Scolaris Content Display Scolaris Content Display

Prostanoides y sus análogos para el tratamiento de la hipertensión pulmonar en neonatos

Contraer todo Desplegar todo

Antecedentes

La hipertensión pulmonar persistente del recién nacido (HPPRN) es una entidad patológica que describe una fisiología en la que persiste el aumento de la presión arterial pulmonar. La HPPRN se caracteriza por no adaptarse a una circulación posnatal funcional con una disminución de la resistencia vascular pulmonar. La HPPRN es responsable del deterioro en la oxigenación y una mortalidad y morbilidad neonatal significativa. Los prostanoides y sus análogos pueden ser intervenciones terapéuticas útiles debido a sus efectos vasodilatadores e inmunomoduladores pulmonares.

Objetivos

Objetivo primario

• Determinar la eficacia y la seguridad de los prostanoides y sus análogos (iloprost, treprostinil y beraprost) para disminuir la mortalidad y la necesidad de oxigenación con membrana extracorpórea (OMEC) entre los recién nacidos con HP

Objetivo secundario

• Determinar la eficacia y la seguridad de los prostanoides y sus análogos (iloprost, treprostinil y beraprost) para disminuir la morbilidad neonatal (enterocolitis necrosante [ECN], enfermedad pulmonar crónica [EPC], retinopatía del prematuro [RP], hemorragia intraventricular [HIV], leucomalacia periventricular [LPV], duración de la estancia hospitalaria y duración de la ventilación mecánica) y mejorar los resultados del desarrollo neurológico en neonatos con HP

Comparaciones

• Prostanoides y sus análogos en cualquier dosis o duración utilizados para el tratamiento de la HPPRN versus "tratamiento estándar sin estos agentes", placebo o tratamiento con óxido nítrico inhalado (ONi)

• Prostanoides y sus análogos en cualquier dosis o duración utilizados para tratar la HPPRN poco receptiva al tratamiento como un tratamiento "adicional" al ONi versus ONi solo

Métodos de búsqueda

Se utilizó la estrategia de búsqueda estándar del Grupo Cochrane de Neonatología (Cochrane Neonatal Group) para realizar búsquedas en el Registro Cochrane Central de Ensayos Controlados (CENTRAL; 2018, Número 9), MEDLINE vía PubMed (1966 hasta el 16 de septiembre de 2018), Embase (1980 hasta el 16 de septiembre de 2018) y en el Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1982 al 16 de septiembre de 2018). También se realizaron búsquedas en las bases de datos de ensayos clínicos, las actas de congresos de las Pediatric Academic Societies (1990 al 16 de septiembre de 2018) y las listas de referencias de los artículos recuperados para obtener ensayos controlados aleatorios y ensayos cuasialeatorios. Se estableció contacto con los autores que han publicado en este campo a partir de las listas de referencias de los ensayos clínicos identificados y los archivos personales de los autores de la revisión.

Criterios de selección

Ensayos controlados aleatorios y cuasialeatorios que evaluaran los prostanoides o sus análogos (en cualquier dosis, vía de administración o duración) utilizados en neonatos de cualquier edad gestacional menores de 28 días de edad posnatal para la HPPRN confirmada o presunta.

Obtención y análisis de los datos

Se utilizaron los métodos estándar del Grupo Cochrane de Neonatología para realizar una revisión sistemática y evaluar la calidad metodológica de los estudios incluidos (neonatal.cochrane.org/en/index.html). Tres autores de revisión evaluaron de forma independiente los títulos y los resúmenes de los estudios identificados mediante la estrategia de búsqueda y obtuvieron versiones de texto completo para su evaluación cuando fue necesario. Se diseñaron formularios para la inclusión o la exclusión de ensayos y para la extracción de datos. Se programó utilizar los criterios GRADE para evaluar la calidad de la evidencia.

Resultados principales

No se identificaron ensayos neonatales elegibles que evaluaran los prostanoides o sus análogos como agentes únicos en el tratamiento de la HPPRN.

Conclusiones de los autores

Implicaciones para la práctica

En la actualidad, no hay evidencia que muestre el uso de los prostanoides o sus análogos como vasodilatadores pulmonares y agentes terapéuticos únicos para el tratamiento de la HPPRN en recién nacidos (28 días de edad o menos).

Implicaciones para la investigación

Se debe establecer la seguridad y la eficacia de las diferentes preparaciones, dosis y vías de administración de prostaciclinas y sus análogos en los neonatos. Se necesitan ensayos aleatorios, multicéntricos, bien diseñados y con el poder estadístico adecuado para considerar la eficacia y la seguridad de los prostanoides y sus análogos en el tratamiento de la HPPRN. Estos ensayos deben evaluar los resultados del desarrollo neurológico y los resultados pulmonares a largo plazo además de los resultados a corto plazo.

PICO

Population
Intervention
Comparison
Outcome

El uso y la enseñanza del modelo PICO están muy extendidos en el ámbito de la atención sanitaria basada en la evidencia para formular preguntas y estrategias de búsqueda y para caracterizar estudios o metanálisis clínicos. PICO son las siglas en inglés de cuatro posibles componentes de una pregunta de investigación: paciente, población o problema; intervención; comparación; desenlace (outcome).

Para saber más sobre el uso del modelo PICO, puede consultar el Manual Cochrane.

Resumen en términos sencillos

Prostanoides en la hipertensión pulmonar del recién nacido

Pregunta de la revisión

¿Los prostanoides o sus derivados son efectivos en el tratamiento de la hipertensión pulmonar en los recién nacidos?

Antecedentes

La hipertensión pulmonar persistente del recién nacido (HPPRN) es una afección potencialmente mortal. Antes del nacimiento, la alimentación y el oxígeno para el bebé se obtienen a través de la placenta, por lo que la sangre circula de manera diferente dentro del útero. El bebé que presenta HPPRN no cambia de la circulación fetal a la circulación normal del recién nacido. El flujo sanguíneo se desvía de los pulmones debido a la presión arterial anormalmente alta en las arterias que llevan sangre a los pulmones. Lo anterior disminuye el suministro de oxígeno del cuerpo y causa una lesión significativa al cerebro y a otros órganos.

El principal problema para los recién nacidos es que no se produce un intercambio normal de oxígeno en los pulmones, por lo que el oxígeno no puede ser suministrado al cuerpo. Los prostanoides son metabolitos de ácidos grasos conocidos como "ácido araquidónico". Se ha demostrado que relajan los vasos sanguíneos del lecho pulmonar, lo cual mejora el flujo sanguíneo a los pulmones y ayuda con la oxigenación en humanos y animales. (Los prostanoides son una clase de fármacos que dilatan los vasos sanguíneos pulmonares y pueden ayudar a los bebés con HPPRN. La prostaciclina [PGI₂] y la prostaglandina E₁ [PGE₁] son dos clases de prostanoides que se han utilizado para el tratamiento de la HPPRN en bebés recién nacidos). La seguridad y la efectividad de estos fármacos no han sido establecidas.

Características de los estudios

Se realizaron búsquedas en la bibliografía para obtener estudios que utilizaran prostanoides o sus derivados para el tratamiento de la HPPRN mediante inyección o inhalación. No se encontraron estudios controlados aleatorios en curso o completados. Se encontró un estudio pequeño que finalizó de forma prematura debido al reclutamiento deficiente. En la actualidad, no hay evidencia a favor o en contra del uso de prostanoides en la HPPRN del recién nacido, y se recomiendan estudios futuros para establecer la seguridad y la eficacia de estos fármacos.

Resultados clave

No se encontraron estudios controlados aleatorios en la búsqueda. No se encontraron estudios en curso que podrían responder a la pregunta cuando sus resultados estén disponibles.

Calidad de la evidencia

No fue posible evaluar esta pregunta de revisión debido a la falta de ensayos elegibles.

Authors' conclusions

Implications for practice

Currently, no evidence is available from randomized controlled trials for the use of prostanoids or their analogues as pulmonary vasodilators for the treatment of PPHN (age 28 days or less) as sole therapeutic agents. This review did not study evidence for infants beyond the neonatal period.

Implications for research

This systematic review identified a gap in clinical knowledge that needs to be addressed, including the safety and efficacy of prostanoids and their analogues; their preparations and doses and routes of administration need to be established in neonates. Well‐designed, adequately powered, randomized multi‐centre trials are needed to address the efficacy and safety of prostanoids, their analogues in PPHN, and their effects on short‐term outcomes (e.g. mortality) and long‐term neurodevelopmental and pulmonary outcomes.

Background

Description of the condition

Pulmonary hypertension (PH) in neonates, or persistent pulmonary hypertension of newborns (PPHN), is a serious disorder of the pulmonary vasculature that results from failure of successful postnatal transition of faetal pulmonary circulation. A normal transition includes a decrease in pulmonary vascular resistance (PVR) to 50% of systemic vascular resistance (SVR), a 10‐fold increase in pulmonary blood flow due to expansion and oxygenation of the alveoli, a decrease in the ratio of pulmonary vasoconstrictors to vasodilators, and clamping of the umbilical cord (Teitel 1990; Cornfield 1992; Cabral 2013). In PPHN, the PVR is elevated compared to the SVR; this may be due to low oxygen tension in the lung and an increased ratio of pulmonary vasoconstrictors to vasodilators, or to abnormal function and/or anatomy of the musculature of lung blood vessels, independent of the mechanism(s) for high PVR, blood shunts away from the lungs through a right‐left shunt through the ductus arteriosus or foramen ovale, or both (Lakshminrusimha 1999). PPHN is confirmed by the presence of a right‐left shunt through the ductus arteriosus or foramen ovale, or both, without accompanying heart disease, irrespective of pulmonary artery pressure (Lakshminrusimha 2012; Porta 2012; Cabral 2013; Ivy 2013).

The incidence of PPHN ranges from 0.4 to 2 per 1000 live births, with associated mortality of around 11% (Walsh‐Sukys 2000; Cabral 2013). Several mechanisms for PPHN may be divided into the following categories.

  • Acute pulmonary vasoconstriction as a result of abundance of endogenous pulmonary vasoconstrictors compared to vasodilators; this may be associated with maternal diabetes, antenatal exposure to non‐steroidal anti‐inflammatory medications, elective caesarean section delivery, perinatal asphyxia, meconium aspiration syndrome, pneumonia, sepsis, hyaline membrane disease, or metabolic acidosis.

  • Pulmonary vascular remodeling, which is characterized by pulmonary artery smooth muscle hyperplasia, adventitial thickening, and muscularization of intra‐acinar arteries (e.g. congenital diaphragmatic hernia (CDH), chronic intrauterine hypoxia, antenatal ductal closure).

  • Pulmonary vascular hypoplasia, a condition characterized by decreased pulmonary blood vessels and cross‐sectional area of the pulmonary vascular bed, thereby elevating PVR and causing flow restriction (e.g. CDH, intrathoracic space‐occupying lesions, chronic oligohydramnios).

  • Pulmonary intravascular obstruction characterized by blood flow restriction from conditions such as polycythemia and obstructed anomalous pulmonary venous drainage (Lakshminrusimha 2012; Cabral 2013; Storme 2013).

The gold standard for the diagnosis of PH is cardiac catheterization. However, this invasive procedure is not performed in most patients suspected to have PH, and the diagnosis is based on one or more of the following echocardiographic (Echo) findings: right ventricular systolic pressure/systemic systolic blood pressure ratio > 0.5 ascertained via assessment, interventricular septal flattening, cardiac shunt with bidirectional or right‐to‐left blood flow, and right ventricular hypertrophy in the absence of congenital heart disease (Mourani 2008; Bhat 2012; Mourani 2015).

The only intervention proven to improve clinical outcomes in PPHN is inhaled nitric oxide (iNO), a selective pulmonary vasodilator. Sildenafil is a phosphodiesterase type 5 (PDE5) inhibitor that causes vasodilatation by preventing cyclic guanosine monophosphate (GMP) breakdown in smooth muscle cells. It is commonly used as add‐on therapy to iNO for infants with iNO‐refractory PH, for weaning off iNO therapy, or as primary therapy for PPHN in resource‐limited places where iNO is not available (Lakshminrusimha 2016). However, evidence is insufficient to support recommending this as first‐line or sole therapy for infants with PH (Kelly 2017). This review is focused mainly on prostanoids and their analogues for the treatment of pulmonary hypertension in neonates. Other therapeutic measures for PH in neonates include optimizing lung volumes, providing adequate alveolar recruitment, and optimizing cardiac function. These supportive measures provide the context for treatment with other pulmonary vasodilators such as inhaled nitric oxide (iNO), prostanoids, phosphodiesterase inhibitors such as sildenafil and milrinone, and endothelin antagonists such as bosentan, in addition to general supportive care such as maintenance of temperature and correction of electrolyte and metabolic derangements (Porta 2012; Steinhorn 2012; Cabral 2013; Storme 2013).

Description of the intervention

Prostanoids are metabolites of arachidonic acid that include prostaglandins, prostacyclin (also called prostaglandin I₂, or PGI₂), and thromboxanes. The enzyme cyclo‐oxygenase converts arachidonic acid to an unstable intermediate, prostaglandin G, and various synthase enzymes catalyze reactions leading to the production of various prostanoids including prostacyclin and prostaglandin E (PGE) (Ivy 2010). The prostanoids have numerous biological functions, and many are vasodilators, whereas thromboxanes are vasoconstrictors and are not useful in the treatment of PH. In addition to being a potent pulmonary vasodilator, PGI₂ exerts antithrombotic, antiproliferative, antimitogenic, and immunomodulatory activities (Read 1985; Jones 1997; Wharton 2000; Vane 2003). Prostanoids and their analogues that can be administered by various routes (e.g. intravenous, subcutaneous, by inhalation, by nebulization) are available for clinical use (Keller 2016).

Epoprostenol (Flolan) is the most commonly administered synthetic PGI₂ analogue used to treat pulmonary arterial hypertension in adults (Dorris 2012). Epoprostenol has a very short half‐life (< 5 minutes) that requires stable vascular access for administration as a continuous infusion. Evidence in children and adults with PH suggests that epoprostenol improves pulmonary hemodynamics, exercise capacity, quality of life, and survival (Barst 1994; Barst 1996; Barst 1999; Rosenzweig 1999; Sitbon 2002; Yung 2004). Children usually require a higher dose of epoprostenol than adults to obtain beneficial vasodilatory effects (Ivy 2010; Steinhorn 2012). Intravenous epoprostenol is initiated at a dose of 1 ng/kg/min and is gradually titrated to a dose of up to 50 to 100 ng/kg/min (Ivy 2010; Porta 2012). The most common side effects of intravenous prostacyclin are secondary to systemic vasodilation that leads to systemic hypotension, flushing, diarrhea, headache, jaw pain, alterations in hepatic enzymes, and an erythematous blotchy skin rash (Ivy 2010; Steinhorn 2012). Any interruption of its infusion can result in severe rebound PH and even death (Rubin 1990; Barst 1994; Doran 2008).

Iloprost is a prostacyclin analogue with a half‐life of 20 to 30 minutes, which can be administered intravenously or by inhalation or nebulization (Ewert 2009). Administration by inhalation or nebulization results in selective pulmonary vasodilation and improved ventilation/perfusion mismatch, and limits systemic side effects. However, the need for repeated nebulizations and side effects such as development of reactive airway disease limit its use (Ivy 2008; Ivy 2010; Dorris 2012). The main side effects are increased need for inotropic support among infants, as reported in Janjindamal 2013, and headache and cough in adults (Saji 2016).

Treprostinil is a long‐acting tricyclic benzindene prostacyclin analogue with a half‐life of about three hours that can be administered subcutaneously, intravenously, orally, or by inhalation (McNulty 1993). It is most commonly administered subcutaneously via a microinfusion pump. The main side effect is pain at the site of subcutaneous administration. However, treprostinil has fewer side effects when compared to epoprostenol (Ivy 2007; Doran 2008; Ivy 2010). Common side effects of this medication used in adults are headache, diarrhea, flushing, and jaw pain (Tapson 2013).

Beraprost, an oral prostacyclin analogue that is readily absorbed from the small intestine, is rapidly and almost completely excreted in the urine and the faeces after oral dosing (Olschewski 2004). A retrospective study reports its use in neonates with PH (Nakwan 2011). Hypotension is a common side effect of this medication in infants (Nakwan 2011).

The optimal dose of iloprost and treprostinil for treatment of neonates and infants with PH remains to be determined.

PGE₁ is used widely in neonatology to maintain patency of the ductus arteriosus in cases of duct‐dependent congenital heart disease. Compared to PGI₂, PGE₁ has a shorter half‐life; in addition, PGE₁ exerts bronchodilatory action and anti‐inflammatory effects on the lung. Inhaled PGE₁ has been shown to be a selective pulmonary vasodilator in neonates with hypoxic respiratory failure (Sood 2004), as well as in adults with acute lung injury and pulmonary hypertension (Putensen 1998). In adults, the side effects of PGE₁ include hypotension, nausea, vomiting, and fatigue (Koch 2000).

How the intervention might work

Prostacyclins signal via G‐protein‐coupled cell surface receptors (Gomberg‐Maitland 2008), which when activated stimulate the enzyme adenylate cyclase. The resulting increase in intracellular cyclic AMP (cAMP), opening of Ca²⁺‐activated K⁺ channels, and membrane hyperpolarization lead to relaxation of vascular smooth muscle and vasodilatation (Vane 1995). Pulmonary hypertensive disorders of neonates, children, and adults are associated with a PGI₂‐deficient state, which forms the basis for PGI₂ therapy in PH (Christman 1992; Majed 2012). Among infants, prostacyclins are comparable to iNO in decreasing pulmonary artery pressure and improving oxygenation (Bos 1993; Nakayama 2007). PGE₁ is an effective pulmonary vasodilator in adults with acute respiratory distress syndrome (ARDS), with an action similar to that of iNO (Putensen 1998). Currently, prostacyclin and its analogues and PGE₁ are increasingly used as 'add‐on' therapy for iNO‐refractory PH (Kelly 2002; Ehlen 2003; Chotigeat 2007; De Luca 2007; Levy 2011).

Why it is important to do this review

Pulmonary hypertension is a serious debilitating illness that is associated with high neonatal mortality and may require extracorporeal membrane oxygenation (ECMO) for survival. Hence, optimal management of PH is critical for improving outcomes in high‐risk neonates. Inhaled NO is the only FDA‐approved pulmonary vasodilator for treating PH in infants, but 30% to 50% of neonates with severe PH have a suboptimal response to iNO (Lakshminrusimha 2016;Pedersen 2018). Therefore, systematically analyzing the efficacy and safety of treatment with other pulmonary vasodilators such as prostanoids, phosphodiesterase inhibitors such as sildenafil and milrinone, and endothelin antagonists such as bosentan is necessary to generate an evidence‐based consensus and to inform clinicians of appropriate therapeutic interventions for iNO‐resistant PH. Failure to do such analyses may lead to suboptimal management and increased mortality among these critically ill infants. We aimed to systematically review evidence for the use of prostanoids and their analogues in the treatment of PH in neonates and to identify gaps in knowledge that will inform future clinical trials.

Objectives

Primary objective

  • To determine the efficacy and safety of prostanoids and their analogues (iloprost, treprostinil, and beraprost) in decreasing mortality and the need for ECMO among neonates with PH

Secondary objective

  • To determine the efficacy and safety of prostanoids and their analogues (iloprost, treprostinil, and beraprost) in decreasing neonatal morbidity (necrotizing enterocolitis (NEC), chronic lung disease (CLD), retinopathy of prematurity (ROP), intraventricular hemorrhage (IVH), periventricular leukomalacia (PVL), length of hospital stay, and duration of mechanical ventilation) and improving neurodevelopmental outcomes among neonates with PH

Comparisons

  • Prostanoids and their analogues at any dosage or duration used to treat PPHN versus ‘standard treatment without these agents’, placebo, or iNO therapy

  • Prostanoids and their analogues at any dosage or duration used to treat refractory PPHN as an ‘add‐on’ therapy to iNO versus iNO alone

Métodos

disponible en

Obtención y análisis de los datos

Evaluación del riesgo de sesgo de los estudios incluidos

Results

Description of studies

We did not find any eligible RCTs for inclusion.

Results of the search

We identified one pilot study that used aerosolized iloprost for the treatment of PPHN in extremely preterm infants (Eifinger 2008), along with two pilot randomized multi‐centre phase 2 clinical trials (testing feasibility) that used inhaled PGE₁ and a re‐designed second pilot that coadministered inhaled PGE₁ and iNO (Sood 2014). None of these studies met our inclusion criteria. We excluded these studies because the first one was an observational study in preterm infants between 23 and 25 weeks’ gestation with weight < 1000 g, and the second study was an aggregate of two pilot studies. The first pilot failed to enrol a single patient in four months. The re‐designed second pilot study that coadministered inhaled PGE₁ and iNO was halted for recruitment futility after six months.

Included studies

We found no RCTs.

Excluded studies

We excluded the following studies because they were not completed RCTs. They were incomplete RCTs, case series, or cohort studies.

Sood 2014

The National Institute of Child Health and Human Development (NICHD) Neonatal Research Network conducted two pilot multi‐centre phase 2 RCTs. In the first pilot, late preterm and term infants with neonatal hypoxemic respiratory failure (NHRF) who were not exposed to iNO and had an oxygenation index (OI) between 15 and 25 were randomly assigned to receive two doses of inhaled PGE₁ or placebo. In the second pilot RCT, coadministration of inhaled PGE₁ and iNO was allowed. Infants refractory to iNO received either aerosolized saline or two different doses of PGE₁ for a maximum of 72 hours. We excluded the first pilot study because no infants were enrolled, and the second because it was discontinued for recruitment futility.

Ahmad 2018

Ahmad et al retrospectively reviewed the efficacy of intravenous PGI₂ in 36 PPHN neonates who were refractory to iNO therapy. In this case series without controls, results suggest that PGI₁ decreased oxygenation index (OI) within four hours and prevented death or ECMO. Most non‐responders had pulmonary hypoplasia.

Park 2017

Park and Chung in a case report without controls reported that intravenous treprostinil improved oxygenation within 12 hours for two preterm infants with sepsis who had PPHN refractory to iNO therapy.

Carpentier 2017

Carpentier and colleagues reported the safety and efficacy of subcutaneous treprostinil therapy in 14 term neonates with CDH and severe PH who were refractory to iNO and oral sildenafil therapies. In this case series without controls, treprostinil improved pulmonary blood flow in 12 infants.

Olson 2015

In a case report of short‐term treprostinil use in two term neonates with CDH, improved PPHN and decreased PVR were reported.

Yilmaz 2014

Yilmaz et al did a retrospective chart review assessing the safety and efficacy of inhaled iloprost for treatment of pulmonary hypertension in 15 preterm infants with respiratory distress syndrome and pulmonary hypertension refractory to surfactant and conventional mechanical ventilation. Gestational age and birth weight ranged between 25 and 37 weeks and 780 and 2360 g, respectively. Researchers excluded infants with OI < 25 and those who had congenital heart disease and major anomalies. This retrospective study without controls suggests that iloprost therapy may decrease OI, alveolar‐arterial oxygen difference, and pulmonary arterial pressure, and that it increased partial pressure of oxygen (PaO₂) and peripheral capillary oxygen saturation (SpO₂). No reported side effects are attributable to iloprost.

Nakwan 2011

Nakwan et al retrospectively reviewed the efficacy of enteral beraprost sodium (BPS) as therapy for PPHN in seven neonates who responded poorly to high‐frequency oscillatory ventilation and alkali therapy. This retrospective study suggests that beraprost therapy may have improved OI among included infants without significant adverse effects.

Eifinger 2008

Eifinger and coinvestigators evaluated the efficacy of aerosolised iloprost in four extremely low‐gestational‐age newborns (ELGAN) with PPHN who were spontaneously breathing with assistance from a nasal continuous positive airway. These 23 to 25 weeks’ gestation infants received 44 to 65 inhalations of iloprost at a dose of 2 mcg/kg, starting within the first hour of life for up to seven postnatal days. This small case series without controls suggests that inhaled iloprost may increase the PaO₂/fraction of inspired oxygen (FiO₂) ratio and may decrease oxygen requirements and pulmonary vascular resistance.

Shiyanagi 2008

Shivanagi et al retrospectively compared the efficacy of iNO alone versus iNO + PGE₁ for the management of pulmonary hypertension in 49 CDH patients. Although survival rates were similar in these two groups, surgical repair was performed earlier and the hospital stay was shorter in the iNO alone group than in the iNO + PGE₁ group.

Kelly 2002

A case series of four infants with PPHN suggests improvement in oxygenation with the use of inhaled PGI₂ among those who were refractory to iNO therapy.

Eronen 1997

In a case series without controls, Eronen et al reported the efficacy and safety of intravenous PGI₂ in eight late preterm and term neonates with PPHN. Researchers excluded infants with birth weight < 2500 g and those with congenital heart disease, sepsis, and diaphragmatic hernia. This case series suggests that PGI₂ therapy may decrease pulmonary arterial pressure and may improve oxygenation without the need for ECMO.

Risk of bias in included studies

No trials were included in this review.

Allocation

No trials were included in this review.

Blinding

No trials were included in this review.

Incomplete outcome data

No trials were included in this review.

Selective reporting

No trials were included in this review.

Other potential sources of bias

No trials were included in this review.

Effects of interventions

No trials were included in this review.

Discussion

Summary of main results

We did not find any eligible randomized or quasi‐randomized trials in neonates using prostanoids or their analogues for the treatment of pulmonary hypertension in neonates (PPHN). We also did not identify any ongoing neonatal trials that are potentially eligible for inclusion on completion. We identified one pilot study that was completed (Eifinger 2008), and we found two pilot multi‐centre phase 2 randomized controlled trials (Sood 2014). Effinger et al evaluated the effects of aerosolized iloprost for the treatment of PPHN in extremely preterm infants. The trial included only four extremely low birth weight (ELBW) infants and no term infants. Sood et al attempted to conduct two pilot multi‐centre phase 2 randomized controlled trials, and both were discontinued due to recruitment futility (Sood 2014).

Despite the critical nature of PPHN in neonates, a paucity of evidence‐based therapeutic interventions for this disorder remains. Prostanoids are metabolites of arachidonic acid and have other actions in addition to vasodilatation, including anti‐inflammatory and immunomodulatory effects. The multi‐modal functions of these compounds make them promising therapeutic agents for PPHN; however, they have not been evaluated in randomized clinical trials in neonates. This paucity of evidence needs to be addressed in well‐designed trials.

The major hurdle for the development of neonatal trials is the establishment of safety of these different formulations in neonates, especially in preterm and very low birth weight (VLBW) infants who are already at high risk of other morbidities such as bronchopulmonary dysplasia (BPD), cerebral palsy (CP), and developmental delay. Pilot studies establishing the safety and tolerability of these medications in neonates are paramount before large multi‐centre randomized trials are undertaken.

Overall completeness and applicability of evidence

No trials were included in this review.

Quality of the evidence

We could not assess evidence quality due to lack of eligible trials.

Potential biases in the review process

We used the standard methods of Cochrane Neonatal for conducting this systematic review. We strove to decrease biases in the review process. Two review authors performed literature searches using an inclusive search strategy and combined their results. Our search strategy did not identify any eligible trials for inclusion. We contacted investigators in this field and searched conference proceedings for eligible studies with no success.

Agreements and disagreements with other studies or reviews

We know of no other eligible studies or reviews.