2 g intraoperatively

0.35

(0.09 to 1.45)

80 per 1000

28 per 1000

52 fewer per 1000 (73 fewer to 36 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

6 (1 to 16)

5%

TXA given orally and intra‐articularly at a total dose of greater than 3 g pre‐incision, intraoperatively and postoperatively

0.9

(0.05, 15.45)

80 per 1000

72 per 1000

8 fewer per 1000 (76 fewer to 920 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (1 to 18)

4%

TXA given intravenously at a total dose of 2 g pre‐incision and postoperatively

0.19

(0.01 to 2.91)

80 per 1000

15 per 1000

65 fewer per 1000 (79 fewer to 153 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

6 (1 to 17)

3%

TXA given intravenously at a total dose of 1 g postoperatively

0.75

(0.13 to 4.47)

80 per 1000

60 per 1000

20 fewer per 1000 (70 fewer to 278 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (2 to 18)

2%

TXA given intravenously at a total dose of 2 g postoperatively

1.02

(0.2 to 5.22)

80 per 1000

82 per 1000

2 more per 1000 (64 fewer to 338 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

13 (3 to 18)

1%

TXA given intravenously at a total dose of 2 g intraoperatively and postoperatively

0.77

(0.27 to 2.16)

80 per 1000

62 per 1000

18 fewer per 1000 (58 fewer to 93 more per 1000)

⊕⊝⊝⊝

Very low

(due to imprecision and within‐study bias)

11 (3 to 18)

0%

Aprotinin given intravenously

0.67

(0.28 to 1.62)

80 per 1000

54 per 1000

26 fewer per 1000 (58 fewer to 50 more per 1000)

⊕⊝⊝⊝

Very low

(due to imprecision and within‐study bias)

10 (3 to 17)

0%

TXA given intra‐articularly at a total dose of 1 g intraoperatively

0.77

(0.09 to 6.48)

80 per 1000

62 per 1000

18 fewer per 1000 (73 fewer to 438 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (2 to 17)

0%

TXA given intravenously at a total dose of 1 g pre‐incision

0.73

(0.3 to 1.76)

80 per 1000

58 per 1000

22 fewer per 1000 (56 fewer to 61 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (5 to 17)

0%

TXA given intravenously at a total dose of 1 g pre‐incision and intraoperatively

0.83

(0.35 to 1.97)

80 per 1000

66 per 1000

14 fewer per 1000 (52 fewer to 78 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

12 (5 to 18)

0%

TXA given intravenously at a total dose of 1 g intraoperatively

0.76

(0.32 to 1.79)

80 per 1000

61 per 1000

19 fewer per 1000 (54 fewer to 63 more per 1000)

⊕⊕⊝⊝

Low

(due to imprecision)

11 (4 to 17)

0%

CrI: credible interval; TXA: tranexamic acid

*Results are expressed as risk ratios with credible intervals as opposed to confidence intervals, since a Bayesian analysis has been conducted.
**Anticipated absolute effect. The anticipated absolute effect compares two risks by calculating the difference between the risk in the intervention group and the risk in the control group.
***Median rank with empirical 95% confidence interval, based on SUCRA scores. The SUCRA score for rank n is the probability that the treatment ranks at least nth.
****Probability of treatment ranking first.

Figuras y tablas -
Summary of findings 2. Summary of findings: Risk of deep vein thrombosis (DVT) up to 90 days post‐surgery
Table 2. CINeMA grading for comparisons of intervention vs placebo (risk of deep vein thrombosis)

Comparison

Number of studies

Within‐study bias

Reporting bias

Indirectness

Imprecision

Heterogeneity

Incoherence

Confidence rating

Reason(s) for downgrading

Mixed evidence

Aprotinin vs placebo

2

Major concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

TXA_IA_2g_intra vs placebo

1

No concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_1g_intra vs placebo

2

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_1g_post vs placebo

1

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_1g_preI vs placebo

2

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_1g_preI_intra vs placebo

1

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_2g_intra_post vs placebo

3

Major concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Very low

Within‐study bias (1 point), imprecision (2 points)

TXA_IV_2g_post vs placebo

1

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_2g_preI_post vs placebo

1

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_3g_intra_post vs placebo

1

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_grt_than_3g_intra_post vs placebo

1

No concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

Indirect evidence

TXA_IA_1g_intra vs placebo

0

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_IA_2g_preI_intra vs placebo

0

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_IA_grt_than_3g_preI_intra_post vs placebo

0

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_oral_grt_than_3g_intra_post vs placebo

0

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_IV_oral_grt_than_3g_preI_post vs placebo

0

Some concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

TXA_oral_IA_grt_than_3g_preI_intra_post vs placebo

0

No concerns

Some concerns

Low risk

Major concerns

No concerns

No concerns

Low

Imprecision (2 points)

grt_than_3g: greater than 3 g; IA: intra‐articular; intra: intraoperative dose; IV: intravenous; post: postoperative dose; preI: pre‐incision dose; top: topical; TXA: tranexamic acid

Figuras y tablas -
Table 2. CINeMA grading for comparisons of intervention vs placebo (risk of deep vein thrombosis)
Table 3. Overview of characteristics of included studies

Study

Number of male participants

Number of female participants

Total number of participants

Outcomes reported

All‐cause mortality

Blood trans

Mean units

CVA

DVT

MI

PE

LOHS

Alvarez 2008

17

78

95

N

Y

Y*

N

Y

N

Y

N

Alvarez 2019 hip

7

15

22

Y

Y

N

Y

Y

Y

Y

N

Alvarez 2019 knee

5

17

22

Y

Y

N

Y

Y

Y

Y

N

Benoni 1996

23

63

86

N

Y

Y*

N

Y

N

Y

N

Benoni 2000

17

22

39

N

Y

N

N

Y

N

Y

N

Benoni 2001

19

19

38

N

Y

Y*

Y

Y

Y

Y

N

Boese 2017

54

140

194

N

Y

Y*

Y

Y*

N

Y

Y

Bradley 2019 hip

42

48

90

N

Y

N

Y

Y

Y

Y

Y

Bradley 2019 knee

53

92

145

N

Y

N

Y

Y

Y

Y

Y

Camarasa 2006

25

102

127

N

Y

Y

Y

Y

Y

Y

N

Cao 2018

69

83

152

N

Y

Y*

Y

Y

Y

Y

N

Chang 2022

12

129

141

N

Y

N

N

Y

N

Y

N

Chin 2020

NR

NR

NR

N

Y

Y*

N

N

Y

Y

Y*

Claeys 2007

12

28

40

N

Y

Y*

N

Y

N

N

N

Clave 2019

98

131

229

N

Y

N

N

Y

Y

Y

Y

Colwell 2007

172

180

352

Y

Y

Y

Y

Y

Y

Y

N

Compostella 1997

NR

NR

NR

N

N

Y*

N

N

N

N

N

Cui 2019

35

37

72

N

Y

N

N

Y

N

Y

N

D'Ambrosio 1999

14

16

30

N

Y

Y*

N

N

N

N

N

Dorji 2021

20

11

31

N

Y

N

N

N

N

N

N

Ekback 2000

20

20

40

N

Y

Y*

N

Y

Y

N

N

Ellis 2001

11

29

40

N

Y

Y*

N

Y

N

Y

Y

Engel 2001

7

17

24

N

Y

Y*

N

Y

N

N

N

Flordal 1992

24

26

50

N

N

Y

N

N

N

N

N

Garcia Enguita 1998

NR

NR

NR

N

N

Y

N

N

N

N

N

Garneti 2004

NR

NR

NR

N

Y

Y

N

Y

N

Y

N

Georgiadis 2013

31

70

101

N

Y

Y*

N

Y

N

Y

Y

Gill 2009

3

7

10

N

Y

Y

N

Y

N

Y

Y*

Gomez Barrena 2014

27

51

78

Y

Y

Y*

N

Y

N

Y

Y

Gonzalez Osuna 2021

4

20

24

N

Y

Y

Y

Y

Y

Y

N

Good 2003

15

36

51

N

Y

Y*

N

Y

N

N

N

Goyal 2017

78

90

168

N

Y

Y*

N

Y

N

N

Y

Harley 2002

21

34

55

N

Y

Y*

N

Y

N

Y

N

Hayes 1996

15

27

42

N

N

Y

N

Y

N

N

N

Hiippala 1995

5

23

28

N

Y

Y

N

Y

Y

N

N

Hiippala 1997

12

65

77

Y

Y

Y

N

Y

Y

Y

N

Husted 2003

6

14

20

N

Y

Y*

N

Y

N

Y

N

Jansen 1999

8

34

42

N

Y

Y

N

Y

N

N

N

Janssens 1994

16

24

40

N

Y*

Y

N

Y

N

Y

Y

Jeserschek 2003

7

9

16

N

Y

Y

N

Y

N

N

N

Johansson 2005

53

47

100

N

Y

Y*

N

Y

N

Y

N

Jules‐Elysee 2019

31

32

63

Y

N

N

N

N

N

N

Y*

Kakar 2009 Bilateral TKR

14

36

50

N

N

Y*

N

Y

N

N

N

Kakar 2009 Unilateral TKR

14

36

50

N

N

Y*

N

Y

N

N

N

Kang 2021a

10

87

97

N

Y

Y*

N

Y

Y

Y

N

Kang 2021b

56

244

300

N

Y

Y*

N

Y

N

Y

N

Karnezis 1994 knee

16

20

36

Y

N

N

N

Y

Y

N

Y

Karnezis 1994 hip

26

30

56

Y

N

N

N

Y

Y

N

Y

Kayupov 2017a

24

47

71

N

Y

Y

N

Y

N

Y

Y

Kayupov 2017b

42

41

83

N

Y

N

N

Y

N

Y

Y

King 2019

26

27

53

N

Y

N

N

Y

N

N

Y*

Langdown 2000

NR

NR

NR

N

N

N

N

N

N

N

N

Lei 2017

27

132

159

N

Y

Y*

Y

Y

Y

Y

Y

Lei 2018

61

89

150

N

Y

Y*

Y

Y

Y

Y

Y

Lei 2020

26

124

150

N

Y

N

Y

Y

Y

Y

Y*

Lemay 2004

25

14

39

N

Y

N

N

Y

N

Y

N

Levine 2014

15

25

40

Y

Y

Y*

N

Y

N

Y

N

Llau 1998

NR

NR

NR

N

Y

Y*

N

Y

N

N

N

Lopez Picado 2017

57

51

108

N

Y

Y

N

Y

N

N

Y

Luo 2022

48

52

100

N

Y

N

Y

Y

Y

Y

Y

Molloy 2007

NR

NR

NR

Y

Y

Y

N

Y

N

Y

Y

Morales‐Avalos 2021

50

52

102

Y

Y

N

Y

Y

Y

Y

N

Murkin 1995

20

33

53

N

Y

Y

Y

Y

N

N

Y

Murkin 2000

139

141

280

Y

Y

N

N

Y

Y

N

N

NCT02922582

6

9

15

Y

Y

N

Y

N

N

N

N

Niskanen 2005

13

26

39

N

Y

Y*

N

Y

N

Y

Y*

North 2016

77

61

138

N

Y

N

N

Y

Y

Y

N

Orpen 2006

11

18

29

N

Y

N

N

Y

N

Y

N

Painter 2018

65

75

140

Y

Y

N

Y

Y

Y

Y

Y

Peng 2021

13

80

93

N

Y

N

Y

Y

Y

Y

N

Petsatodis 2006

NR

NR

NR

N

Y

Y

N

Y

N

N

N

Ray 2005

NR

NR

NR

N

Y

N

N

Y

N

Y

N

Schott 1995

35

44

79

N

N

Y

N

N

Y

Y

N

Sershon 2020

86

89

175

N

Y

N

Y

Y

N

Y

Y*

Staniforth 2017

NR

NR

NR

N

N

N

N

N

N

N

N

Stowers 2017

59

75

134

N

Y

Y*

N

Y

N

Y

Y

Tanaka 2001

31

68

99

N

Y

Y

N

Y

N

Y

N

Tsukada 2019

16

61

77

N

Y

N

N

Y

N

Y

N

Tsukada 2020

23

77

100

N

Y

Y*

Y

Y

Y

Y

N

Utada 1997

3

18

21

N

N

Y

N

N

N

N

N

Veien 2002

5

25

30

N

Y

Y*

N

Y

N

Y

N

Veien 2005

14

17

31

N

Y

Y*

N

Y

N

Y

N

Vles 2020

NR

NR

NR

N

N

N

N

N

N

N

N

Wang 2018

61

139

200

N

Y

N

Y

Y

Y

Y

Y

Wang 2019b

59

141

200

Y

Y

N

Y

Y

N

Y

Y*

Wang 2019c

112

188

300

Y

Y

N

Y

Y

Y

Y

Y*

Wang 2019a

26

92

118

Y

Y

N

N

Y

N

N

Y*

Wu 2018

59

41

100

N

Y

Y*

N

Y

N

Y

Y

Xie 2016

41

110

151

N

Y

Y*

Y

Y

Y

Y

Y

Xie 2017

60

90

150

N

Y

N

Y

Y

Y

Y

Y

Xu 2023

23

109

162**

Y

Y

Y

Y

Y

Y

Y

N

Xue 2021

38

118

156

N

Y

Y

Y

Y

Y

Y

N

Yamasaki 2004

37

3

40

N

Y

Y*

N

Y

N

Y

N

Yang 2020

24

70

94

N

Y

N

N

Y

N

Y

N

Yasli 2019

40

20

60

N

N

N

N

Y

N

Y

Y

Yen 2017

23

70

93

Y

Y

N

N

Y

N

Y

Y

Yen 2021

15

88

103

Y

Y

Y*

Y

Y

N

Y

Y*

Zeng 2017

60

40

100

N

Y

Y*

N

Y

N

Y

Y

Zeng 2018

23

37

60

N

Y

Y*

N

Y

N

Y

Y

Zhang 2007

NR

NR

NR

N

Y

Y

N

Y

N

N

N

Zhao 2018

70

50

120

N

Y

Y*

N

Y

N

Y

Y

Zohar 2004

18

42

60

N

Y

Y

N

Y

N

Y

Y

Y*: Represents where data were not included in the analysis due to being either incomplete or unusable (for example, due to differing units or inability to transform data to mean and SD).

**: The numbers of males and females in Xu 2023 do not add up to the total number of patients. The author has been emailed for clarification but no response as yet (17 January 2023).

CVA: cerebrovascular accident; DVT: deep vein thrombosis; LOHS: length of hospital stay; MI: myocardial infarction; N: no; NR: not reported; PE: pulmonary embolism; trans: transfusion; Y: yes

Figuras y tablas -
Table 3. Overview of characteristics of included studies
Table 4. Baseline characteristics for included studies

Study population

Frequency

%

Primary THA

46

45

Primary TKA

43

42

Mixed primary THA and TKA

1

1

Revision THA

4

4

Mixed revision THA and TKA

2

2

Bilateral TKA

1

1

Mixed primary and bilateral TKA

1

1

Mixed primary and revision THA and TKA

4

4

RCT origin

Number of studies

Europe

35

34

Asia

37

36

North America

21

21

Australia

6

6

South America

1

1

New Zealand

2

2

Routes of interventions

Study arms

IV

170

71

IA

23

10

IV and IA

17

7

Oral and IA

12

5

Oral

11

5

IV and oral

5

2

IV, IA and oral

1

<1

Drug type

Study arms

Tranexamic acid

150

83

Aprotinin

17

10

EACA

7

4

Desmopressin

5

3

Fibrin

2

1

EACA: epsilon‐aminocaproic acid; IA: intra‐articular; IV: intravenous; RCT: randomised controlled trial; THA: total hip arthroplasty; TKA: total knee arthroplasty

Figuras y tablas -
Table 4. Baseline characteristics for included studies
Table 5. Summary of participant characteristics by treatment node (NMA only): risk of a blood transfusion up to 30 days post‐surgery

Node

Description of node

Participants (number of studies)

Characteristic or potential treatment effect modifier

  • Participants (%)

Fraction of studies with participants that have the potential treatment effect modifier (x/y)

Surgery type

Use of tourniquet (proportion of TKR studies)

Transfusion strategy described (proportion of studies)

Proportion receiving allogeneic blood transfusion

Primary total hip replacement

Primary total knee replacement

Mixed including revision/bilateral procedures

Placebo

Equivalent volume of normal saline (0.9% NaCl)

1240 (33)a

767 (18)

367 (11)

106 (4)

11/11

29/33

0.31

Aprotinin

Aprotinin given intravenously

439 (5)b

402 (3)

0 (0)

0 (0)

0/1

3/5

0.13

Desmopressin

Desmopressin given intravenously

20 (1)c

0 (0)

20 (1)

0 (0)

1/1

1/1

0.55

EACA (epsilon‐aminocaproic acid)

EACA given intravenously

120 (4)d

88 (3)

32 (1)

0 (0)

1/1

3/4

0.13

Fibrin_top

Fibrin spray given intra‐articularly

84 (2)e

0 (0)

84 (2)

0 (0)

2/2

2/2

0.12

TXA_IA_1g_intra

TXA given topically (intra‐articularly) at a total dose of 1 g intraoperatively

167 (3)f

60 (1)

107 (2)

0 (0)

2/2

3/3

0.04

TXA_IA_2g_intra

TXA given topically (intra‐articularly) at a total dose of 2 g intraoperatively

69 (1)g

69 (1)

0 (0)

0 (0)

0/0

1/1

0.17

TXA_IV_1g_intra

TXA given intravenously at a total dose of 1 g intraoperatively

192 (6)h

0 (0)

192 (6)

0 (0)

6/6

6/6

0.19

TXA_IV_1g_intra_post

TXA given intravenously at a total dose of 1 g, intraoperatively and postoperatively

66 (2)i

0 (0)

66 (2)

0 (0)

2/2

1/2

0.06

TXA_IV_1g_preI

TXA given intravenously at a total dose of 1 g pre‐incision

304 (9)j

280 (8)

24 (1)

0 (0)

1/1

8/9

0.23

TXA_IV_1g_preI_intra

TXA given intravenously at a total dose of 1 g pre‐incision and intraoperatively

127 (4)k

43 (1)

84 (3)

0 (0)

3/3

4/4

0.15

TXA_IV_1g_preI_intra_post

TXA given intravenously at a total dose of 1 g, pre‐incision, intraoperatively and postoperatively

15 (1)l

0 (0)

15 (1)

0 (0)

1/1

1/1

0.67

TXA_IV_1g_preI_post

TXA given intravenously at a total dose of 1 g, pre‐incision and postoperatively

20 (1)m

20 (1)

0 (0)

0 (0)

0/0

1/1

0.10

TXA_IV_2g_intra_post

TXA given intravenously at a total dose of 2 g intraoperatively and postoperatively

118 (4)n

40 (2)

78 (2)

0 (0)

2/2

4/4

0.16

TXA_IV_2g_preI

TXA given intravenously at a total dose of 2 g pre‐incision

91 (2)o

70 (1)

21 (1)

0 (0)

1/1

2/2

0.11

TXA_IV_2g_preI_intra

TXA given intravenously at a total dose of 2 g pre‐incision and intraoperatively

40 (1)p

40 (1)

0 (0)

0 (0)

0/0

1/1

0.20

TXA_IV_2g_preI_post

TXA given intravenously at a total dose of 2 g pre‐incision and postoperatively

227 (5)q

169 (4)

58 (1)

0 (0)

1/1

5/5

0.07

TXA_IV_3g_intra_post

TXA given intravenously at a total dose of 3 g intraoperatively and postoperatively

94 (3)r

50 (1)

39 (1)

5 (1)

1/1

3/3

0.21

TXA_IV_grt_than_3g_intra_post

TXA given intravenously at a total dose of greater than 3 g intraoperatively and postoperatively

71 (1)s

0 (0)

0 (0)

71 (1)

1/1

1/1

0.08

TXA_IV_IA_2g_intra

TXA given intravenously and topically (intra‐articularly) at a total dose of 2 g intraoperatively

80 (2)t

50 (1)

30 (1)

0 (0)

1/1

2/2

0.06

TXA_IV_IA_2g_preI_intra

TXA given intravenously and topically (intra‐articularly) at a total dose of 2 g pre‐incision and intraoperatively

46 (1)u

0 (0)

0 (0)

46 (1)

0/0

1/1

0.17

TXA_IV_IA_grt_than_3g_preI_intra_post

TXA given intravenously and topically (intra‐articularly) at a total dose of greater than 3 g pre‐incision, intraoperatively and postoperatively

74 (1)v

74 (1)

0 (0)

0 (0)

0/0

1/1

0.03

TXA_IV_oral_grt_than_3g_intra_post

TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively

113 (2)w

0 (0)

113 (2)

0 (0)

2/2

2/2

0.04

TXA_IV_oral_grt_than_3g_preI_post

TXA given intravenously and orally at a total dose of greater than 3 g pre‐incision and postoperatively

60 (1)x

0 (0)

60 (1)

0 (0)

0/1

1/1

0.03

TXA_oral_2g_preI

TXA given orally at a total dose of 2 g, pre‐incision

74 (2)y

40 (1)

34 (1)

0 (0)

1/1

2/2

0.05

TXA_oral_2g_preI_post

TXA given orally at a total dose of 2 g, pre‐incision and postoperatively

86 (2)z

40 (1)

0 (0)

46 (1)

0/0

2/2

0.10

TXA_oral_3g_preI_post

TXA given orally at a total dose of 3 g, pre‐incision and postoperatively

50 (1)aa

50 (1)

0 (0)

0 (0)

0/0

1/1

0.02

TXA_oral_grt_than_3g_preI_post

TXA given orally at a total dose of greater than 3 g, pre‐incision and postoperatively

71 (2)bb

51 (1)

20 (1)

0 (0)

1/1

2/2

0.07

TXA_oral_IA_grt_than_3g_preI_intra_post

TXA given orally and topically (intra‐articularly) at a total dose of greater than 3 g, pre‐incision, intraoperatively and postoperatively

240 (1)cc

240 (1)

0 (0)

0 (0)

0/0

1/1

0.01

DVT: deep vein thrombosis; EACA: epsilon aminocaproic acid; grt_than_3g: greater than 3 g; IA: intra‐articular; intra: intraoperative dose; IV: intravenous; post: postoperative dose; preI: pre‐incision dose; TKR: total knee replacement; top: topical; TXA: tranexamic acid.

aEkback 2000; Ray 2005; Orpen 2006; Gill 2009; Clave 2019; Claeys 2007; Alvarez 2008; Harley 2002; Husted 2003; Jeserschek 2003; Niskanen 2005; Zhao 2018; Benoni 2000; Chin 2020; Murkin 1995; Hiippala 1997; Jansen 1999; Yang 2020; Garneti 2004; Good 2003; Lopez Picado 2017; Painter 2018; Benoni 2001; Murkin 2000; Zeng 2017; Camarasa 2006; Johansson 2005; Benoni 1996; Petsatodis 2006; Tanaka 2001; Hiippala 1995; Colwell 2007; Zhang 2007.

bColwell 2007; Jeserschek 2003; Murkin 1995; Murkin 2000; Ray 2005.

cEllis 2001.

dCamarasa 2006; Harley 2002; Morales‐Avalos 2021; Ray 2005.

eMolloy 2007; Yen 2021.

fStowers 2017; Wang 2019c; Yang 2020.

gNorth 2016.

hChang 2022; Good 2003; Molloy 2007; Orpen 2006; Tanaka 2001; Zeng 2018.

iAlvarez 2008; Zohar 2004.

jBenoni 2001; Chin 2020; Claeys 2007; Garneti 2004; Johansson 2005; Lopez Picado 2017; Luo 2022; Sershon 2020; Tanaka 2001.

kEllis 2001; Kayupov 2017a; Kayupov 2017b; Tanaka 2001.

lHiippala 1995.

mHusted 2003.

nBenoni 1996; Benoni 2000; Camarasa 2006; Ekback 2000.

oJansen 1999; North 2016.

pSershon 2020.

qClave 2019; Lopez Picado 2017; Niskanen 2005; Wang 2019c; Zhao 2018.

rGill 2009; Hiippala 1997; Wu 2018.

sPainter 2018.

tZeng 2017; Zeng 2018.

uSershon 2020.

vClave 2019.

wChang 2022; Zohar 2004.

xWang 2019a ‐ the study stated that tourniquet was not used in any patient.

yKayupov 2017a; Kayupov 2017b.

zSershon 2020; Zhao 2018.

aaWu 2018.

bbMorales‐Avalos 2021; Zohar 2004.

ccWang 2019c.

Figuras y tablas -
Table 5. Summary of participant characteristics by treatment node (NMA only): risk of a blood transfusion up to 30 days post‐surgery
Table 6. Summary of participant characteristics by treatment node (NMA only): risk of deep vein thrombosis (DVT) up to 90 days post‐surgery

Node

Description of node

Participants (number of studies)

Characteristics or potential treatment effect modifier

  • Participants (%)

Fraction of studies with participants that have the potential treatment effect modifier (x/y)

Surgery type

Use of tourniquet (proportion of TKR studies)

Transfusion strategy described (proportion of studies)

Proportion experiencing DVT

Primary total hip replacement

Primary total knee replacement

Mixed including revision/bilateral procedures

Placebo

Equivalent volume of normal saline (0.9% NaCl)

630 (12)a

326 (5)

235 (6)

69 (1)

7/7

12/12

0.05

Aprotinin

Aprotinin given intravenously

408 (3)b

396 (2)

12 (1)

0 (0)

1/1

3/3

0.08

TXA_IA_1g_intra

TXA given topically (intra‐articularly) at a total dose of 1 g intraoperatively

106 (2)c

60 (1)

46 (1)

0 (0)

1/1

2/2

0.03

TXA_IA_2g_intra

TXA given topically (intra‐articularly) at a total dose of 2 g intraoperatively

50 (1)d

0 (0)

50 (1)

0 (0)

1/1

2/2

0.08

TXA_IV_1g_intra

TXA given intravenously at a total dose of 1 g intraoperatively

96 (3)e

0 (0)

96 (3)

0 (0)

3/3

3/3

0.16

TXA_IV_1g_post

TXA given intravenously at a total dose of 1 g postoperatively

50 (1)f

0 (0)

50 (1)

0 (0)

1/1

1/1

0.06

TXA_IV_1g_preI

TXA given intravenously at a total dose of 1 g pre‐incision

106 (3)g

35 (1)

71 (2)

0 (0)

2/2

3/3

0.14

TXA_IV_1g_preI_intra

TXA given intravenously at a total dose of 1 g pre‐incision and intraoperatively

39 (2)h

0 (0)

39 (2)

0 (0)

2/2

2/2

0.38

TXA_IV_2g_intra_post

TXA given intravenously at a total dose of 2 g intraoperatively and postoperatively

83 (3)i

40 (2)

43 (1)

0 (0)

1/1

3/3

0.10

TXA_IV_2g_post

TXA given intravenously at a total dose of 2 g postoperatively

53 (1)j

0 (0)

53 (1)

0 (0)

1/1

1/1

0.08

TXA_IV_2g_preI_post

TXA given intravenously at a total dose of 2 g pre‐incision and postoperatively

128 (3)k

36 (1)

58 (1)

34 (1)

0/2

3/3

0.06

TXA_IV_3g_intra_post

TXA given intravenously at a total dose of 3 g intraoperatively and postoperatively

39 (1)l

0 (0)

39 (1)

0 (0)

1/1

1/1

0.05

TXA_IV_grt_than_3g_intra_post

TXA given intravenously at a total dose of greater than 3 g intraoperatively and postoperatively

71 (1)m

0 (0)

0 (0)

71 (1)

1/1

1/1

0.01

TXA_IV_IA_2g_preI_intra

TXA given intravenously and topically (intra‐articularly) at a total dose of 2 g pre‐incision and intraoperatively

54 (1)n

0 (0)

54 (1)

0 (0)

0/1

1/1

0.04

TXA_IV_IA_grt_than_3g_preI_intra_post

TXA given intravenously at a total dose of greater than 3 g pre‐incision and postoperatively

89 (2)o

0 (0)

46 (1)

43 (1)

0/2

2/2

0.07

TXA_IV_oral_grt_than_3g_intra_post

TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively

93 (1)p

0 (0)

93 (1)

0 (0)

1/1

1/1

0.02

TXA_IV_oral_grt_than_3g_preI_post

TXA given intravenously and orally at a total dose of greater than 3 g pre‐incision and postoperatively

60 (1)q

0 (0)

60 (1)

0 (0)

0/1

1/1

0.08

TXA_oral_IA_grt_than_3g_preI_intra_post

TXA given intravenously and orally at a total dose of greater than 3 g, pre‐incision, intraoperatively and postoperatively

240 (1)r

240 (1)

0 (0)

0 (0)

0/0

1/1

0.03

DVT: deep vein thrombosis; grt_than_3g: greater than 3 g; IA: intra‐articular; intra: intraoperative dose; IV: intravenous; post: postoperative dose; preI: pre‐incision dose; TKR: total knee replacement; top: topical; TXA: tranexamic acid.

aBenoni 1996; Benoni 2000; Colwell 2007; Ekback 2000; Georgiadis 2013; Good 2003; Hiippala 1997; Lopez Picado 2017; Murkin 2000; Painter 2018; Tanaka 2001; Xue 2021.

bColwell 2007; Engel 2001; Murkin 2000.

cPeng 2021; Wang 2019c.

dGeorgiadis 2013.

eChang 2022; Good 2003; Tanaka 2001.

fXue 2021.

gLopez Picado 2017; Peng 2021; Tanaka 2001.

hEngel 2001; Tanaka 2001.

iBenoni 1996; Benoni 2000; Ekback 2000.

jXue 2021.

kLopez Picado 2017; Tsukada 2019 ‐ the study stated that tourniquet was not used in any patient; Wang 2019a ‐ the study stated that tourniquet was not used in any patient.

lHiippala 1997.

mPainter 2018.

nTsukada 2020 ‐ the study stated that tourniquet was not used in any patient.

oTsukada 2019; Tsukada 2020 ‐ the studies stated that tourniquet was not used in any patient.

pChang 2022.

qWang 2019a ‐ the study stated that tourniquet was not used in any patient.

rWang 2019c.

Figuras y tablas -
Table 6. Summary of participant characteristics by treatment node (NMA only): risk of deep vein thrombosis (DVT) up to 90 days post‐surgery
Table 7. Table of descriptive cost information

Study

Cost information

None of the included studies reported quantitative cost data. However, some studies have reported descriptive information. Where a direct quote has been taken from the study, we have indicated by the use of speech marks (" ").

Alvarez 2008

"In contrast, results of this study also question the use of presurgical donation of autologous blood in patients undergoing total knee arthroplasty in our institution, because of 11 patients in which this procedure was used, only 3 received blood transfusion. Therefore, the use of presurgically donated units is far from the 70 percent recommended for an adequate cost effectiveness ratio".

Benoni 1996

"At our hospital, one Sagman unit of blood costs 512 SEK (51 GBP). The price of one ampoule of Cyklokapron, containing one gram of tranexamic acid, is 42 SEK (4 GBP). The total cost of blood transfusions plus tranexamic acid was 9756 SEK (976 GBP) in the whole prophylactic group against 21 110 SEK (2111 GBP) in the whole placebo group".

Benoni 2001

"The price of one ampoule of tranexamic acid (1 gram) in Sweden is 5 Euro. In our department, 1 unit of leukocyte‐depleted erythrocyte concentrate costs 77 Euro. The total cost of tranexamic acid and blood transfusions in the TA group was 475 Euro versus 1100 Euro in the placebo group".

Boese 2017

"Antifibrinolytics were added to the blood management program for TKA in June 2012. At that time, TXA was not on the formulary, and its acquisition cost was much higher than that of EACA ($43/g for TXA compared with $0.20/g for EACA). Despite its higher cost, our surgeons preferred administrating TXA over EACA because of the paucity of data on the use of EACA in TKA. However, EACA was administered when TXA was unavailable, with no apparent differences in efficacy or drug‐related adverse events".

Bradley 2019 hip

"At the investigating hospital, TXA costs $465 per patient while EACA costs $60 per patient for the dosages used in this study. Due to the low rate of transfusion and no statistical difference in LOS, there appears to be a difference of about $400 (pharmacy cost) between these two agents. Unfortunately, there have been problems with the availability of EACA: currently, it is not available due to a national shortage".

Chin 2020

"When one considers the financial cost of such treatment, the total drug cost of tranexamic acid (NZ$58) is less than the production cost of a unit of allogenic blood (NZ$158) [12]. However, using the number needed to treat of 67, this study effectively spent $3886 on TXA to save 1 unit of blood. 'is cost was not retrieved in a significantly shorter duration of stay as shown by the time to discharge".

Claeys 2007

"The reduction in the risk associated with the transfusion of allogenic blood, as well as the cost‐effectiveness are obvious

(3 amp TA €5, 1 unit of packed cells €67 ; total cost TA group :€100 vs placebo group:€871)".

Colwell 2007

"We did not examine the costs of using aprotinin. Realizing costs and charges vary, the approximate direct cost of aprotinin we used was $450. This does not, however, take into account the staff time in preparation in the pharmacy and administration in the OR".

Ekback 2000

"As both IAT and PAD are costly and time‐consuming procedures, it seems reasonable to refrain from using one or both of them if TA is to be used, although this was not examined in the present study".

Georgiadis 2013

"We observed a trend towards decreased blood transfusion in the TNA group vs. the placebo group (8% and 0% respectively), but our results were not significant and therefore no “number needed to treat” analysis could be undertaken. Models that reflect the real world costs of blood utilization in the United States estimate that a single unit of allogenic leukoreduced red blood cells costs $950[1]. At our institution one 2 g dose of tranexamic acid can be compounded for $60 USD, and it is readily available internationally for $6 USD per dose. A cost–benefit analysis would be beneficial in determining the realized benefit of TXA administration in preventing allogenic transfusion, as pecuniary considerations become increasingly important and regulated in orthopaedic surgery".

Gill 2009

"The cost of allogenic blood transfusions was reduced by approximately $800 per patient (P<0.03) in the tranexamic acid group. Moreover, only one patient in the tranexamic acid group received a transfusion, whereas four patients received transfusions in the placebo group. This translated into a significantly lower cost in blood products administered in the tranexamic acid group with even taking into account the cost of tranexamic acid".

Gomez Barrena 2014

"Retrospective clinical and economical evaluations have indicated an estimated $1500 savings per primary total knee replacement performed with use of topical TXA, with significant decreases in length of stay, blood bank costs, and total direct costs to the hospital for the total knee replacement. We confirmed that the length of stay was short and blood bank costs were reduced to a minimum when TXA was used in the present study. Indirect cost savings would also result from the avoidance of transfusions that result in complications requiring additional treatment and an increased length of stay".

Good 2003

"In our hospital the dose of tranexamic acid given would cost less than £7, compared with £46 for a unit of banked blood. Thus, the immediate saving in the patients given tranexamic acid would have been about £1100. To our knowledge, giving tranexamic acid is the only blood saving method that is cheaper, per saved unit, than banked blood in this type of surgery. This estimate does not include potential adverse effects from banked blood such as immediate transfusion reactions, transmission of infectious agents and disturbances of the immune system".

Harley 2002

"The cost of the preparation and administration of EACA as described in this study is Can$80 per patient, so this agent represents one of the most cost‐effective modalities currently under investigation".

Husted 2003

"1 blood transfusion costs 93 Euro; 4 ampoules (2 grams) of tranexamic acid cost 18 Euro. The total costs of maintaining or restoring levels of haemoglobin thus amounts to 1092 Euro in the tranexamic group and 2325 Euro in the placebo group".

Janssens 1994

"Although Aprotinin is expensive (in Belgium, about $235 for 3.5 x 10 (6) kIU) the economic benefit of reducing the requirement for blood transfusion may justify the cost".

Jeserschek 2003

"At the current price of aprotinin, approximately £75 (120 euros) per patient was spent on each operation. The price of 1.8 fewer units of blood (approximately £120 (190 euros)), led to a mean saving of £45 (70 euros) per patient".

Johansson 2005

"In this study, 4/5 patients weighed more than 67 kg and would have needed 2 ampoules of TA, since 1 ampoule contains 1,000 mg. If all patients had received TA 15 mg/kg, the average cost would have been (180 ampoules × EUR 5)/ 100 patients = EUR 9 per patient. At our hospitals, the cost for 1 unit of blood is EUR 78. The cost saving for transfusions when tranexamic acid is used would be: EUR 78/unit × reduction in average transfusion (1.08 – 0.36 units) = EUR 56. Thus, if the results from this study were generalized, the cost saving would be EUR 56 – EUR 9 = EUR 47 per patient".

Kakar 2009 Bilateral TKR ;Kakar 2009 Unilateral TKR

"Patients in the tranexamic acid group were given 4 units of blood in total, compared with 26 units in the control group. In our hospital the dose of tranexamic acid given would cost Rs. 166, compared with Rs. 6000 for a unit of leucodepleted banked blood. Thus, the immediate saving in the patients given tranexamic acid would have been about Rs. 5000. •Cost of 1 unit leuco depleted PRBC = Rs. 6000 •Total cost of blood in Control patients ( 26 units) = Rs 1,56,000 •Total cost of blood in TAX patients ( 4 units) = Rs 24, 000 •Cost of 1 ampoule of TXA = Rs 166 •Cost of TXA ( 25 patients) = Rs 8,300 •Cost of blood saved by giving TXA= Rs 1,23,700 •Cost saved per patient = Rs 4958 •Potential savings per year ( 500 patients) = Rs 25,00,000".

Kayupov 2017a

"In the present study, the oral TXA dosage cost $14 compared with $47‐$108 depending on the availability of the generic IV formulation. Given the aging population, the utilization of primary total knee replacements will only grow from the current rate of approximately 700,000 per year in the United States. As a result, the transition to oral TXA could yield total cost savings of between $23 million and $67 million dollars per year for our health care system".

Molloy 2007

"At the time of our study, the cost of the pharmaceutical intervention involved in the topical fibrin group was £380 per patient whereas in the tranexamic acid group it was less than £4".

Murkin 1995

"Currently, the cost of aprotinin in Canada averages $450 ($590 Cdn) for this dosage of 3.8 m KIU. The average reduction in transfusion requirements of 0.9 U PRBC shown here, may not be sufficient to justify this expenditure. If the trend to reduction in DVT, as demonstrated in both recent studies in this high‐risk population, can be confirmed, however, the resultant decrease in morbidity and associated length of stay could render this therapy cost effective".

Murkin 2000

"Notably, the direct cost of one unit of allogeneic blood (approximately $150 [United States dollars] per unit) is comparable with that of the starting dose of aprotinin, with a current hospital acquisition cost for use in a hip replacement of approximately $162 for a low dose of 100 millilitres of aprotinin to $486 for a high dose of 300 millilitres. Moreover, on the basis of the total incremental hospital costs of hip arthroplasty, allogeneic blood transfusion may be associated with $1000 to $1500 per unit in additional costs compared with the cost of no transfusion or of transfusion of one to five units of autologous blood. Thus, use of aprotinin may be of particular clinical and economic benefit in patients at high risk of receiving allogeneic blood, such as those who have not predonated blood or perhaps those with a low baseline haemoglobin level".

Niskanen 2005

"One unit of red cells costs EUR 90, and 6 ampoules of tranexamic acid used for one patient cost EUR 13. Thus, the total cost per patient amounts to EUR 58 in the tranexamic acid group and EUR 81 in the placebo group. If we use only 2 ampoules of tranexamic acid preoperatively and drain only in the placebo group, the costs would amount to EUR 50 and EUR 100. According to the Finnish arthroplasty registry, about 2500 hip operations per year in Finland might be suitable for this kind of policy (Nevalainen et al. 2003). It means a saving of about EUR 32,500–125,000. If we take uncemented and revision cases into account, the saving will increase many fold".

North 2016

"cost analysis using IV TXA demonstrated a savings of $314 USD per patient".

Ray 2005

"The cost of these doses of aprotinin and EACA is Aus $401 and $71 respectively, i.e. aprotinin is more than five times the cost, bears a risk of anaphylactic reaction and has similar effect in reducing bleeding".

Veien 2002

"The blood‐sparing effect of TXA has a high cost‐benefit ratio. The cost of short‐term TXA therapy is significantly less than the cost of autologous and allogenic blood transfusions".

Wang 2018

"An appropriate oral dose can save between $33 and $94 compared with an equivalent intravenous or intra‐articular dose, depending on the formulations of TXA. We came to the same conclusion about the costs. Although several authors have confirmed the enhanced efficacy of higher or additional intravenous administration of TXA in arthroplasty, to our knowledge there have been no prior RCTs determining the optimum regimen for oral TXA, which is associated with great cost savings, ease of administration, and equivalent clinical blood‐conserving efficacy".

Wu 2018

"The total TXA cost in the oral TXA group was significantly less compared to that in the IV TXA group (¥600 and ¥ 3150, P < 0.01)".

Zeng 2018

"The mean hospital charge in the extension, and controlled group was 7070$, and 7140$, respectively, without significant intergroup differences".

Zhao 2018

"The cost associated with oral TXA (546 RMB total patients) was significantly lower than that of intravenous TXA (4573.2 RMB total patients; p = 0.001; Table 2).

The oral TXA dosage cost 6.83 RMB per dose. The cost of 1g of IV TXA was 76.30 RMB, the cost of oral form of TXA is cheaper than the intravenous form, and beside its relatively low cost, the advantage of oral TXA is simple application avoiding IV access, which is requirement for expensive nursing care for IV application. The transfusion cost per two U red blood cells was estimated to be 930 RMB at our hospital.

Costs of TXA and transfusions were significantly lower in the oral group than the intravenous group (p < 0.05). Similarly, the cost of transfusion was significantly lower in the oral group (929.65 RMB total transfusion) than in the intravenous group (1859.3 RMB total transfusion) and control group (8366.8 RMB, total transfusion; p = 0.004; Table 2)".

DVT: deep vein thrombosis; EACA: epsilon‐aminocaproic acid; IAT: intraoperative autotransfusion; LOS: length of stay; IV: intravenous; OR: operating room; PAD: preoperative autologous blood donation; RCT: randomised controlled trial; TKA: total knee arthroplasty; TXA, TA, TNA: tranexamic acid

Figuras y tablas -
Table 7. Table of descriptive cost information
Table 8. Table of descriptive HRQoL information

Study

Intervention

HRQoL information

None of the included studies reported health‐related quality of life data. However, some studies have reported descriptive information.

Chin 2020

TXA, IV, 1 g

There was no significant difference between TXA and placebo groups in the improvement of functional scales, comparing the preoperative to the 1‐year postoperative scores. The Oxford Hip Score showed a mean improvement of 25.9 points in those patients who received TXA, compared with 26.7 points in those who received placebo (P = 0.679). The WOMAC scores were improved by 49.9 points in the TXA group, compared with 50.7 points in the placebo group (P = 0.864). The mean improvement in the HAAS was 7.5 points in the TXA group, compared with 8.2 points in the placebo group (P = 0.278).

Placebo

Morales‐Avalos 2021

TXA, oral

VAS score, Harris hip score. VAS preop 7.88 ± 1.54. HHS (points) 48.10 ± 8.48. VAS postop 30 days 1.38 ± 0.95. HHS postop 30 days 84.99 ± 12.92.

EACA, oral

VAS score, Harris hip score. VAS preop 8.01 ± 1.22. HHS 49.56 ± 9.01. VAS postop 30 days 1.59 ± 1.02. HHS postop 30 days 83.13 ±14.69.

Painter 2018

Placebo

EQ‐5D indexed, median (interquartile range (IQR)) preoperative: 0.38 (0.22 to 0.60), Week 3: 0.64 (0.54 to 0.74), Week 6: 0.67 (0.59 to 0.84), Month 3: 0.73 (0.64 to 0.84), Month 6: 0.77 (0.59 to 0.91). Quality of recovery score, median (IQR) Day 3: 102 (84 to 123), Week 3: 120 (107 to 138), Week 6: 124 (102 to 140) WOMAC® Index, median (IQR) preoperative: 64 (51 to 72), Week 3: 30 (21 to 48), Week 6: 28 (16 to 38), Month 3: 21 (10 to 37), Month 6: 18 (10 to 33). Oxford score (hip or knee), median (IQR) preoperative: 44 (38 to 50), Week 3: 35 (26 to 41), Week 6: 28 (21 to 35), Month 3: 24 (17 to 30), Month 6: 21 (15 to 29).

TXA

EQ‐5D indexed, median (interquartile range (IQR)) preoperative: 0.42 (0.19 to 0.58), Week 3: 0.65 (0.52 to 0.74), Week 6: 0.73 (0.59 to 0.84), Month 3: 0.74 (0.64 to 0.84), Month 6: 0.77 (0.66 to 1.00). Quality of recovery score, median (IQR) Day 3: 106 (88 to 122), Week 3: 119 (104 to 127), Week 6: 129 (116 to 139). WOMAC® Index, median (IQR) preoperative: 61 (54 to 71), Week 3: 35 (25 to 45), Week 6: 28 (16 to 37), Month 3: 19 (12 to 31), Month 6: 17 (8 to 32). Oxford score (hip or knee), median (IQR) preoperative: 43 (39 to 50), Week 3: 32 (28 to 37), Week 6: 26 (21 to 32), Month 3: 23 (19 to 28), Month 6: 23 (17 to 28).

Xie 2017

TXA, IV pre‐op + placebo, IV, postop, repeated dose

VAS score pre‐op day 1: 3.1, VAS score postop day 1: 2.7, VAS score postop day 2: 2.4, VAS score postop day 3: 2.2

TXA, IV pre‐op + TXA, IV, postop + placebo, IV, postop

VAS score pre‐op day 1: 2.9, VAS score postop day 1: 2.5, VAS score postop day 2: 2.2, VAS score postop day 3: 2.2

TXA, IV pre‐op + TXA, IV, postop, repeated dose

VAS score pre‐op day 1: 3.3, VAS score postop day 1: 1.8, VAS score postop day 2: 2.0, VAS score postop day 3: 1.9

Yen 2017

Placebo

Average VAS mean score (1 day postop): 3.89 ± 0.83

TXA, IV

Average VAS mean score (1 day postop): 3.84 ± 0.74

TXA, IA

Average VAS mean score (1 day postop): 3.93 ± 0.84

EACA: epsilon aminocaproic acid; HAAS: High Activity Arthroplasty Score; HHS: Harris Hip Score; HRQoL: health‐related quality of life; IA: intra‐articular; IQR: interquartile range; IV: intravenous; TXA: tranexamic acid; VAS: visual analogue scale; WOMAC: Western Ontario and McMaster Universities Arthritis Index

Figuras y tablas -
Table 8. Table of descriptive HRQoL information
Comparison 1. Results included in the network meta‐analyses

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1.1 Need for allogeneic blood transfusion (only trials included in the NMA) Show forest plot

47

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

1.1.1 Aprotinin vs placebo

5

731

Risk Ratio (M‐H, Random, 95% CI)

0.66 [0.46, 0.96]

1.1.2 EACA vs placebo

3

168

Risk Ratio (M‐H, Random, 95% CI)

0.59 [0.27, 1.28]

1.1.3 Fibrin topical vs placebo

1

69

Risk Ratio (M‐H, Random, 95% CI)

3.09 [0.34, 28.25]

1.1.4 TXA topical 1 g intraoperatively vs placebo

2

177

Risk Ratio (M‐H, Random, 95% CI)

0.22 [0.08, 0.64]

1.1.5 TXA IV 1 g intraoperatively vs placebo

2

80

Risk Ratio (M‐H, Random, 95% CI)

0.21 [0.08, 0.57]

1.1.6 TXA IV total dose 1 g, intraoperatively and postoperatively vs placebo

1

95

Risk Ratio (M‐H, Random, 95% CI)

0.18 [0.02, 1.42]

1.1.7 TXA IV 1 g pre‐incision vs placebo

7

481

Risk Ratio (M‐H, Random, 95% CI)

0.60 [0.37, 0.98]

1.1.8 TXA IV total dose 1 g, pre‐incision, intraoperatively and postoperatively vs placebo

1

28

Risk Ratio (M‐H, Random, 95% CI)

0.72 [0.49, 1.07]

1.1.9 TXA IV total dose 1 g, pre‐incision and postoperatively vs placebo

1

40

Risk Ratio (M‐H, Random, 95% CI)

0.29 [0.07, 1.21]

1.1.10 TXA IV total dose 2 g, intraoperatively and postoperatively vs placebo

4

260

Risk Ratio (M‐H, Random, 95% CI)

0.37 [0.18, 0.78]

1.1.11 TXA IV 2 g pre‐incision vs placebo

1

42

Risk Ratio (M‐H, Random, 95% CI)

0.15 [0.04, 0.60]

1.1.12 TXA IV total dose 2 g, pre‐incision and postoperatively vs placebo

4

336

Risk Ratio (M‐H, Random, 95% CI)

0.46 [0.26, 0.81]

1.1.13 TXA IV total dose 3 g, intraoperatively and postoperatively vs placebo

2

87

Risk Ratio (M‐H, Random, 95% CI)

0.47 [0.33, 0.68]

1.1.14 TXA IV total dose > 3 g, intraoperatively and postoperatively vs placebo

1

140

Risk Ratio (M‐H, Random, 95% CI)

0.39 [0.16, 0.94]

1.1.15 TXA IV + TXA topical total dose 2 g, intraoperatively vs placebo

1

100

Risk Ratio (M‐H, Random, 95% CI)

0.12 [0.03, 0.48]

1.1.16 TXA IV + TXA topical total dose > 3 g, pre‐incision, intraoperatively and postoperatively vs placebo

1

144

Risk Ratio (M‐H, Random, 95% CI)

0.38 [0.08, 1.89]

1.1.17 TXA oral total dose 2 g, pre‐incision and postoperatively vs placebo

1

80

Risk Ratio (M‐H, Random, 95% CI)

0.13 [0.02, 0.95]

1.1.18 Aprotinin vs EACA

1

30

Risk Ratio (M‐H, Random, 95% CI)

0.50 [0.11, 2.33]

1.1.19 Desmopressin vs TXA IV total dose 1 g, pre‐incision and intraoperatively

1

40

Risk Ratio (M‐H, Random, 95% CI)

3.67 [1.20, 11.19]

1.1.20 EACA vs TXA IV total dose 2 g, intraoperatively and postoperatively

1

67

Risk Ratio (M‐H, Random, 95% CI)

4.38 [0.52, 37.12]

1.1.21 EACA vs TXA oral total dose > 3 g, pre‐incision and postoperatively

1

102

Risk Ratio (M‐H, Random, 95% CI)

3.00 [0.32, 27.89]

1.1.22 Fibrin topical vs TXA IV 1 g intraoperatively

1

100

Risk Ratio (M‐H, Random, 95% CI)

1.40 [0.48, 4.12]

1.1.23 TXA topical 1 g, intraoperatively vs TXA oral + TXA topical total dose > 3 g, pre‐incision, intraoperatively and postoperatively

1

300

Risk Ratio (M‐H, Random, 95% CI)

4.00 [0.58, 27.82]

1.1.24 TXA topical 2 g intraoperatively vs TXA IV 2 g pre‐incision

1

139

Risk Ratio (M‐H, Random, 95% CI)

1.52 [0.66, 3.49]

1.1.25 TXA IV 1 g intraoperatively vs TXA IV 1 g pre‐incision

1

46

Risk Ratio (M‐H, Random, 95% CI)

1.16 [0.81, 1.67]

1.1.26 TXA IV 1 g intraoperatively vs TXA IV total dose 1 g, pre‐incision and intraoperatively

1

49

Risk Ratio (M‐H, Random, 95% CI)

1.49 [0.97, 2.29]

1.1.27 TXA IV 1 g intraoperatively vs TXA IV + TXA topical total dose 2 g, intraoperatively

1

60

Risk Ratio (M‐H, Random, 95% CI)

3.33 [1.02, 10.92]

1.1.28 TXA_IV_1g_intra vs TXA_IV_oral_grt_than_3g_intra_post

1

141

Risk Ratio (M‐H, Random, 95% CI)

0.97 [0.09, 10.42]

1.1.29 TXA_IV_1g_intra_post vs TXA_IV_oral_grt_than_3g_intra_post

1

40

Risk Ratio (M‐H, Random, 95% CI)

1.50 [0.28, 8.04]

1.1.30 TXA_IV_1g_intra_post vs TXA_oral_grt_than_3g_preI_post

1

40

Risk Ratio (M‐H, Random, 95% CI)

0.75 [0.19, 2.93]

1.1.31 TXA_IV_1g_preI vs TXA_IV_1g_preI_intra

1

51

Risk Ratio (M‐H, Random, 95% CI)

1.29 [0.81, 2.04]

1.1.32 TXA_IV_1g_preI vs TXA_IV_2g_preI_intra

1

83

Risk Ratio (M‐H, Random, 95% CI)

0.81 [0.32, 2.04]

1.1.33 TXA_IV_1g_preI vs TXA_IV_2g_preI_post

1

71

Risk Ratio (M‐H, Random, 95% CI)

2.06 [0.68, 6.22]

1.1.34 TXA_IV_1g_preI vs TXA_IV_IA_2g_preI_intra

1

89

Risk Ratio (M‐H, Random, 95% CI)

0.94 [0.37, 2.36]

1.1.35 TXA_IV_1g_preI vs TXA_oral_2g_preI_post

1

89

Risk Ratio (M‐H, Random, 95% CI)

0.94 [0.37, 2.36]

1.1.36 TXA_IV_1g_preI_intra vs TXA_oral_2g_preI

2

154

Risk Ratio (M‐H, Random, 95% CI)

0.48 [0.09, 2.68]

1.1.37 TXA_IV_2g_preI_intra vs TXA_IV_IA_2g_preI_intra

1

86

Risk Ratio (M‐H, Random, 95% CI)

1.15 [0.48, 2.78]

1.1.38 TXA_IV_2g_preI_intra vs TXA_oral_2g_preI_post

1

86

Risk Ratio (M‐H, Random, 95% CI)

1.15 [0.48, 2.78]

1.1.39 TXA_IV_2g_preI_post vs TXA_IV_IA_grt_than_3g_preI_intra_post

1

148

Risk Ratio (M‐H, Random, 95% CI)

2.00 [0.38, 10.59]

1.1.40 TXA_IV_2g_preI_post vs TXA_IV_oral_grt_than_3g_preI_post

1

118

Risk Ratio (M‐H, Random, 95% CI)

1.03 [0.15, 7.10]

1.1.41 TXA_IV_2g_preI_post vs TXA_oral_2g_preI_post

1

80

Risk Ratio (M‐H, Random, 95% CI)

2.00 [0.19, 21.18]

1.1.42 TXA_IV_3g_intra_post vs TXA_oral_3g_preI_post

1

100

Risk Ratio (M‐H, Random, 95% CI)

2.00 [0.19, 21.36]

1.1.43 TXA_IV_IA_2g_preI_intra vs TXA_oral_2g_preI_post

1

92

Risk Ratio (M‐H, Random, 95% CI)

1.00 [0.41, 2.44]

1.1.44 TXA_IV_oral_grt_than_3g_intra_post vs TXA_oral_grt_than_3g_preI_post

1

40

Risk Ratio (M‐H, Random, 95% CI)

0.50 [0.10, 2.43]

1.2 Units of red blood cells transfused (only trials included in the NMA) Show forest plot

16

Mean Difference (IV, Random, 95% CI)

Subtotals only

1.2.1 Aprotinin vs placebo

7

549

Mean Difference (IV, Random, 95% CI)

‐0.96 [‐1.71, ‐0.21]

1.2.2 Desmopressin vs placebo

2

129

Mean Difference (IV, Random, 95% CI)

‐0.15 [‐0.64, 0.33]

1.2.3 EACA vs placebo

1

92

Mean Difference (IV, Random, 95% CI)

‐0.39 [‐0.66, ‐0.12]

1.2.4 TXA_IV_1g_preI vs placebo

2

122

Mean Difference (IV, Random, 95% CI)

0.16 [‐0.97, 1.30]

1.2.5 TXA_IV_1g_preI_intra_post vs placebo

1

28

Mean Difference (IV, Random, 95% CI)

‐1.80 [‐2.98, ‐0.62]

1.2.6 TXA_IV_2g_intra_post vs placebo

3

250

Mean Difference (IV, Random, 95% CI)

‐0.74 [‐1.03, ‐0.46]

1.2.7 TXA_IV_2g_preI_post vs placebo

1

73

Mean Difference (IV, Random, 95% CI)

‐0.60 [‐1.05, ‐0.15]

1.2.8 TXA_IV_3g_intra_post vs placebo

1

77

Mean Difference (IV, Random, 95% CI)

‐2.10 [‐2.73, ‐1.47]

1.2.9 EACA vs TXA_IV_2g_intra_post

1

67

Mean Difference (IV, Random, 95% CI)

0.16 [‐0.03, 0.35]

1.2.10 TXA_IV_1g_preI vs TXA_IV_2g_preI_post

1

71

Mean Difference (IV, Random, 95% CI)

0.20 [‐0.15, 0.55]

1.3 Risk of experiencing DVT (only trials included in the NMA) Show forest plot

19

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

1.3.1 Aprotinin vs placebo

2

646

Risk Ratio (M‐H, Random, 95% CI)

0.78 [0.36, 1.66]

1.3.2 TXA_IA_2g_intra vs placebo

1

101

Risk Ratio (M‐H, Random, 95% CI)

0.45 [0.15, 1.38]

1.3.3 TXA_IV_1g_intra vs placebo

2

99

Risk Ratio (M‐H, Random, 95% CI)

0.98 [0.54, 1.75]

1.3.4 TXA_IV_1g_post vs placebo

1

103

Risk Ratio (M‐H, Random, 95% CI)

1.06 [0.22, 5.01]

1.3.5 TXA_IV_1g_preI vs placebo

2

122

Risk Ratio (M‐H, Random, 95% CI)

0.96 [0.53, 1.71]

1.3.6 TXA_IV_1g_preI_intra vs placebo

1

53

Risk Ratio (M‐H, Random, 95% CI)

1.04 [0.59, 1.85]

1.3.7 TXA_IV_2g_intra_post vs placebo

3

165

Risk Ratio (M‐H, Random, 95% CI)

1.11 [0.43, 2.91]

1.3.8 TXA_IV_2g_post vs placebo

1

106

Risk Ratio (M‐H, Random, 95% CI)

1.33 [0.31, 5.67]

1.3.9 TXA_IV_2g_preI_post vs placebo

1

73

Risk Ratio (M‐H, Random, 95% CI)

0.51 [0.05, 5.42]

1.3.10 TXA_IV_3g_intra_post vs placebo

1

77

Risk Ratio (M‐H, Random, 95% CI)

0.97 [0.14, 6.57]

1.3.11 TXA_IV_grt_than_3g_intra_post vs placebo

1

140

Risk Ratio (M‐H, Random, 95% CI)

0.97 [0.06, 15.23]

1.3.12 Aprotinin vs TXA_IV_1g_preI_intra

1

24

Risk Ratio (M‐H, Random, 95% CI)

0.50 [0.05, 4.81]

1.3.13 TXA_IA_1g_intra vs TXA_IV_1g_preI

1

93

Risk Ratio (M‐H, Random, 95% CI)

0.68 [0.12, 3.89]

1.3.14 TXA_IA_1g_intra vs TXA_oral_IA_grt_than_3g_preI_intra_post

1

300

Risk Ratio (M‐H, Random, 95% CI)

0.57 [0.07, 4.56]

1.3.15 TXA_IV_1g_intra vs TXA_IV_1g_preI

1

46

Risk Ratio (M‐H, Random, 95% CI)

0.99 [0.53, 1.86]

1.3.16 TXA_IV_1g_intra vs TXA_IV_1g_preI_intra

1

49

Risk Ratio (M‐H, Random, 95% CI)

0.94 [0.52, 1.72]

1.3.17 TXA_IV_1g_intra vs TXA_IV_oral_grt_than_3g_intra_post

1

140

Risk Ratio (M‐H, Random, 95% CI)

2.97 [0.51, 17.16]

1.3.18 TXA_IV_1g_post vs TXA_IV_2g_post

1

103

Risk Ratio (M‐H, Random, 95% CI)

0.80 [0.19, 3.38]

1.3.19 TXA_IV_1g_preI vs TXA_IV_1g_preI_intra

1

51

Risk Ratio (M‐H, Random, 95% CI)

0.95 [0.53, 1.71]

1.3.20 TXA_IV_1g_preI vs TXA_IV_2g_preI_post

1

71

Risk Ratio (M‐H, Random, 95% CI)

1.03 [0.07, 15.81]

1.3.21 TXA_IV_2g_preI_post vs TXA_IV_IA_grt_than_3g_preI_intra_post

1

77

Risk Ratio (M‐H, Random, 95% CI)

1.26 [0.34, 4.69]

1.3.22 TXA_IV_2g_preI_post vs TXA_IV_oral_grt_than_3g_preI_post

1

118

Risk Ratio (M‐H, Random, 95% CI)

0.62 [0.16, 2.48]

1.3.23 TXA_IV_IA_2g_preI_intra vs TXA_IV_IA_grt_than_3g_preI_intra_post

1

100

Risk Ratio (M‐H, Random, 95% CI)

0.85 [0.12, 5.81]

1.4 Length of hospital stay (only trials included in the NMA) Show forest plot

28

Mean Difference (IV, Random, 95% CI)

Subtotals only

1.4.1 Aprotinin vs placebo

1

40

Mean Difference (IV, Random, 95% CI)

0.70 [‐1.71, 3.11]

1.4.2 Desmopressin vs placebo

2

92

Mean Difference (IV, Random, 95% CI)

‐0.50 [‐1.57, 0.57]

1.4.3 Fibrin_top vs placebo

1

69

Mean Difference (IV, Random, 95% CI)

0.07 [‐0.15, 0.29]

1.4.4 TXA_IA_2g_intra vs placebo

1

101

Mean Difference (IV, Random, 95% CI)

‐0.10 [‐0.45, 0.25]

1.4.5 TXA_IA_3g_intra vs placebo

1

69

Mean Difference (IV, Random, 95% CI)

0.07 [‐0.15, 0.29]

1.4.6 TXA_IV_1g_preI vs placebo

2

172

Mean Difference (IV, Random, 95% CI)

‐0.19 [‐1.03, 0.65]

1.4.7 TXA_IV_2g_preI_post vs placebo

3

304

Mean Difference (IV, Random, 95% CI)

‐0.04 [‐0.40, 0.31]

1.4.8 TXA_IV_grt_than_3g_intra_post vs placebo

1

140

Mean Difference (IV, Random, 95% CI)

‐0.80 [‐1.96, 0.36]

1.4.9 TXA_IV_IA_2g_intra vs placebo

1

100

Mean Difference (IV, Random, 95% CI)

‐0.60 [‐1.33, 0.13]

1.4.10 TXA_IV_IA_grt_than_3g_preI_intra_post vs placebo

1

156

Mean Difference (IV, Random, 95% CI)

0.00 [‐0.65, 0.65]

1.4.11 TXA_oral_2g_preI_post vs placebo

1

80

Mean Difference (IV, Random, 95% CI)

‐0.10 [‐0.50, 0.30]

1.4.12 Desmopressin vs TXA_IV_1g_preI_intra

1

40

Mean Difference (IV, Random, 95% CI)

1.00 [‐0.24, 2.24]

1.4.13 EACA vs TXA_IV_2g_preI_intra

1

194

Mean Difference (IV, Random, 95% CI)

0.11 [‐0.17, 0.39]

1.4.14 Fibrin_top vs TXA_IA_3g_intra

1

68

Mean Difference (IV, Random, 95% CI)

0.00 [‐0.24, 0.24]

1.4.15 TXA_IA_3g_intra vs TXA_IV_1g_preI_intra

1

78

Mean Difference (IV, Random, 95% CI)

‐0.40 [‐0.98, 0.18]

1.4.16 TXA_IA_3g_intra vs TXA_IV_2g_intra

1

120

Mean Difference (IV, Random, 95% CI)

0.20 [‐0.82, 1.22]

1.4.17 TXA_IA_3g_intra vs TXA_IV_3g_preI_intra

1

168

Mean Difference (IV, Random, 95% CI)

0.20 [‐0.22, 0.62]

1.4.18 TXA_IV_1g_intra vs TXA_IV_IA_2g_intra

1

60

Mean Difference (IV, Random, 95% CI)

0.03 [‐0.50, 0.56]

1.4.19 TXA_IV_1g_intra_post vs TXA_IV_oral_grt_than_3g_intra_post

1

40

Mean Difference (IV, Random, 95% CI)

0.00 [‐1.24, 1.24]

1.4.20 TXA_IV_1g_intra_post vs TXA_oral_grt_than_3g_preI_post

1

40

Mean Difference (IV, Random, 95% CI)

0.00 [‐1.24, 1.24]

1.4.21 TXA_IV_1g_preI vs TXA_IV_2g_preI_intra

1

83

Mean Difference (IV, Random, 95% CI)

‐0.80 [‐1.76, 0.16]

1.4.22 TXA_IV_1g_preI vs TXA_IV_2g_preI_post

1

71

Mean Difference (IV, Random, 95% CI)

0.00 [‐1.14, 1.14]

1.4.23 TXA_IV_1g_preI vs TXA_IV_IA_2g_preI_intra

1

89

Mean Difference (IV, Random, 95% CI)

‐0.60 [‐1.69, 0.49]

1.4.24 TXA_IV_1g_preI vs TXA_oral_2g_preI_post

1

89

Mean Difference (IV, Random, 95% CI)

‐0.20 [‐1.02, 0.62]

1.4.25 TXA_IV_1g_preI_intra vs TXA_oral_2g_preI

2

154

Mean Difference (IV, Random, 95% CI)

0.00 [‐0.32, 0.32]

1.4.26 TXA_IV_2g_preI_intra vs TXA_IV_IA_2g_preI_intra

1

86

Mean Difference (IV, Random, 95% CI)

0.20 [‐1.09, 1.49]

1.4.27 TXA_IV_2g_preI_intra vs TXA_oral_2g_preI_post

1

86

Mean Difference (IV, Random, 95% CI)

0.60 [‐0.47, 1.67]

1.4.28 TXA_IV_2g_preI_post vs TXA_IV_3g_preI_intra

1

110

Mean Difference (IV, Random, 95% CI)

1.00 [0.57, 1.43]

1.4.29 TXA_IV_2g_preI_post vs TXA_IV_grt_than_3g_preI_post

1

102

Mean Difference (IV, Random, 95% CI)

0.50 [0.05, 0.95]

1.4.30 TXA_IV_2g_preI_post vs TXA_IV_IA_grt_than_3g_preI_intra_post

1

154

Mean Difference (IV, Random, 95% CI)

0.40 [‐0.39, 1.19]

1.4.31 TXA_IV_2g_preI_post vs TXA_IV_oral_grt_than_3g_preI_post

1

118

Mean Difference (IV, Random, 95% CI)

0.30 [‐0.08, 0.68]

1.4.32 TXA_IV_2g_preI_post vs TXA_oral_2g_preI_post

1

80

Mean Difference (IV, Random, 95% CI)

0.00 [‐0.20, 0.20]

1.4.33 TXA_IV_3g_intra_post vs TXA_oral_3g_preI_post

1

100

Mean Difference (IV, Random, 95% CI)

‐0.20 [‐0.57, 0.17]

1.4.34 TXA_IV_3g_preI_intra vs TXA_IV_grt_than_3g_preI_post

1

106

Mean Difference (IV, Random, 95% CI)

‐0.50 [‐0.83, ‐0.17]

1.4.35 TXA_IV_grt_than_3g_preI_post vs TXA_IV_IA_3g_preI_intra_post

1

101

Mean Difference (IV, Random, 95% CI)

‐1.30 [‐1.89, ‐0.71]

1.4.36 TXA_IV_grt_than_3g_preI_post vs TXA_IV_oral_grt_than_3g_preI_post

1

101

Mean Difference (IV, Random, 95% CI)

‐0.90 [‐1.41, ‐0.39]

1.4.37 TXA_IV_IA_2g_preI_intra vs TXA_oral_2g_preI_post

1

92

Mean Difference (IV, Random, 95% CI)

0.40 [‐0.79, 1.59]

1.4.38 TXA_IV_IA_3g_preI_intra vs TXA_IV_IA_grt_than_3g_preI_intra_post

1

150

Mean Difference (IV, Random, 95% CI)

0.72 [0.12, 1.33]

1.4.39 TXA_IV_IA_3g_preI_intra_post vs TXA_IV_oral_grt_than_3g_preI_post

1

100

Mean Difference (IV, Random, 95% CI)

0.40 [‐0.15, 0.95]

1.4.40 TXA_IV_IA_oral_grt_than_3g_intra_post vs TXA_oral_3g_preI_post

1

53

Mean Difference (IV, Random, 95% CI)

0.50 [‐0.20, 1.20]

1.4.41 TXA_IV_oral_grt_than_3g_intra_post vs TXA_oral_grt_than_3g_preI_post

1

40

Mean Difference (IV, Random, 95% CI)

0.00 [‐1.24, 1.24]

1.4.42 TXA_oral_2g_preI vs TXA_oral_3g_preI_post

1

100

Mean Difference (IV, Random, 95% CI)

‐0.12 [‐0.44, 0.20]

1.4.43 TXA_oral_2g_preI vs TXA_oral_grt_than_3g_preI_post

1

150

Mean Difference (IV, Random, 95% CI)

‐0.32 [‐0.60, ‐0.04]

1.4.44 TXA_oral_3g_preI_post vs TXA_oral_grt_than_3g_preI_post

1

150

Mean Difference (IV, Random, 95% CI)

‐0.20 [‐0.49, 0.09]

Figuras y tablas -
Comparison 1. Results included in the network meta‐analyses
Comparison 2. TXA IV vs placebo

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

2.1 Need for allogeneic blood transfusion Show forest plot

33

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

2.1.1 TXA, IV 1 g

20

1133

Risk Ratio (M‐H, Random, 95% CI)

0.46 [0.33, 0.64]

2.1.2 TXA, IV 2 g

10

707

Risk Ratio (M‐H, Random, 95% CI)

0.46 [0.22, 0.94]

2.1.3 TXA, IV 3 g

1

140

Risk Ratio (M‐H, Random, 95% CI)

0.39 [0.16, 0.94]

2.1.4 TXA, IV more than 3 g

4

296

Risk Ratio (M‐H, Random, 95% CI)

0.23 [0.09, 0.57]

2.2 All‐cause mortality Show forest plot

5

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

2.2.1 TXA, IV 1 g

3

105

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

2.2.2 TXA, IV 2 g

1

77

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.13 [0.00, 6.65]

2.2.3 TXA, IV 3 g

1

140

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.13 [0.00, 6.63]

2.3 Units of red blood cells transfused Show forest plot

7

Mean Difference (IV, Random, 95% CI)

Subtotals only

2.3.1 TXA, IV 1 g

5

326

Mean Difference (IV, Random, 95% CI)

‐0.31 [‐0.83, 0.21]

2.3.2 TXA, IV 2 g

3

252

Mean Difference (IV, Random, 95% CI)

‐1.14 [‐1.78, ‐0.50]

2.4 Reoperation Show forest plot

3

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

2.4.1 TXA, IV 2 g

1

151

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

2.4.2 TXA, IV 3 g

1

140

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

2.4.3 TXA, IV more than 3 g

2

253

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.20 [0.45, 116.28]

2.5 Length of hospital stay Show forest plot

6

Mean Difference (IV, Random, 95% CI)

Subtotals only

2.5.1 TXA, IV 1 g

3

253

Mean Difference (IV, Random, 95% CI)

‐0.34 [‐0.82, 0.15]

2.5.2 TXA, IV 2 g

3

304

Mean Difference (IV, Random, 95% CI)

‐0.04 [‐0.40, 0.31]

2.5.3 TXA, IV 3 g

1

140

Mean Difference (IV, Random, 95% CI)

‐0.80 [‐1.96, 0.36]

2.5.4 TXA, IV more than 3 g

1

153

Mean Difference (IV, Random, 95% CI)

‐0.50 [‐1.10, 0.10]

2.6 Risk of experiencing DVT Show forest plot

35

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

2.6.1 TXA, IV 1 g

21

1097

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.22 [0.62, 2.40]

2.6.2 TXA, IV 2 g

10

714

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.85 [0.30, 2.42]

2.6.3 TXA, IV 3 g

2

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.97 [0.06, 15.69]

2.6.4 TXA, IV more than 3 g

4

305

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.56 [0.11, 2.85]

2.7 Risk of experiencing PE Show forest plot

27

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

2.7.1 TXA, IV 1 g

16

942

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.26 [0.33, 4.86]

2.7.2 TXA, IV 2 g

7

499

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.66 [0.04, 11.65]

2.7.3 TXA, IV 3 g

2

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.13 [0.00, 6.63]

2.7.4 TXA, IV more than 3 g

3

263

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

2.8 Risk of experiencing MI Show forest plot

12

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

2.8.1 TXA, IV 1 g

7

386

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.90 [0.06, 14.40]

2.8.2 TXA, IV 2 g

3

268

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.13 [0.00, 6.65]

2.8.3 TXA, IV 3 g

1

140

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.97 [0.06, 15.69]

2.8.4 More than 3 g

2

253

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.11 [0.14, 358.60]

2.9 Risk of experiencing CVA Show forest plot

5

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

2.9.1 TXA, IV 1 g

3

233

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

2.9.2 TXA, IV 3 g

1

140

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.13 [0.00, 6.63]

2.9.3 TXA, IV more than 3 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

2.10 Risk of having suspected serious drug reactions Show forest plot

4

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

2.10.1 TXA, IV 1 g

2

133

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

2.10.2 TXA, IV 2 g

1

39

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

2.10.3 TXA, IV more than 3 g

1

10

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

Figuras y tablas -
Comparison 2. TXA IV vs placebo
Comparison 3. TXA oral vs placebo

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

3.1 Need for allogeneic blood transfusion Show forest plot

2

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

3.1.1 TXA, oral 1 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.14 [0.00, 6.82]

3.1.2 TXA, oral 2 g

2

180

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.17 [0.05, 0.63]

3.1.3 TXA, oral 3 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.14 [0.00, 6.82]

3.2 All‐cause mortality Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

3.2.1 TXA, oral 1 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.2.2 TXA, oral 2 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.2.3 TXA, oral 3 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.3 Length of hospital stay Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Subtotals only

3.3.1 TXA, oral 2 g

1

80

Mean Difference (IV, Random, 95% CI)

‐0.10 [‐0.50, 0.30]

3.4 Risk of experiencing DVT Show forest plot

3

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

3.4.1 TXA, oral 1 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.4.2 TXA, oral 2 g

2

180

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.4.3 TXA, oral 3 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.4.4 TXA, oral more than 3 g

1

102

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.14 [0.00, 6.82]

3.5 Risk of experiencing PE Show forest plot

3

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

3.5.1 TXA, oral 1 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.5.2 TXA, oral 2 g

2

180

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.5.3 TXA, oral 3 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.5.4 TXA, oral more than 3 g

1

102

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.6 Risk of experiencing MI Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

3.6.1 TXA, oral more than 3 g

1

102

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.7 Risk of experiencing CVA Show forest plot

2

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

3.7.1 TXA, oral 1 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.7.2 TXA, oral 2 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.7.3 TXA, oral 3 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

3.7.4 TXA, oral more than 3 g

1

102

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

Figuras y tablas -
Comparison 3. TXA oral vs placebo
Comparison 4. TXA topical vs placebo

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

4.1 Risk of allogeneic blood transfusion Show forest plot

6

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

4.1.1 TXA, topical 1 g

1

94

Risk Ratio (M‐H, Random, 95% CI)

0.23 [0.07, 0.76]

4.1.2 TXA, topical 2 g

2

184

Risk Ratio (M‐H, Random, 95% CI)

0.16 [0.03, 0.97]

4.1.3 TXA, topical 3 g

2

131

Risk Ratio (M‐H, Random, 95% CI)

0.25 [0.03, 2.20]

4.1.4 TXA, topical more than 3 g

1

77

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

4.2 All‐cause mortality Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

4.2.1 TXA, topical 3 g

2

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

4.3 Reoperation Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

4.3.1 TXA, topical 3 g

1

69

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

4.4 Length of hospital stay Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Subtotals only

4.4.1 TXA, topical 2 g

1

101

Mean Difference (IV, Random, 95% CI)

‐0.10 [‐0.45, 0.25]

4.5 Risk of experiencing DVT Show forest plot

6

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

4.5.1 TXA, topical 1 g

1

94

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

4.5.2 TXA, Topical 2g

2

184

Risk Ratio (M‐H, Random, 95% CI)

0.45 [0.15, 1.38]

4.5.3 TXA, Topical 3g

2

130

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

4.5.4 TXA, Topical More than 3g

1

77

Risk Ratio (M‐H, Random, 95% CI)

0.79 [0.21, 2.93]

4.6 Risk of experiencing PE Show forest plot

6

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

4.6.1 TXA, topical 1 g

1

94

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

4.6.2 TXA, topical 2 g

2

184

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.06 [0.17, 6.71]

4.6.3 TXA, topical 3 g

2

130

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

4.6.4 TXA, topical more than 3 g

1

77

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

4.7 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

4.7.1 TXA, topical 3 g

1

69

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

4.8 Risk of transfusion reactions Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Totals not selected

4.8.1 TXA, topical 1 g

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Totals not selected

Figuras y tablas -
Comparison 4. TXA topical vs placebo
Comparison 5. TXA IV + TXA topical vs placebo

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

5.1 Risk of allogeneic blood transfusion Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Totals not selected

5.1.1 TXA, IV + TXA, topical 2 g

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Totals not selected

5.2 Length of hospital stay Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Totals not selected

5.3 Risk of experiencing DVT Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Totals not selected

5.3.1 TXA, IV + TXA, topical 2 g

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Totals not selected

5.4 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

5.4.1 TXA, IV + TXA, topical 2 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 5. TXA IV + TXA topical vs placebo
Comparison 6. TXA IV lower dose vs TXA IV higher dose

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

6.1 Risk of allogeneic blood transfusion Show forest plot

13

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

6.1.1 TXA, IV 1 g vs TXA, IV 2 g

5

297

Risk Ratio (M‐H, Random, 95% CI)

1.12 [0.53, 2.36]

6.1.2 TXA, IV 1g vs TXA, IV 3g

1

97

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.1.3 TXA, IV 2g vs TXA, IV More than 3g

3

359

Risk Ratio (M‐H, Random, 95% CI)

2.00 [0.38, 10.59]

6.1.4 TXA, IV 2g vs TXA, IV 3g

2

202

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.1.5 TXA, IV 3g vs TXA, IV More than 3g

2

207

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.1.6 TXA, IV 3g vs TXA, IV 4g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.1.7 TXA, IV 3g vs TXA, IV 5g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.1.8 TXA, IV 4g vs TXA, IV 5g

2

200

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.1.9 TXA, IV 5g vs TXA, IV More than 5g

2

262

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.1.10 TXA, IV 4g vs TXA, IV More than 5g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.1.11 TXA, IV 3.5g vs TXA, IV 5.5g

1

200

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.1.12 TXA, IV 5.5g vs TXA, IV 6.5g

1

200

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.1.13 TXA, IV 3.5g vs TXA, IV 6.5g

1

200

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.2 All‐cause mortality Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

6.2.1 TXA, IV 1 g vs TXA, IV 2 g

1

40

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.2.2 TXA, IV 5g vs TXA, IV more than 5 g

1

162

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

6.3 Units of red blood cells transfused Show forest plot

2

Mean Difference (IV, Random, 95% CI)

Subtotals only

6.3.1 TXA, IV 1 g vs TXA, IV 2 g

1

71

Mean Difference (IV, Random, 95% CI)

0.20 [‐0.15, 0.55]

6.3.2 TXA, IV 1 g vs TXA, IV 3 g

1

40

Mean Difference (IV, Random, 95% CI)

‐0.05 [‐0.36, 0.26]

6.4 Reoperation Show forest plot

3

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

6.4.1 TXA, IV 1 g vs TXA, IV 3 g

1

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

6.4.2 TXA, IV 2 g vs TXA, IV more than 3 g

1

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

6.4.3 TXA, IV 5 g vs TXA, IV more than 5 g

1

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

6.5 Length of hospital stay Show forest plot

9

Mean Difference (IV, Random, 95% CI)

Subtotals only

6.5.1 TXA, IV 1 g vs TXA, IV 2 g

2

154

Mean Difference (IV, Random, 95% CI)

‐0.46 [‐1.24, 0.31]

6.5.2 TXA, IV 1 g vs TXA, IV 3 g

1

40

Mean Difference (IV, Random, 95% CI)

0.00 [‐1.24, 1.24]

6.5.3 TXA, IV 2 g vs TXA, IV more than 3 g

3

365

Mean Difference (IV, Random, 95% CI)

0.97 [0.54, 1.39]

6.5.4 TXA, IV 2 g vs TXA, IV 3 g

2

202

Mean Difference (IV, Random, 95% CI)

0.46 [0.11, 0.81]

6.5.5 TXA, IV 3 g vs TXA, IV more than 3 g

2

207

Mean Difference (IV, Random, 95% CI)

0.65 [0.27, 1.03]

6.5.6 TXA, IV 3 g vs TXA, IV 4 g

1

100

Mean Difference (IV, Random, 95% CI)

‐0.10 [‐0.69, 0.49]

6.5.7 TXA, IV 3 g vs TXA, IV 5 g

1

100

Mean Difference (IV, Random, 95% CI)

0.30 [‐0.20, 0.80]

6.5.8 TXA, IV 4 g vs TXA, IV 5 g

2

200

Mean Difference (IV, Random, 95% CI)

0.18 [‐0.08, 0.44]

6.5.9 TXA, IV 5 g vs TXA, IV more than 5 g

2

262

Mean Difference (IV, Random, 95% CI)

0.03 [‐0.13, 0.20]

6.5.10 TXA, IV 4 g vs TXA, IV more than 5 g

1

100

Mean Difference (IV, Random, 95% CI)

0.30 [0.02, 0.58]

6.6 Risk of experiencing DVT Show forest plot

14

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

6.6.1 TXA, IV 1 g vs TXA, IV 2 g

5

297

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.52 [0.05, 5.05]

6.6.2 TXA, IV 1 g vs TXA, IV 3 g

2

137

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.6.3 TXA, IV 2 g vs TXA, IV more than 3 g

3

365

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.6.4 TXA, IV 2 g vs TXA, IV 3 g

2

202

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.6.5 TXA, IV 3 g vs TXA, IV more than 3 g

2

207

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.6.6 TXA, IV 3 g vs TXA, IV 4 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.6.7 TXA, IV 3 g vs TXA, IV 5 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.6.8 TXA, IV 4 g vs TXA, IV 5 g

2

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.6.9 TXA, IV 5 g vs TXA, IV more than 5 g

2

262

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.98 [0.06, 15.73]

6.6.10 TXA, IV 4 g vs TXA, IV more than 5 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.6.11 TXA, IV 3.5 g vs TXA, IV 5.5 g

1

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.6.12 TXA, IV 5.5 g vs TXA, IV 6.5 g

1

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.6.13 TXA, IV 3.5 g vs TXA, IV 6.5 g

1

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7 Risk of experiencing PE Show forest plot

13

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

6.7.1 TXA, IV 1 g vs TXA, IV 2 g

4

226

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.39 [0.15, 372.38]

6.7.2 TXA, IV 1 g vs TXA, IV 3 g

2

137

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7.3 TXA, IV 2 g vs TXA, IV more than 3 g

3

365

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7.4 TXA, IV 2 g vs TXA, IV 3 g

2

202

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7.5 TXA, IV 3 g vs TXA, IV more than 3 g

2

207

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7.6 TXA, IV 3 g vs TXA, IV 4 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7.7 TXA, IV 3 g vs TXA, IV 5 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7.8 TXA, IV 4 g vs TXA, IV 5 g

2

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7.9 TXA, IV 5 g vs TXA, IV more than 5 g

2

262

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7.10 TXA, IV 4 g vs TXA, IV more than 5 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7.11 TXA, IV 3.5 g vs TXA, IV 5.5 g

1

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7.12 TXA, IV 3.5 g vs TXA, IV 6.5 g

1

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.7.13 TXA, IV 5.5 g vs TXA, IV 6.5 g

1

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.8 Risk of experiencing MI Show forest plot

7

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

6.8.1 TXA, IV 1 g vs TXA, IV 3 g

1

97

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.8.2 TXA, IV 2 g vs TXA, IV more than 3 g

3

365

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.14 [0.00, 7.00]

6.8.3 TXA, IV 2 g vs TXA, IV 3 g

2

202

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.8.4 TXA, IV 3 g vs TXA, IV more than 3 g

2

207

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.8.5 TXA, IV 3 g vs TXA, IV 4 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.8.6 TXA, IV 3 g vs TXA, IV 5 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.8.7 TXA, IV 4 g vs TXA, IV 5 g

2

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.8.8 TXA, IV 5 g vs TXA, IV more than 5 g

2

262

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.8.9 TXA, IV 4 g vs TXA, IV more than 5 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.9 Risk of experiencing CVA Show forest plot

6

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

6.9.1 TXA, IV 1 g vs TXA, IV 2 g

1

83

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.9.2 TXA, IV 2 g vs TXA, IV 3 g

2

202

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.9.3 TXA, IV 2 g vs TXA, IV more than 3 g

2

211

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.9.4 TXA, IV 3 g vs TXA, IV more than 3 g

2

207

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.9.5 TXA, IV 3 g vs TXA, IV 4 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.9.6 TXA, IV 3 g vs TXA, IV 5 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.9.7 TXA, IV 4 g vs TXA, IV 5 g

2

200

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.9.8 TXA, IV 5 g vs TXA, IV more than 5 g

2

262

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.9.9 TXA, IV 4 g vs TXA, IV more than 5 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

6.10 Risk of suspected serious drug reactions Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

6.10.1 TXA, IV 1 g vs TXA, IV 2 g

1

40

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 6. TXA IV lower dose vs TXA IV higher dose
Comparison 7. TXA IV vs TXA oral

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

7.1 Risk of allogeneic blood transfusion Show forest plot

6

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

7.1.1 TXA, IV 1g

4

283

Risk Ratio (M‐H, Random, 95% CI)

0.79 [0.39, 1.59]

7.1.2 TXA, IV 2 g

2

166

Risk Ratio (M‐H, Random, 95% CI)

1.23 [0.54, 2.82]

7.1.3 TXA, IV 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

2.00 [0.19, 21.36]

7.2 Units of red blood cells transfused Show forest plot

2

Mean Difference (IV, Random, 95% CI)

Subtotals only

7.2.1 TXA, IV 1 g

2

123

Mean Difference (IV, Random, 95% CI)

‐0.06 [‐0.14, 0.03]

7.3 Length of hospital stay Show forest plot

6

Mean Difference (IV, Random, 95% CI)

Subtotals only

7.3.1 TXA, IV 1 g

4

283

Mean Difference (IV, Random, 95% CI)

‐0.02 [‐0.31, 0.26]

7.3.2 TXA, IV 2 g

2

166

Mean Difference (IV, Random, 95% CI)

0.06 [‐0.29, 0.42]

7.3.3 TXA, IV 3 g

1

100

Mean Difference (IV, Random, 95% CI)

‐0.20 [‐0.57, 0.17]

7.4 Risk of experiencing DVT Show forest plot

6

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

7.4.1 TXA, IV 1 g

4

283

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.14 [0.00, 7.30]

7.4.2 TXA, IV 2 g

2

166

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.15 [0.00, 7.85]

7.4.3 TXA, IV 3 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

7.5 Risk of experiencing PE Show forest plot

6

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

7.5.1 TXA, IV 1 g

4

283

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

7.5.2 TXA, IV 2 g

2

166

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

7.5.3 TXA, IV 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

7.6 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

7.6.1 TXA, IV 1 g

1

89

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

7.6.2 TXA, IV 2 g

1

86

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 7. TXA IV vs TXA oral
Comparison 8. TXA IV vs TXA topical

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

8.1 Risk of allogeneic blood transfusion Show forest plot

9

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

8.1.1 TXA, IV vs TXA, topical 400 mg

1

8

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.1.2 TXA, IV vs TXA, topical 800 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.1.3 TXA, IV vs TXA, topical 1 g

1

93

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.1.4 TXA, IV vs TXA, topical 1200 mg

1

8

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.1.5 TXA, IV vs TXA, topical 2 g

4

352

Risk Ratio (M‐H, Random, 95% CI)

0.64 [0.28, 1.42]

8.1.6 TXA, IV vs TXA, topical 3 g

3

351

Risk Ratio (M‐H, Random, 95% CI)

5.00 [0.25, 102.00]

8.2 All‐cause mortality Show forest plot

4

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

8.2.1 TXA, IV vs TXA, topical 400 mg

1

8

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

8.2.2 TXA, IV vs TXA, topical 800 mg

1

7

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

8.2.3 TXA, IV vs TXA, topical 1200 mg

1

8

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

8.2.4 TXA, IV vs TXA, topical 2 g

1

78

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

8.2.5 TXA, IV vs TXA, topical 3 g

2

126

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.14 [0.00, 7.04]

8.3 Reoperation Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

8.3.1 TXA, IV vs TXA, topical 400 mg

1

8

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.3.2 TXA, IV vs TXA, topical 800 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.3.3 TXA, IV vs TXA, topical 1 g

1

93

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.3.4 TXA, IV vs TXA, topical 1200 mg

1

8

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.4 Length of hospital stay Show forest plot

3

Mean Difference (IV, Random, 95% CI)

Subtotals only

8.4.1 TXA, IV vs TXA, topical 3 g

2

288

Mean Difference (IV, Random, 95% CI)

‐0.20 [‐0.59, 0.19]

8.4.2 TXA, IV vs TXA, topical 2 g

1

78

Mean Difference (IV, Random, 95% CI)

0.40 [‐0.18, 0.98]

8.5 Risk of experiencing DVT Show forest plot

8

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

8.5.1 TXA, IV vs TXA, topical 1 g

1

93

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.49 [0.25, 8.92]

8.5.2 TXA, IV vs TXA, topical 2 g

4

353

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.14 [0.00, 6.82]

8.5.3 TXA, IV vs TXA, topical 3 g

3

350

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.98 [0.19, 4.94]

8.6 Risk of experiencing PE Show forest plot

7

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

8.6.1 TXA, IV vs TXA, topical 1 g

1

93

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

8.6.2 TXA, IV vs TXA, topical 2 g

4

353

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.13 [0.16, 8.15]

8.6.3 TXA, IV vs TXA, topical 3 g

2

182

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

8.7 Risk of experiencing MI Show forest plot

3

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

8.7.1 TXA, IV vs TXA, topical 2 g

2

164

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.50 [0.05, 4.90]

8.7.2 TXA, IV vs TXA, topical 1 g

1

93

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

8.8 Risk of experiencing CVA Show forest plot

3

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

8.8.1 TXA, IV vs TXA, topical 400 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.8.2 TXA, IV vs TXA, topical 800 mg

1

6

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.8.3 TXA, IV vs TXA, topical 1200 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.8.4 TXA, IV vs TXA, topical 1 g

1

93

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.8.5 TXA, IV vs TXA, topical 2 g

1

25

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.9 Risk of suspected serious drug reactions Show forest plot

3

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

8.9.1 TXA, IV vs TXA, topical 400 mg

1

8

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.9.2 TXA, IV vs TXA, topical 800 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.9.3 TXA, IV vs TXA, topical 1200 mg

1

8

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.9.4 TXA, IV vs TXA, topical 2 g

1

25

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

8.9.5 TXA, IV vs TXA, topical 3 g

1

63

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 8. TXA IV vs TXA topical
Comparison 9. TXA oral lower dose vs TXA oral higher dose

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

9.1 Risk of allogeneic blood transfusion Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

9.1.1 TXA, oral 2 g vs TXA, oral 4 g

1

102

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.1.2 TXA, oral 2 g vs TXA, oral more than 4 g

1

101

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.1.3 TXA, oral 4 g vs TXA, oral more than 4 g

1

101

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.1.4 TXA, oral 1 g vs TXA, oral 2 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.1.5 TXA, oral 1 g vs TXA, oral 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.1.6 TXA, oral 2 g vs TXA, oral 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.2 All‐cause mortality Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

9.2.1 TXA, oral 1 g vs TXA, oral 2 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.2.2 TXA, Oral 1g vs TXA, Oral 3g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.2.3 TXA, Oral 2g vs TXA, Oral 3g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.3 Risk of experiencing DVT Show forest plot

2

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

9.3.1 TXA, oral 2 g vs TXA, oral 4 g

1

102

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.39 [0.15, 372.38]

9.3.2 TXA, oral 2 g vs TXA, oral more than 4 g

1

101

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.98 [0.06, 15.89]

9.3.3 TXA, oral 4 g vs TXA, oral more than 4 g

1

101

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.13 [0.00, 6.69]

9.3.4 TXA, oral 1 g vs TXA, oral 2 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

9.3.5 TXA, oral 1 g vs TXA, oral 3 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

9.3.6 TXA, oral 2 g vs TXA, oral 3 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

9.4 Risk of experiencing PE Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

9.4.1 TXA, oral 2 g vs TXA, oral 4 g

1

102

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.4.2 TXA, oral 2 g vs TXA, oral more than 4 g

1

101

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.4.3 TXA, oral 4 g vs TXA, oral, more than 4 g

1

101

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.4.4 TXA, oral 1 g vs TXA, oral 2 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.4.5 TXA, oral 1 g vs TXA, oral 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.4.6 TXA, oral 2 g vs TXA, oral 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.5 Risk of experiencing MI Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

9.5.1 TXA, oral 2 g vs TXA, oral 4 g

1

102

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.5.2 TXA, oral 2 g vs TXA, oral more than 4 g

1

101

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.5.3 TXA, oral 4 g vs TXA, oral more than 4 g

1

101

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.6 Risk of experiencing CVA Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

9.6.1 TXA, oral 2 g vs TXA, oral 4 g

1

102

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.6.2 TXA, oral 2 g vs TXA, oral more than 4 g

1

101

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.6.3 TXA, oral 4 g vs TXA, oral more than 4 g

1

101

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.6.4 TXA, oral 1 g vs TXA, oral 2 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.6.5 TXA, oral 1 g vs TXA, oral 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

9.6.6 TXA, oral 2 g vs TXA, oral 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 9. TXA oral lower dose vs TXA oral higher dose
Comparison 10. TXA topical lower dose vs TXA topical higher dose

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

10.1 Risk of allogeneic blood transfusion Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

10.1.1 TXA, topical 400 mg vs TXA, topical 800 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.1.2 TXA, topical 400 mg vs TXA, topical 1200 mg

1

8

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.1.3 TXA, topical 800 mg vs TXA, topical 1200 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.2 All‐cause mortality Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

10.2.1 TXA, topical 400 mg vs TXA, topical 800 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.2.2 TXA, topical 400 mg vs TXA, topical 1200 mg

1

8

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.2.3 TXA, topical 800 mg vs TXA, topical 1200 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.3 Reoperation Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

10.3.1 TXA, topical 400 mg vs TXA, topical 800 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.3.2 TXA, topical 400 mg vs TXA, topical 1200 mg

1

8

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.3.3 TXA, topical 800 mg vs TXA, topical 1200 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.4 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

10.4.1 TXA, topical 400 mg vs TXA, topical 800 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.4.2 TXA, topical 400 mg vs TXA, topical 1200 mg

1

8

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.4.3 TXA, topical 800 mg vs TXA, topical 1200 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.5 Risk of suspected serious drug reactions Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

10.5.1 TXA, topical 400 mg vs TXA, topical 800 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.5.2 TXA, topical 400 mg vs TXA, topical 1200 mg

1

8

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

10.5.3 TXA, topical 800 mg vs TXA, topical 1200 mg

1

7

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 10. TXA topical lower dose vs TXA topical higher dose
Comparison 11. TXA IV vs aprotinin

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

11.1 Risk of allogeneic blood transfusion Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

11.1.1 TXA, IV 2 g

1

24

Risk Ratio (M‐H, Random, 95% CI)

0.09 [0.01, 1.48]

11.2 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

11.2.1 TXA, IV 2 g

1

24

Risk Ratio (M‐H, Random, 95% CI)

2.00 [0.21, 19.23]

Figuras y tablas -
Comparison 11. TXA IV vs aprotinin
Comparison 12. TXA IV vs EACA

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

12.1 Risk of allogeneic blood transfusion Show forest plot

4

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

12.1.1 TXA, IV 2 g

3

430

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.13 [0.00, 6.73]

12.1.2 TXA, IV 1 g

1

67

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.25 [0.04, 1.54]

12.2 Units of red blood cells transfused Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Subtotals only

12.2.1 TXA, IV 1 g

1

67

Mean Difference (IV, Random, 95% CI)

‐0.16 [‐0.35, 0.03]

12.3 Reoperation Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

12.3.1 TXA, IV 2 g

1

91

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

12.4 Length of hospital stay Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Subtotals only

12.4.1 TXA, IV 2 g

1

194

Mean Difference (IV, Random, 95% CI)

‐0.11 [‐0.39, 0.17]

12.5 Risk of experiencing DVT Show forest plot

4

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

12.5.1 TXA, IV 2 g

3

429

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.13 [0.00, 6.68]

12.5.2 TXA, IV 1 g

1

67

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

12.6 Risk of experiencing PE Show forest plot

4

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

12.6.1 TXA, IV 1 g

1

67

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

12.6.2 TXA, IV 2 g

3

429

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.98 [0.20, 4.91]

12.7 Risk of experiencing MI Show forest plot

3

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

12.7.1 TXA, IV 1 g

1

67

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

12.7.2 TXA, IV 2 g

2

235

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.29 [0.14, 367.35]

12.8 Risk of experiencing CVA Show forest plot

4

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

12.8.1 TXA, IV 1 g

1

67

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

12.8.2 TXA, IV 2 g

3

429

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.13 [0.00, 6.68]

Figuras y tablas -
Comparison 12. TXA IV vs EACA
Comparison 13. TXA oral vs EACA oral

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

13.1 Risk of allogeneic blood transfusion Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

13.2 All‐cause mortality Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

13.3 Reoperation Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

13.4 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

13.5 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

13.6 Risk of experiencing MI Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

13.7 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

13.8 Risk of suspected serious drug reactions Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 13. TXA oral vs EACA oral
Comparison 14. TXA IV vs desmopressin

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

14.1 Risk of allogeneic blood transfusion Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

14.1.1 TXA, IV 1 g

1

40

Risk Ratio (M‐H, Random, 95% CI)

0.27 [0.09, 0.83]

14.2 Length of hospital stay Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Subtotals only

14.2.1 TXA, IV 1 g

1

40

Mean Difference (IV, Random, 95% CI)

‐1.00 [‐2.24, 0.24]

14.3 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

14.3.1 TXA, IV 1 g

1

40

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

14.4 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

14.4.1 TXA, IV 1 g

1

40

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 14. TXA IV vs desmopressin
Comparison 15. TXA IV vs fibrin topical

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

15.1 Risk of allogeneic blood transfusion Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

15.1.1 TXA, IV 1 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

0.71 [0.24, 2.10]

15.2 All‐cause mortality Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

15.2.1 TXA, IV 1 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

15.3 Units of red blood cells transfused Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Subtotals only

15.3.1 TXA, IV 1 g

1

100

Mean Difference (IV, Random, 95% CI)

‐0.06 [‐0.28, 0.16]

15.5 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

15.5.1 TXA, IV 1 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

0.33 [0.01, 7.99]

15.6 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

15.6.1 TXA, IV 1 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

0.33 [0.01, 7.99]

Figuras y tablas -
Comparison 15. TXA IV vs fibrin topical
Comparison 16. TXA topical vs fibrin topical

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

16.1 Risk of allogeneic blood transfusion Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

16.2 All‐cause mortality Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

16.3 Reoperation Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

16.4 Length of hospital stay Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Subtotals only

16.5 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

16.6 Risk of experiencing PE Show forest plot

1

68

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

16.7 Risk of experiencing CVA Show forest plot

1

68

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 16. TXA topical vs fibrin topical
Comparison 17. Aprotinin vs placebo

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

17.1 Risk of allogeneic blood transfusion Show forest plot

9

727

Risk Ratio (M‐H, Random, 95% CI)

0.70 [0.50, 0.97]

17.2 All‐cause mortality Show forest plot

2

500

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.13 [0.01, 2.15]

17.3 Units of red blood cells transfused Show forest plot

8

602

Mean Difference (IV, Random, 95% CI)

‐0.94 [‐1.58, ‐0.29]

17.4 Reoperation Show forest plot

1

30

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.14 [0.00, 6.82]

17.5 Length of hospital stay Show forest plot

1

40

Mean Difference (IV, Random, 95% CI)

0.70 [‐1.71, 3.11]

17.6 Risk of experiencing DVT Show forest plot

9

745

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.60 [0.26, 1.37]

17.7 Risk of experiencing PE Show forest plot

3

422

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.52 [0.05, 5.01]

17.8 Risk of experiencing MI Show forest plot

2

500

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.51 [0.05, 4.93]

17.9 Risk of experiencing CVA Show forest plot

2

405

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.11 [0.00, 5.64]

17.10 Risk of suspected serious drug reactions Show forest plot

3

228

Risk Ratio (M‐H, Random, 95% CI)

1.04 [0.71, 1.52]

Figuras y tablas -
Comparison 17. Aprotinin vs placebo
Comparison 18. EACA vs placebo

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

18.1 Risk of allogeneic blood transfusion Show forest plot

3

168

Risk Ratio (M‐H, Random, 95% CI)

0.59 [0.27, 1.28]

18.2 Units of red blood cells transfused Show forest plot

1

92

Mean Difference (IV, Random, 95% CI)

‐0.39 [‐0.66, ‐0.12]

18.3 Reoperation Show forest plot

1

30

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.14 [0.00, 6.82]

18.4 Risk of experiencing DVT Show forest plot

3

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

18.5 Risk of experiencing PE Show forest plot

3

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

18.6 Risk of experiencing MI Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

18.7 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 18. EACA vs placebo
Comparison 19. EACA vs aprotinin

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

19.1 Risk of allogeneic blood transfusion Show forest plot

1

30

Risk Ratio (M‐H, Random, 95% CI)

2.00 [0.43, 9.32]

19.2 Reoperation Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

19.3 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

19.4 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 19. EACA vs aprotinin
Comparison 20. Desmopressin vs placebo

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

20.1 All‐cause mortality Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

20.2 Units of red blood cells transfused Show forest plot

2

129

Mean Difference (IV, Random, 95% CI)

‐0.15 [‐0.64, 0.33]

20.3 Risk of experiencing DVT Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

20.4 Risk of experiencing PE Show forest plot

1

79

Risk Ratio (M‐H, Random, 95% CI)

3.08 [0.13, 73.27]

20.5 Risk of experiencing MI Show forest plot

3

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

20.6 Risk of suspected serious drug reactions Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

20.7 Length of hospital stay Show forest plot

2

Mean Difference (IV, Random, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 20. Desmopressin vs placebo
Comparison 21. Fibrin topical vs placebo

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

21.1 Risk of allogeneic blood transfusion Show forest plot

1

69

Risk Ratio (M‐H, Random, 95% CI)

3.09 [0.34, 28.25]

21.2 All‐cause mortality Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

21.3 Reoperation Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

21.4 Length of hospital stay Show forest plot

1

69

Mean Difference (IV, Random, 95% CI)

0.07 [‐0.15, 0.29]

21.5 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

21.6 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

21.7 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 21. Fibrin topical vs placebo
Comparison 22. TXA IV + TXA oral vs TXA IV

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

22.1 Risk of allogeneic blood transfusion Show forest plot

2

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

22.1.1 TXA, IV + TXA oral days 1 to 2 vs TXA, IV

1

94

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.04 [0.06, 16.95]

22.1.2 TXA, IV + TXA oral days 1 to 5 vs TXA, IV

1

95

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.02 [0.06, 16.58]

22.1.3 TXA IV + TXA oral days 1 to 14 vs TXA IV

1

118

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

22.2 All‐cause mortality Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

22.3 Reoperation Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

22.4 Length of hospital stay Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Totals not selected

22.5 Risk of experiencing DVT Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

22.5.1 TXA, IV + TXA oral days 1 to 2 vs TXA, IV

1

93

Risk Ratio (M‐H, Random, 95% CI)

0.15 [0.01, 2.75]

22.5.2 TXA, IV + TXA oral days 1 to 5 vs TXA, IV

1

94

Risk Ratio (M‐H, Random, 95% CI)

0.67 [0.12, 3.81]

22.5.3 TXA IV + TXA oral days 1 to 14 vs TXA IV

1

118

Risk Ratio (M‐H, Random, 95% CI)

1.61 [0.40, 6.44]

22.6 Risk of experiencing PE Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

22.6.1 TXA, IV + TXA oral days 1 to 2 vs TXA, IV

1

94

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.14 [0.00, 7.12]

22.6.2 TXA, IV + TXA oral days 1 to 5 vs TXA, IV

1

95

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.14 [0.00, 6.97]

Figuras y tablas -
Comparison 22. TXA IV + TXA oral vs TXA IV
Comparison 23. TXA IV + TXA topical vs TXA IV

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

23.1 Risk of allogeneic blood transfusion Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

23.1.1 TXA, IV 1 g

2

149

Risk Ratio (M‐H, Random, 95% CI)

0.60 [0.17, 2.08]

23.1.2 TXA, IV 2 g

1

86

Risk Ratio (M‐H, Random, 95% CI)

0.87 [0.36, 2.10]

23.2 Length of hospital stay Show forest plot

2

Mean Difference (IV, Random, 95% CI)

Subtotals only

23.2.1 TXA, IV 1 g

2

149

Mean Difference (IV, Random, 95% CI)

0.10 [‐0.40, 0.59]

23.2.2 TXA, IV 2 g

1

86

Mean Difference (IV, Random, 95% CI)

‐0.20 [‐1.49, 1.09]

23.3 Risk of experiencing DVT Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

23.3.1 TXA, IV 1 g

2

149

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

23.3.2 TXA, IV 2 g

1

86

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

23.4 Risk of experiencing PE Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

23.4.1 TXA, IV 1 g

2

149

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

23.4.2 TXA, IV 2 g

1

86

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

23.5 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

23.5.1 TXA, IV 1 g

1

89

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

23.5.2 TXA, IV 2 g

1

86

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 23. TXA IV + TXA topical vs TXA IV
Comparison 24. TXA IV + TXA topical vs TXA oral

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

24.1 Risk of allogeneic blood transfusion Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

24.2 Length of hospital stay Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Totals not selected

24.3 Risk of experiencing DVT Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

24.4 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

24.5 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 24. TXA IV + TXA topical vs TXA oral
Comparison 25. TXA IV + TXA topical vs TXA topical

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

25.1 Risk of allogeneic blood transfusion Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 25. TXA IV + TXA topical vs TXA topical
Comparison 26. TXA topical vs TXA oral + TXA topical

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

26.1 Risk of allogeneic blood transfusion Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

26.1.1 TXA, topical vs TXA, oral + TXA, topical 4 g

1

120

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.97 [0.20, 19.31]

26.1.2 TXA, topical vs TXA, oral + TXA, topical 5 g

1

120

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.97 [0.20, 19.31]

26.1.3 TXA, topical vs TXA, oral + TXA, topical 6 g

1

120

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.52 [0.46, 121.57]

26.1.4 TXA, topical vs TXA, oral + TXA, topical 7 g

1

120

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.52 [0.46, 121.57]

26.2 All‐cause mortality Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

26.2.1 TXA, topical vs TXA, oral + TXA, topical 4 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.2.2 TXA, topical vs TXA, oral + TXA, topical 5 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.2.3 TXA, topical vs TXA, oral + TXA, topical 6 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.2.4 TXA, topical vs TXA, oral + TXA, topical 7 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.3 Length of hospital stay Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Subtotals only

26.3.1 TXA, topical vs TXA, oral + TXA, topical 4 g

1

120

Mean Difference (IV, Random, 95% CI)

0.10 [‐0.22, 0.42]

26.3.2 TXA, topical vs TXA, oral + TXA, topical 5 g

1

120

Mean Difference (IV, Random, 95% CI)

0.30 [‐0.06, 0.66]

26.3.3 TXA, topical vs TXA, oral + TXA, topical 6 g

1

120

Mean Difference (IV, Random, 95% CI)

0.30 [‐0.02, 0.62]

26.3.4 TXA, topical vs TXA, oral + TXA, topical 7 g

1

120

Mean Difference (IV, Random, 95% CI)

0.30 [‐0.04, 0.64]

26.4 Risk of experiencing DVT Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

26.4.1 TXA, topical vs TXA, oral + TXA, topical 4 g

1

120

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.51 [0.05, 4.97]

26.4.2 TXA, topical vs TXA, oral + TXA, topical 5 g

1

120

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.00 [0.06, 16.18]

26.4.3 TXA, topical vs TXA, oral + TXA, topical 6 g

1

120

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.51 [0.05, 4.97]

26.4.4 TXA, topical vs TXA, oral + TXA, topical 7 g

1

120

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.51 [0.05, 4.97]

26.5 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

26.5.1 TXA, topical vs TXA, oral + TXA, topical 4 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.5.2 TXA, topical vs TXA, oral + TXA, topical 5 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.5.3 TXA, topical vs TXA, oral + TXA, topical 6 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.5.4 TXA, topical vs TXA, oral + TXA, topical 7 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.6 Risk of experiencing MI Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

26.6.1 TXA, topical vs TXA, oral + TXA, topical 4 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.6.2 TXA, topical vs TXA, oral + TXA, topical 5 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.6.3 TXA, topical vs TXA, oral + TXA, topical 6 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.6.4 TXA, topical vs TXA, oral + TXA, topical 7 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.7 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

26.7.1 TXA, topical vs TXA, oral + TXA, topical 4 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.7.2 TXA, topical vs TXA, oral + TXA, topical 5 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.7.3 TXA, topical vs TXA, oral + TXA, topical 6 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

26.7.4 TXA, topical vs TXA, oral + TXA, topical 7 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 26. TXA topical vs TXA oral + TXA topical
Comparison 27. TXA oral vs TXA combined topical + IV + oral

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

27.1 Risk of allogeneic blood transfusion Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

27.2 Length of hospital stay Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Totals not selected

27.3 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 27. TXA oral vs TXA combined topical + IV + oral
Comparison 28. TXA IV + topical lower dose vs TXA IV + topical higher dose

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

28.1 Risk of allogeneic blood transfusion Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

28.1.1 TXA, IV + TXA, IA 3 g vs TXA, IV + TXA, IA more than 3 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.39 [0.15, 372.38]

28.1.2 TXA, IV + TXA, IA 3 g vs TXA, IV + TXA, IA more than 4 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.39 [0.15, 372.38]

28.1.3 TXA, IV + TXA, IA more than 3 g vs TXA, IV + TXA, IA more than 4 g

1

100

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

28.2 Length of hospital stay Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Subtotals only

28.2.1 TXA, IV + TXA, IA 3 g vs TXA, IV + TXA, IA more than 3 g

1

100

Mean Difference (IV, Random, 95% CI)

0.54 [‐0.17, 1.25]

28.2.2 TXA, IV + TXA, IA 3 g vs TXA, IV + TXA, IA more than 4 g

1

100

Mean Difference (IV, Random, 95% CI)

0.91 [0.27, 1.55]

28.2.3 TXA, IV + TXA, IA more than 3 g vs TXA, IV + TXA, IA more than 4 g

1

100

Mean Difference (IV, Random, 95% CI)

0.37 [‐0.26, 1.00]

28.3 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

28.3.1 TXA, IV + TXA, IA 3 g vs TXA, IV + TXA, IA more than 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

28.3.2 TXA, IV + TXA, IA 3 g vs TXA, IV + TXA, IA more than 4 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

28.3.3 TXA, IV + TXA, IA more than 3 g vs TXA, IV + TXA, IA more than 4 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

28.4 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

28.4.1 TXA, IV + TXA, IA 3 g vs TXA, IV + TXA, IA more than 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

28.4.2 TXA, IV + TXA, IA 3 g vs TXA, IV + TXA, IA more than 4 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

28.4.3 TXA, IV + TXA, IA more than 3 g vs TXA, IV + TXA, IA more than 4 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

28.5 Risk of experiencing MI Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

28.5.1 TXA, IV + TXA, IA 3 g vs TXA, IV + TXA, IA more than 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

28.5.2 TXA, IV + TXA, IA 3g vs TXA, IV + TXA, IA More than 4g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

28.5.3 TXA, IV + TXA, IA More than 3g vs TXA, IV + TXA, IA More than 4g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

28.6 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

28.6.1 TXA, IV + TXA, IA 3 g vs TXA, IV + TXA, IA more than 3 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

28.6.2 TXA, IV + TXA, IA 3 g vs TXA, IV + TXA, IA more than 4 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

28.6.3 TXA, IV + TXA, IA more than 3 g vs TXA, IV + TXA, IA more than 4 g

1

100

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 28. TXA IV + topical lower dose vs TXA IV + topical higher dose
Comparison 29. TXA oral + topical lower dose vs TXA oral + topical higher dose

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

29.1 Risk of allogeneic blood transfusion Show forest plot

2

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

29.1.1 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 5 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.96 [0.20, 18.92]

29.1.2 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 6 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.39 [0.46, 118.13]

29.1.3 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 7 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.39 [0.46, 118.13]

29.1.4 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 6 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.39 [0.15, 372.38]

29.1.5 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 7 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

7.39 [0.15, 372.38]

29.1.6 TXA, oral + TXA, topical 6 g vs TXA, oral + TXA, topical 7 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

Not estimable

29.2 All‐cause mortality Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

29.2.1 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 5 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.2.2 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 6 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.2.3 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 7 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.2.4 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 6 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.2.5 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 7 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.2.6 TXA, oral + TXA, topical 6 g vs TXA, oral + TXA, topical 7 g

1

120

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.3 Length of hospital stay Show forest plot

2

Mean Difference (IV, Random, 95% CI)

Subtotals only

29.3.1 TXA, oral + TXA, tpical 4 g vs TXA, oral + TXA, topical 5 g

2

220

Mean Difference (IV, Random, 95% CI)

0.03 [‐0.28, 0.34]

29.3.2 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 6 g

2

220

Mean Difference (IV, Random, 95% CI)

‐0.10 [‐0.69, 0.49]

29.3.3 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 7 g

2

220

Mean Difference (IV, Random, 95% CI)

‐0.02 [‐0.45, 0.41]

29.3.4 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 6 g

2

220

Mean Difference (IV, Random, 95% CI)

‐0.15 [‐0.43, 0.12]

29.3.5 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 7 g

2

220

Mean Difference (IV, Random, 95% CI)

‐0.06 [‐0.32, 0.20]

29.3.6 TXA, oral + TXA, topical 6 g vs TXA, oral + TXA, topical 7 g

2

220

Mean Difference (IV, Random, 95% CI)

0.08 [‐0.16, 0.32]

29.4 Risk of experiencing DVT Show forest plot

2

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

29.4.1 TXA, oral + TXA, topical 4 g vs TXA, oral, + TXA, topical 5 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.97 [0.20, 19.31]

29.4.2 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 6 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.00 [0.14, 7.28]

29.4.3 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 7 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.00 [0.14, 7.28]

29.4.4 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 6 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.51 [0.05, 4.97]

29.4.5 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 7 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

0.51 [0.05, 4.97]

29.4.6 TXA, oral + TXA, topical 6 g vs TXA, oral + TXA, topical 7 g

2

220

Peto Odds Ratio (Peto, Fixed, 95% CI)

1.00 [0.14, 7.28]

29.5 Risk of experiencing PE Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

29.5.1 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 5 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.5.2 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 6 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.5.3 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 7 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.5.4 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 6 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.5.5 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 7 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.5.6 TXA, oral + TXA, topical 6 g vs TXA, oral + TXA, topical 7 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.6 Risk of experiencing MI Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

29.6.1 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 5 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.6.2 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 6 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.6.3 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 7 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.6.4 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 6 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.6.5 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 7 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.6.6 TXA, oral + TXA, topical 6 g vs TXA, oral + TXA, topical 7 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.7 Risk of experiencing CVA Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

29.7.1 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 5 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.7.2 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 6 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.7.3 TXA, oral + TXA, topical 4 g vs TXA, oral + TXA, topical 7g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.7.4 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 6 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.7.5 TXA, oral + TXA, topical 5 g vs TXA, oral + TXA, topical 7 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

29.7.6 TXA, oral + TXA, topical 6 g vs TXA, oral + TXA, topical 7 g

2

220

Risk Ratio (M‐H, Random, 95% CI)

Not estimable

Figuras y tablas -
Comparison 29. TXA oral + topical lower dose vs TXA oral + topical higher dose
Comparison 30. TXA IV + TXA, oral days 1 to 2 vs TXA IV + TXA, oral days 1 to 5

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

30.1 Risk of allogeneic blood transfusion Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

30.2 Risk of experiencing DVT Show forest plot

1

Peto Odds Ratio (Peto, Fixed, 95% CI)

Subtotals only

30.3 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 30. TXA IV + TXA, oral days 1 to 2 vs TXA IV + TXA, oral days 1 to 5
Comparison 31. TXA, IV + TXA, IV vs TXA, IV + placebo

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

31.1 Risk of allogeneic blood transfusion Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

31.2 Risk of experiencing MI Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

31.3 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

31.4 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

31.5 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 31. TXA, IV + TXA, IV vs TXA, IV + placebo
Comparison 32. TXA, IV + TXA, IV vs placebo

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

32.1 Risk of allogeneic blood transfusion Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

32.2 Risk of experiencing MI Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

32.3 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

32.4 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

32.5 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 32. TXA, IV + TXA, IV vs placebo
Comparison 33. TXA IV + placebo vs placebo

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

33.1 Risk of allogeneic blood transfusion Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

33.2 Risk of experiencing MI Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

33.3 Risk of experiencing CVA Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

33.4 Risk of experiencing DVT Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

33.5 Risk of experiencing PE Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

Figuras y tablas -
Comparison 33. TXA IV + placebo vs placebo