Scolaris Content Display Scolaris Content Display

Bacilo de Calmette‐Guérin intravesical versus mitomicina C para el cáncer de vejiga Ta y T1

Contraer todo Desplegar todo

Antecedentes

Los pacientes con carcinoma urotelial de la vejiga están en riesgo de recidiva y progresión después de la resección transuretral de un tumor de la vejiga (RTUTV). La mitomicina C (MMC) y el bacilo Calmette‐Guérin (BCG) son formas de tratamiento intravesical que pueden compararse para el cáncer de vejiga urotelial sin invasión muscular o de riesgo intermedio o alto (Ta y T1), pero sus méritos relativos son algo inciertos.

Objetivos

Evaluar los efectos del tratamiento intravesical con BCG en comparación con el tratamiento intravesical con MMC para el tratamiento del cáncer de vejiga Ta y T1 de riesgo intermedio y alto en adultos.

Métodos de búsqueda

Se realizó una búsqueda sistemática de la literatura en múltiples bases de datos (CENTRAL, MEDLINE, Embase, Web of Science, Scopus, LILACS), así como en dos registros de ensayos clínicos. Se buscaron las listas de referencias de las publicaciones y las actas de resúmenes relevantes. No se aplicaron restricciones de idioma. La última búsqueda se realizó en septiembre 2019.

Criterios de selección

Se incluyeron ensayos controlados aleatorizados (ECA) que comparaban el BCG intravesical con el tratamiento intravesical con MMC para el cáncer de vejiga urotelial sin invasión muscular.

Obtención y análisis de los datos

Dos autores de la revisión examinaron de forma independiente la bibliografía, extrajeron los datos, evaluaron el riesgo de sesgo y calificaron la calidad de la evidencia según los criterios GRADE por resultado. En los metanálisis, se utilizó el modelo de efectos aleatorios.

Resultados principales

Se identificaron 12 ECA que comparaban el BCG versus MMC en participantes con tumores vesicales sin invasión muscular de riesgo intermedio y alto (publicados desde 1995 hasta 2013). En total, se asignaron al azar a 2932 participantes.

Tiempo transcurrido hasta la muerte por cualquier causa: El BCG puede lograr poca o ninguna diferencia en el tiempo transcurrido hasta la muerte por cualquier causa en comparación con la MMC (cociente de riesgos instantáneos [CRI] 0,97; intervalo de confianza [IC] del 95%: 0,79 a 1,20; participantes = 1132; estudios = 5; 567 participantes en el brazo de BCG y 565 en el brazo de MMC; evidencia de certeza baja). Lo anterior corresponde a 6 muertes menos (40 menos a 36 más) por cada 1000 participantes tratados con BCG a los cinco años. Se disminuyó la certeza de la evidencia en dos niveles debido a las limitaciones y la imprecisión de los estudios.

Eventos adversos graves: 12/577 participantes tratados con BCG experimentaron efectos adversos graves no mortales en comparación con 4/447 participantes en el grupo de MMC. El riesgo relativo (RR) agrupado es 2,31 (IC del 95%: 0,82 a 6,52; participantes = 1024; estudios = 5; evidencia de certeza baja). Por lo tanto, el BCG puede aumentar el riesgo de efectos adversos graves en comparación con la MMC. Lo anterior corresponde a nueve efectos adversos graves más (uno menos a 37 más) con el BCG. Se disminuyó la certeza de la evidencia en dos niveles debido a las limitaciones y la imprecisión de los estudios.

Tiempo hasta la recidiva : El BCG puede reducir el tiempo hasta la recidiva en comparación con la MMC (CRI 0,88; IC del 95%: 0,71 a 1,09; participantes = 2616; estudios = 11; 1273 participantes en el brazo de BCG y 1343 en el brazo de MMC; evidencia de certeza baja). Lo anterior corresponde a 41 recidivas menos (104 menos a 29 más) con el BCG a los cinco años. Se disminuyó la certeza de la evidencia en dos niveles debido a las limitaciones del estudio, la imprecisión y la inconsistencia.

Tiempo transcurrido hasta la progresión: El BCG puede lograr poca o ninguna diferencia en el tiempo transcurrido hasta la progresión en comparación con la MMC (CRI 0,96; IC del 95%: 0,73 a 1,26; participantes = 1622; estudios = 6; 804 participantes en el brazo de BCG y 818 en el brazo de MMC; evidencia de certeza baja). Lo anterior corresponde a cuatro progresiones menos (29 menos a 27 más) con el tratamiento con BCG a los cinco años. Se disminuyó la certeza de la evidencia en dos niveles debido a las limitaciones y la imprecisión de los estudios.

Calidad de vida: se encontraron datos muy limitados para estos resultados y no fue posible estimar el tamaño del efecto.

Conclusiones de los autores

Sobre la base de los hallazgos, el BCG puede reducir el riesgo de recidiva con el transcurso del tiempo, aunque los Intervalos de Confianza incluyen la posibilidad de que no haya diferencias. Es posible que no tenga ningún efecto sobre el riesgo de progresión o el riesgo de muerte por cualquier causa a lo largo del tiempo. El BCG puede causar más eventos adversos graves, aunque los intervalos de confianza incluyen una vez más la posibilidad de que no haya diferencias. No fue posible determinar el impacto en la calidad de vida. La certeza de la evidencia fue consistentemente baja, debido a las preocupaciones que incluyen el posible sesgo de selección, el sesgo de realización debido a la falta de cegamiento en estos estudios, y la imprecisión.

PICO

Population
Intervention
Comparison
Outcome

El uso y la enseñanza del modelo PICO están muy extendidos en el ámbito de la atención sanitaria basada en la evidencia para formular preguntas y estrategias de búsqueda y para caracterizar estudios o metanálisis clínicos. PICO son las siglas en inglés de cuatro posibles componentes de una pregunta de investigación: paciente, población o problema; intervención; comparación; desenlace (outcome).

Para saber más sobre el uso del modelo PICO, puede consultar el Manual Cochrane.

Resumen en términos sencillos

Bacilo de Calmette‐Guérin o mitomicina C para el tratamiento del cáncer de vejiga sin invasión del músculo

Pregunta de la revisión

En los pacientes con cáncer del revestimiento interno de la vejiga, ¿cómo se comparan dos medicamentos diferentes, denominados Bacilo de Calmette‐Guérin (BCG) y mitomicina (MMC), que se introducen en la vejiga después de la extracción del tumor?

Antecedentes

Los tumores de las capas superficiales de la vejiga, denominados cáncer de vejiga sin invasión del músculo, se tratan introduciendo pequeños instrumentos en la vejiga para eliminarlos al ras. Este procedimiento funciona bien, aunque estos tumores a menudo vuelven a aparecer. Cuando vuelven, pueden ser más agresivos que antes y presentarse en un estadio más avanzado. Los diferentes tipos de medicamentos que se introducen luego en la vejiga pueden dar lugar a que lo anterior ocurra con menor frecuencia, de los cuales el BCG y la MMC son los que se utilizan con más frecuencia. No existe seguridad en cuanto a cómo se comparan los dos tratamientos cuando se consideran los efectos deseados y no deseados.

Características de los estudios

El contenido de esta revisión está vigente hasta septiembre 2019. Solo se incluyeron estudios en los que el tratamiento que recibirían los pacientes del estudio se determinó al azar.

Resultados clave

Se encontraron 12 estudios que incluían a 2932 personas que coincidían con el tema de la revisión.

Se encontró que el BCG puede dar lugar a un riesgo similar de muerte por cualquier causa con el transcurso del tiempo (evidencia de calidad baja), aunque puede aumentar el riesgo de efectos no deseados graves (evidencia de calidad baja); sin embargo, es posible que no logre una diferencia.

El BCG puede reducir el riesgo de que el tumor regrese con el tiempo (evidencia de calidad baja), aunque es posible que no logre una diferencia.

El BCG puede tener poco o ningún efecto sobre el riesgo de que el tumor empeore con el tiempo (evidencia de calidad baja).

No se encontraron datos sobre la calidad de vida.

Calidad de la evidencia

La calidad de la evidencia se calificó consistentemente como baja, lo que significa que la confianza es limitada y que la investigación futura puede cambiar estos hallazgos.

Conclusiones de los autores

disponible en

Implicaciones para la práctica

Las decisiones de tratamiento y el asesoramiento de los pacientes en cuanto al cáncer de vejiga de riesgo intermedio y alto en la elección del Bacilo de Calmette‐Guérin (BCG) o la mitomicina C (MMC) se basan en evidencia de certeza baja. El BCG puede mejorar el tiempo hasta la recidiva, pero puede no afectar el tiempo transcurrido hasta la muerte por cualquier causa o el tiempo transcurrido hasta la progresión. Los eventos adversos graves pueden incrementarse al igual que los eventos adversos menores. No hay datos significativos sobre la calidad de vida informada por los pacientes.

Implicaciones para la investigación

Se justifica la realización de ensayos controlados aleatorizados de calidad alta en pacientes con cáncer de vejiga de riesgo intermedio y alto, con una asignación al azar y un cegamiento adecuados. Deben considerar la calidad de vida, los efectos adversos y el tiempo transcurrido hasta la progresión para proporcionar resultados más fiables para esta población de pacientes.

Summary of findings

Open in table viewer
Summary of findings for the main comparison. Bacillus Calmette‐Guérin (BCG) compared to mitomycin C (MMC) for Ta and T1 bladder cancer

BCG compared to MMC for Ta and T1 bladder cancer

Participants: Adults (≥18 years) with intermediate and high‐risk non‐muscle invasive urothelial bladder cancer

Setting: hospital

Intervention: BCG

Comparison: MMC

Outcomes

№ of participants
(studies)

Certainty of the evidence
(GRADE)

Relative effect
(95% CI)

Anticipated absolute effects* (95% CI)

Risk with MMC

Risk difference with BCG

Time to death from any cause (absolute effect size estimates based on event rate at 5 years).

Follow‐up: range 3.5–20 years

1132
(5 RCTs)

⊕⊕⊝⊝
Lowa,b

HR 0.97
(0.79 to 1.20)

Study population

210 per 1000c

6 fewer per 1000
(40 fewer to 36 more)

Serious adverse effects

Follow‐up: range 1.6–10 years

1024
(5 RCTs)

⊕⊕⊝⊝
Lowa,b

RR 2.31
(0.82 to 6.52)

Study population

7 per 1000

9 more per 1000
(1 fewer to 37 more)

Time to recurrence (absolute effect size estimates based on event rate at 5 years)

Follow‐up: range 3–20 years

2616
(11 RCTs)

⊕⊝⊝⊝
Lowa,b,d

HR 0.88
(0.71 to 1.09)

Study population

450 per 1000e

41 fewer per 1000
(104 fewer to 29 more)

Time to progression (absolute effect size estimates based on event rates at 5 years)

Follow‐up: range 1.6–20 years

1622
(6 RCTs)

⊕⊕⊝⊝
Lowa,b

HR 0.96
(0.73 to 1.26)

Study population

112 per 1000c

4 fewer per 1000
(29 fewer to 27 more)

Quality of life

(measured using EORTC QLQ‐BLS24 at baseline and after each installation weekly for 6 weeks)

110
(1 RCT)

Not estimablef

Not estimable

There was no evidence of a difference between BCG and MMC groups, except for abdominal bloating and flatulence, which was worse in the BCG group.f

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; HR: hazard ratio; RCT: randomised controlled trial; RR: risk ratio.

GRADE Working Group grades of evidence
High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aDowngraded one level for study limitations: concerns with performance or detection bias (or both), as well as with regard to allocation concealment and selective outcome reporting.

bDowngraded one level for imprecision: 95% CI was consistent with the possibility for important benefit and large harm.

cThe assumed risk was based on five‐year mortality rate from Gardmark 2007.

dDowngraded one level for inconsistency: variation in point estimates or substantial heterogeneity among studies (or both).

eThe assumed risk is based on five‐year mortality rate based on Ojea 2007b

fMore detailed results on quality of life were not available (conference abstract only)

Antecedentes

disponible en

Descripción de la afección

El cáncer de la vejiga urinaria afecta a hombres y mujeres en todo el mundo, aunque es más común en el mundo occidental. El cáncer de vejiga es el cuarto cáncer más común diagnosticado en los hombres en los Estados Unidos y Europa. Está situado en la séptima y octava posición en cuanto a la mortalidad por cáncer en los Estados Unidos (Siegel 2018) y Europa, respectivamente (Ferlay 2013). El tumor aparece con una frecuencia tres o cuatro veces mayor en los hombres que en las mujeres (Fajkovic 2011). Uno de cada 26 hombres desarrollará cáncer de vejiga en su vida (Siegel 2018). Las tasas de supervivencia general a cinco años en Europa son de alrededor del 68% (De Angelis 2014), pero se ha observado que las mujeres se presentan a la consulta con una enfermedad más avanzada y tienen un peor pronóstico (Shariat 2010). La edad, el consumo de tabaco y la exposición a sustancias cancerígenas se han informado como factores de riesgo potenciales (Burger 2013).

Aproximadamente el 75% de los casos recién diagnosticados corresponden a cáncer de vejiga sin invasión muscular, en los que el tumor solo afecta la membrana mucosa o la capa submucosa (también llamado carcinoma urotelial de vejiga sin invasión muscular) (Babjuk 2018). Aproximadamente el 25% de los pacientes diagnosticados con cáncer de vejiga presentan enfermedad con invasión del músculo y tendrán un pronóstico deficiente incluso después de recibir tratamiento. La prevalencia del cáncer de vejiga es alta, ya que el tumor recurre con frecuencia incluso después del tratamiento inicial y requiere la monitorización clínica a largo plazo. Por lo tanto, este tipo de cáncer es muy molesto para los afectados, causa una morbilidad considerable y afecta la calidad de vida (Griffiths 2013).

En términos económicos, el cáncer de vejiga tiene el mayor coste de tratamiento por paciente en el transcurso de la vida. En comparación con todos los demás tipos de cáncer, los gastos por paciente oscilan entre USD 89 287 a USD 202 203 por paciente desde el diagnóstico hasta la muerte (Sievert 2009), debido a los gastos médicos altos en el diagnóstico, el tratamiento y la vigilancia continua mediante técnicas invasivas (Svatek 2014). La enfermedad es muy costosa para el sistema de salud y para la sociedad, debido a la pérdida de trabajo y la pérdida de productividad.

Descripción de la intervención

Aunque la resección transuretral de la vejiga (RTUV) puede erradicar los tumores de vejiga Ta y T1; se recomienda el tratamiento intravesical en la mayoría de los pacientes con tumores de vejiga sin invasión muscular de riesgo intermedio o alto (Ta, T1 y Cis) debido a la probabilidad alta de recidiva del tumor (alrededor del 80%) o de progresión a una enfermedad que invade el músculo (alrededor del 45%) (Babjuk 2018; van Rhijn 2009). El tratamiento incluye inmunoterapia con el Bacilo Calmette‐Guérin (BCG) o quimioterapia con citotóxicos, de los cuales el más común es la mitomicina C (MMC) (Ragonese 2016). Otros citotóxicos intravesicales incluyen gemcitabina, epirrubicina y doxorubicina. Los tratamientos intravesicales se utilizan para prevenir la recidiva del cáncer después del tratamiento primario, y han demostrado ser efectivos durante los últimos años de utilización regular (Abern 2013; Perlis 2013; Sylvester 2004). Después de la instilación de agentes intravesicales en la vejiga, la solución debe ser retenida durante 1,5 a 2 horas. Se anima al paciente a que cambie de posición cada 30 a 45 minutos para permitir que la solución intravesical entre en contacto con todas las partes de la pared de la vejiga. Después de dicho periodo, el paciente debe evacuar para eliminar la solución.

El BCG se suministra como un polvo liofilizado que se diluye con solución salina antes de ser instilado en la vejiga. Existen varias cepas diferentes disponibles de BCG. La cepa de BCG original fue desarrollada en el Instituto Pasteur a partir de una cepa atenuada de Mycobacterium bovis. Se realizaron subcultivos y se enviaron a otras partes del mundo: Las subcepas Tice y TheraCys están disponibles en los Estados Unidos, mientras que las subcepas Tokio 172 y la de Dinamarca están disponibles fuera de los Estados Unidos. Hay alguna evidencia de que las diferentes cepas pueden diferir en su eficacia clínica, aunque esta evidencia todavía es limitada (Rentsch 2014; Sengiku 2013). Las contraindicaciones para el tratamiento con BCG son la hematuria grave, el cateterismo traumático, la resección reciente de un tumor de vejiga (menos de dos semanas después de una RTUB), la incontinencia urinaria, la infección urinaria sintomática y la inmunosupresión. Podría ocurrir sepsis por BCG, que se presenta como una enfermedad aguda similar a la tuberculosis. Los signos y síntomas de una septicemia potencialmente mortal son fiebre de grado alto, hepatotoxicidad, dificultad respiratoria, escalofríos, inestabilidad hemodinámica y cambios en el estado mental. Los efectos adversos locales pueden incluir síntomas de cistitis, hematuria, prostatitis granulomatosa sintomática y epidídimoorquitis.

El polvo de MMC se diluye con solución salina y se administra a través de un catéter directamente en la vejiga. La dosis recomendada depende de las características del paciente y del tumor, como la edad y el tratamiento citostático previo. Aunque el cáncer de vejiga ocurre principalmente en personas mayores, solo hay datos limitados disponibles sobre el uso de MMC en personas mayores de 65 años de edad. La MMC fue aislada del Streptomyces caespitosus o Streptomyces lavendulae en la década de 1950. Los nombres comerciales son Amétycine, Mitem, Urocin y Mito‐medac, así como otros productos genéricos diversos. Las contraindicaciones para el uso de MMC son: función reducida de la médula ósea; predisposición a la hemorragia; daño al hígado, los pulmones o los o riñones; salud general deficiente; e hipersensibilidad contra la MMC; así como hematuria, perforación de la vejiga, e infección del tracto urinario. Se absorbe sistémicamente en un grado muy limitado cuando se administra por vía intravesical, y los efectos adversos sistémicos son poco frecuentes. Los efectos adversos comunes podrían incluir cistitis, disuria, nicturia, polaquisuria, hematuria, reacciones locales de la pared de la vejiga y reacciones alérgicas de la piel. La administración de MMC con hipertermia local inducida por microondas para mejorar la efectividad del tratamiento todavía es experimental, con evidencia limitada pero con resultados prometedores (Lammers 2011; Slater 2014). Además, el uso de una corriente eléctrica para mejorar la administración de agentes intravesicales (administración de fármacos electromotrices) ha sido objeto de investigación. La evidencia reciente sugiere un retraso en el tiempo hasta la recidiva en pacientes seleccionados con cáncer de vejiga sin invasión muscular, mientras que aún no se conoce el efecto acerca de su impacto sobre los efectos adversos graves (Jung 2017). En la actualidad se están examinando otros dispositivos de calentamiento en ensayos clínicos.

El tipo de tratamiento intravesical que se elige para cada paciente depende del grupo de riesgo del paciente (Babjuk 2018). Mientras que para los tumores de riesgo bajo (primarios, solitarios, Ta G1, menos de 3 cm, sin carcinoma in situ [Cis]) es suficiente una única instilación inmediata de quimioterapia, los tumores de riesgo intermedio (entre la categoría de riesgo bajo y alto) necesitarán instilaciones adicionales de quimioterapia (es decir, MMC) o inmunoterapia (es decir, BCG) durante un año (referencia a la guía actual de la European Association of Urology [EAU]). Para los tumores de riesgo alto (T1 o G3 o Cis o múltiples, recidivantes, de más de 3 cm Ta G1‐2, o una combinación de los mismos) las instilaciones de BCG durante uno a tres años pueden ser más efectivas para prevenir la recidiva del tumor que la RTUB sola o la RTUB y la quimioterapia, aunque los pacientes experimentan significativamente más efectos adversos (Malmström 2009a; Shang 2011, guía actual de la EAU). Todavía hay resultados contradictorios con respecto al efecto beneficioso del BCG sobre la MMC en la progresión tumoral (Böhle 2004; Malmström 2009a; Shelley 2010; Sylvester 2004).

De qué manera podría funcionar la intervención

El mecanismo de acción del tratamiento con BCG no se comprende con claridad. El efecto terapéutico podría ser el resultado de una respuesta inmunológica contra los antígenos de superficie del BCG que reaccionan de forma cruzada con los antígenos de los tumores de vejiga. Los organismos del BCG ingresan en los macrófagos, donde inducen el mismo tipo de reacción histológica e inmunológica que se observa en los pacientes con tuberculosis. El tratamiento con BCG también ha demostrado tener una predilección por el ingreso en las células cancerosas de la vejiga, donde las proteínas se descomponen y los fragmentos se combinan con antígenos de histocompatibilidad y se muestran en la superficie de la célula. Lo anterior induce una respuesta de citoquinas y citotoxicidad directa de célula a célula, que se dirige a estas células para su destrucción. La respuesta general al BCG es limitada si el paciente presenta inmunosupresión. Por lo general el tratamiento de inducción con BCG (tratamiento primario) se administra en esquemas de seis semanas. Se utilizan muchos esquemas de mantenimiento diferentes (después del tratamiento), que varían desde un total de 10 instilaciones administradas a intervalos de 18 semanas hasta 27 instilaciones administradas durante un período de tres años (Lamm 2000: Packiam 2017).

La MMC es una sustancia mutagénica y se utiliza como agente quimioterapéutico. El mecanismo del efecto se basa preliminarmente en la alquilación del ADN con la correspondiente inhibición de la síntesis de ADN. El grado de daño se correlaciona con el efecto clínico y es menor en las células resistentes que en las sensibles. El tiempo de vida media biológica es corto, de unos 40 a 50 minutos. Una instilación única e inmediata de quimioterapia es efectiva y reduce la tasa de recidiva en un 12% a un 13% en comparación con la RTUB sola (Abern 2013; Perlis 2013; Sylvester 2004). El agente actúa destruyendo las células tumorales intravesicales libres resultantes de la RTUV y mediante un efecto ablativo sobre las células tumorales residuales en el lugar de la resección (Soloway 1980). Es necesaria una instilación inmediata, ya que las células tumorales libres que quedan en la vejiga son implantadas y cubiertas por la matriz extracelular en pocas horas (Pode 1986). Los factores pronósticos del paciente indican la necesidad adicional de instilaciones intravesicales adyuvantes (quimioterapia o inmunoterapia). Todavía existe controversia sobre qué grupos de pacientes podrían beneficiarse más a partir de una instilación de quimioterapia inmediata (Abern 2013).

Por qué es importante realizar esta revisión

Aunque se han realizado varias revisiones sistemáticas y metanálisis sobre este tema (Böhle 2003; Shelley 2010), todavía existe debate sobre qué tratamiento, MMC o BCG, es más efectivo y presenta menos toxicidad. Además, aún no está claro cuál podría ser la dosis y el programa de tratamiento óptimos, así como la cuestión de qué pacientes se benefician más con uno u otro agente.

Una revisión sistemática realizada por Shelley y colegas identificó más de 80 ensayos controlados aleatorizados (ECA) y 11 metanálisis que estudiaron la efectividad de diferentes tratamientos intravesicales en el cáncer de vejiga sin invasión muscular (Shelley 2010). Aunque en su conclusión general la administración intravesical de BCG se consideró superior a la quimioterapia en cuanto a la respuesta completa y la supervivencia libre de enfermedad, no hubo evidencia concluyente que mostrara la superioridad de un agente sobre el otro en términos de supervivencia general.

En la comparación directa del BCG versus MMC, el BCG pareció ser superior a la MMC en cuanto a la prevención de la recidiva tumoral en pacientes con cáncer de vejiga de alto riesgo y la reducción del riesgo de progresión tumoral en los tumores de riesgo intermedio y alto, aunque pareció ser más tóxico (Shang 2011; Shelley 2010). No hubo diferencias significativas en la progresión de la enfermedad y la supervivencia general en esta población de pacientes. En los grupos de riesgo intermedio, la MMC y el BCG podrían ser igualmente efectivos para prevenir la recidiva del cáncer (Shelley 2010).

Las diferencias en los hallazgos entre los estudios primarios son el resultado de la complejidad clínica de la enfermedad: la dosis, la frecuencia y la duración pueden variar de forma considerable, también puede diferir el tiempo entre la RTUB y el tratamiento intravesical, así como las características de los pacientes, la duración del seguimiento y el poder estadístico del estudio. Todos estos factores complican y limitan el valor de las conclusiones que se pueden establecer. Aún no se conoce el programa óptimo para la inmunoterapia con BCG, en cuanto al número de inducciones y la frecuencia y duración del mantenimiento.

La primera revisión Cochrane que trató este tema se publicó en 2003 (Shelley 2003). Esta revisión Cochrane sirve para actualizar la revisión anterior, incluye los hallazgos nuevos de los resultados de ECA recientes y considera análisis de subgrupos nuevos que incorporan los nuevos desarrollos y la práctica clínica en este campo. La metodología se adaptó a los nuevos estándares de informe y realización de las revisiones Cochrane. Por lo tanto, esta revisión sistemática proporciona la mejor evidencia disponible que existe hasta la fecha e incluye una evaluación independiente del "Riesgo de sesgo" y una calificación de la certeza de acuerdo con la metodología GRADE.

Objetivos

disponible en

Evaluar los efectos del tratamiento intravesical con Bacilo de Calmette‐Guérin (BCG) comparado con el tratamiento intravesical con mitomicina C (MMC) para el tratamiento en adultos con cáncer de vejiga sin invasión muscular de riesgo intermedio y alto.

Métodos

disponible en

Criterios de inclusión de estudios para esta revisión

Tipos de estudios

Se consideraron para la inclusión todos los ensayos clínicos aleatorizados (ECA), los ensayos de grupos paralelos o cuasialeatorizados que comparaban el tratamiento con BCG intravesical versus con MMC intravesical para el cáncer de vejiga urotelial sin invasión muscular. No se excluyeron los estudios sobre la base del estado de la publicación o el idioma de la misma. También se consideraron para su inclusión los estudios que incluían otros agentes intravesicales, pero que tenían grupos de tratamiento que permitían una comparación del BCG y la MMC, cuando los resultados se informaban por separado. Se excluyeron los estudios que comparaban el BCG con placebo/ninguna intervención o MMC versus placebo/ninguna intervención. No se identificaron ensayos cruzados (cross‐over).

Tipos de participantes

Esta revisión consideró los estudios que informaban sobre adultos (de 18 años de edad o más) con cáncer de vejiga urotelial sin invasión muscular de riesgo intermedio y alto (Sobin 2009). También se consideraron los estudios que incluían a participantes con Cis de la vejiga. Cuando los estudios también incluían a participantes con cáncer de vejiga con invasión muscular, solo se consideraron los datos del subconjunto de participantes con cáncer de vejiga sin invasión muscular, cuando dichos estudios presentaban datos estratificados para los pacientes con cáncer de vejiga sin invasión muscular de riesgo intermedio y alto.

Las personas elegibles fueron las que estaban en riesgo intermedio o alto de recidiva o progresión del tumor, o ambos. Cuando los estudios también incluían a participantes con riesgo bajo de recidiva o progresión tumoral, se evaluaron nuevamente los datos del subconjunto de participantes con riesgo intermedio o alto (o ambos) cuando dichos datos se informaban por separado.

El riesgo de recidiva y progresión se definió utilizando las guías de la EAU (Babjuk 2018), que hacen referencia a las tablas de riesgo de la European Organisation for Research and Treatment of Cancer (EORTC) (Sylvester 2006):

  • el riesgo bajo se define como: primario, solitario, Ta G1 (neoplasia urotelial papilar de potencial maligno bajo, de grado bajo), menos de 3 cm, sin Cis;

  • los tumores de riesgo intermedio se definen como: todos los tumores entre las categorías de riesgo bajo y alto;

  • de alto riesgo se refiere a cualquiera de los cuatro requisitos siguientes: Tumores T1; tumor G3 (grado alto) de grado alto; Cis; tumores múltiples, recidivantes y grandes (más de 3 cm) Ta G1G2/tumores de grado bajo (todas estas condiciones deben estar presentes).

De acuerdo con la última guía clínica (Babjuk 2018), también se incluyó a los pacientes en mayor riesgo de recidiva/progresión que se definió como tumores T1 G3 asociados con Cis vesical concurrente o T1 G3 recidivante (o ambos), T1 G3 con Cis en la uretra prostática, histología atípica del carcinoma urotelial o invasión linfovascular.

Tipos de intervenciones

El tratamiento intravesical con agente único con BCG o MMC para la prevención o el tratamiento del cáncer de vejiga urotelial sin invasión muscular de riesgo intermedio y alto después de la RTUB fue elegible para la inclusión. Se consideró apropiado incluir el BCG en cualquier esquema o de cualquier cepa, así como cualquier dosis o esquema de MMC.

Tipos de medida de resultado

Para la inclusión en el estudio, no se utilizó la medición de los resultados evaluados en esta revisión como criterio de elegibilidad.

Resultados primarios

  • Tiempo transcurrido hasta la muerte por cualquier causa (definido como el tiempo desde la fecha de la aleatorización hasta la fecha de la muerte).

  • Efectos adversos graves (los efectos adversos se consideraron graves cuando requirieron hospitalización, fueron potencialmente mortales o fueron informados como graves por los autores de la publicación original).

Resultados secundarios

  • Tiempo hasta la recidiva (definido como la fecha desde la aleatorización hasta la fecha del diagnóstico de la recidiva o la muerte).

  • Tiempo transcurrido hasta la progresión (definido como la fecha desde la aleatorización hasta la fecha de diagnóstico de la progresión, en estadio o grado o la muerte).

  • Efectos adversos (como disuria, micción dolorosa, hematuria, cistitis, nicturia, polaquisuria o reacciones alérgicas).

  • Calidad de vida (medida con instrumentos validados).

Resultados principales de la tabla "Resumen de los hallazgos"

La tabla "Resumen de los hallazgos" incluyó los siguientes resultados.

  • Tiempo transcurrido hasta la muerte por cualquier causa.

  • Eventos adversos graves.

  • Tiempo transcurrido hasta la recidiva.

  • Tiempo transcurrido hasta la progresión.

  • Calidad de vida.

Los hallazgos y la calidad de la evidencia disponible se informaron de acuerdo a la metodología GRADE (Schünemann 2011). Para los resultados del tiempo transcurrido hasta el evento, se utilizó la evidencia publicada para estimar el riesgo inicial (ver tabla 1 de Resumen de los resultados).

Métodos de búsqueda para la identificación de los estudios

We performed a comprehensive literature search with no restrictions on the language of publication or publication status.

Búsquedas electrónicas

We applied no date or language restrictions.

We searched the following databases: Cochrane Central Register of Controlled Trials (CENTRAL; included in the Cochrane Library; 2018, Issue 11) latest issue (Appendix 1), MEDLINE and MEDLINE in Process via Ovid from 1946 to 13 November 2017 (Appendix 2), Embase via Ovid from 1974 to 13 November 2017 (Appendix 3), Scopus from 1966 to 16 November 2017 (Appendix 4), Web of Science (Thomson Reuters Web of Knowledge) from 1900 to 16 November 2017 (Appendix 5), and LILACS from 1982 to 16 November 2017 (Appendix 6).

The electronic search were complemented by a search of the World Health Organization International Clinical Trials Registry Platform Search Portal (WHO ICTRP Search Portal; www.who.int/ictrp/en/, no restricted time period) (Appendix 7) and ClinicalTrials.gov (clinicaltrials.gov/, no restricted time period) (Appendix 8) to identify further completed or ongoing trials.

We updated the searches for all relevant databases shortly before publication of the review (23th September 2019) and screened the results for further potentially eligible studies. We documented and reported the search process in detail.

Búsqueda de otros recursos

We manually screened the reference lists of included articles to identify potentially relevant citations. We searched the American Society of Clinical Oncology (ASCO) database for grey literature (2011 to 2018; meetinglibrary.asco.org/). We contacted authors to request missing information.

Obtención y análisis de los datos

In this review, we followed the methodological recommendations given by Cochrane (Higgins 2011a).

Selección de los estudios

Two review authors (SS and RD or DD) independently reviewed titles and abstracts of identified references according to the predefined inclusion criteria. Two review authors (SS and RD or DD) independently assessed the full texts of all potentially relevant studies. We resolved disagreements by discussion or, if necessary, with the help of a third review author (JJM or FK). We recorded the reasons for study exclusion in the Characteristics of excluded studies table. We identified duplicate publication of studies by checking potentially relevant references for author names, locations and settings, details of interventions, numbers of participants, baseline data, study date and duration of the study. We used EndNote software to manage the references (endnote.com/).

Extracción y manejo de los datos

Two review authors (SS and DD) independently extracted relevant data on study characteristics, participant population and study setting, follow‐up time, tumour characteristics and relevant comorbidities, intervention characteristics on agent and administration, study methodology, study results and author conclusion using a data extraction form. A third review author (KJ) checked the extracted outcome data relevant to this review as needed for calculation of summary statistics and measures of variance. The data extraction form was based on the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011a), and was pilot tested before routine use. The review authors resolved any potential disagreement by consensus or through discussion with a third review author (JJM or FK). In addition, when necessary, we contacted the original investigators. We collected and used the most detailed numerical data in order to facilitate similar analyses of included studies. We displayed the information in the Characteristics of included studies table.

Dealing with duplicate and companion publications

In the event of duplicate publications, companion documents or multiple reports of a primary study, we maximised yield of information by mapping all publications to unique studies and collating all available data. We used the most complete dataset aggregated across all known publications. In case of doubt, we gave priority to the publication reporting the longest follow‐up associated with our primary or secondary outcomes

Evaluación del riesgo de sesgo de los estudios incluidos

For the 'Risk of bias' assessment, we used the Cochrane 'Risk of bias' tool for RCTs (Higgins 2011b). Two review authors (SS and DD or LMK) independently assessed all included studies for potential risk of bias. We resolved discrepancies through discussion or by contacting a third review author (JJM or FK). We assessed the following domains.

  • Random sequence generation (selection bias).

  • Allocation concealment (selection bias).

  • Blinding of participants and personnel (performance bias).

  • Blinding of outcome assessment (detection bias).

  • Incomplete outcome data (attrition bias).

  • Selective reporting (reporting bias).

  • Other sources of bias.

We judged risk of bias domains as 'low risk', 'high risk' or 'unclear risk' and evaluated individual bias items as described in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011b). We presented a 'Risk of bias' summary figure to illustrate these findings.

We further summarised the risk of bias across domains for each outcome in each included study, as well as across studies and domains for each outcome.

For performance bias (blinding of participants and personnel), we considered all outcomes similarly susceptible to performance bias and assessed them in one group.

For detection bias (blinding of outcome assessment), we grouped outcomes as susceptible to detection bias (subjective) or not susceptible to detection bias (objective). Objective outcomes: time to death from any cause. Subjective outcomes: serious adverse effects, time to recurrence, time to progression, adverse effects and quality of life.

We assessed attrition bias (incomplete outcome data) on a per‐outcome basis and created groups of outcomes based on similar reporting characteristics. Time‐to‐event outcomes: time to death from any cause, time to recurrence, time to progression; adverse effects outcomes: serious adverse effects, adverse effects; quality‐of‐life outcomes.

Medidas del efecto del tratamiento

We extracted hazard ratios (HRs) with 95% confidence intervals (CIs) for time to event outcomes (time to recurrence, time to progression and time to death from any cause). Adjusted HRs based on multivariate analysis were preferred to univariate HRs. An indirect estimation method was used to calculate HRs and their variances if they were not reported (Parmar 1998; Tierney 2007; Williamson 2002). We expressed results of dichotomous outcomes (e.g. serious adverse effects, adverse effects) as risk ratios (RRs) with 95% CIs, results of continuous outcomes (e.g. quality of life) as mean difference (MD) with corresponding 95% CI, unless different studies use different measures to assess the same outcome, in which case we expressed data as standardised mean differences (SMDs) with 95% CIs.

Cuestiones relativas a la unidad de análisis

The unit of analysis was the individual participant. In the event we identified trials with more than two intervention groups for inclusion in the review, we handled these in accordance with guidance provided in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011a).

Manejo de los datos faltantes

We contacted the corresponding author of the original publication to request any missing data. We did not impute missing data and considered only the available data in the analyses. We did not conduct best‐case and worst‐case scenarios.

Evaluación de la heterogeneidad

We examined statistical heterogeneity using the I² statistic. The thresholds for interpretation of the I² statistic are in accordance with the definitions presented in the Cochrane Handbook for Systematic Reviews of Interventions (Deeks 2011):

  • 0% to 40% might not be important;

  • 30% to 60% may represent moderate heterogeneity;

  • 60% to 90% may represent substantial heterogeneity;

  • 75% to 100% considerable heterogeneity.

Subgroup analyses was done for the examination of clinical heterogeneity. For details, see Subgroup analysis and investigation of heterogeneity.

Evaluación de los sesgos de notificación

To account for possible publication bias, we conducted a combination of electronic and manual searches of multiple databases without language restrictions. In case of sufficient data, we created funnel plots to assess the likelihood of publication bias. Several explanations can be offered for the asymmetry of a funnel plot, including true heterogeneity of effect with respect to trial size, poor methodological design (and hence bias of small trials) and publication bias. Therefore, we interpreted results with caution (Sterne 2011).

Síntesis de los datos

We performed data synthesis using Review Manager 5 software provided by Cochrane (Review Manager 2014).

In the meta‐analyses, we used the random‐effects model that assumes that the treatment effect among studies varies and, therefore, incorporates the heterogeneity among studies in the synthesis of primary study results. We combined the estimated log HRs using the generic inverse‐variance method, the result of which is presented as pooled HR with 95% CI on a logarithmic scale. HRs were given for BCG compared to MMC, therefore, an HR less than 1 indicates a benefit of BCG. We calculated summary statistics with respect to the RR and its 95% CI using the Mantel‐Haenszel method (Lane 2013).

Three‐arm trials comparing two BCG arms with one MMC arm but without clinical relevant difference in the BCG treatment approaches were included in the meta‐analysis with both treatment arms of BCG versus MMC (Ojea 2007a; Ojea 2007b; Witjes 1996a; Witjes 1996b). The standard error of the HRs were adjusted according to Woods 2010 in order to avoid a unit‐of‐analysis error (i.e. using the participants of the MMC group twice). In Friedrich 2007, we included one MMC arm (six weeks) in the primary meta‐analysis to give attention to the comparable duration of medication in the BCG and the MMC arm. The second MMC arm (three years) was used for a sensitivity analysis.

For adverse effect outcomes, we did not pool study data to give an overall result on adverse effects, as in all studies (except Ojea 2007b) adverse effects were not reported on a per‐patient basis, but as the number of the different adverse effects that had occurred. We chose to present cystitis as a patient‐relevant outcome in Summary of findings table 1.

Análisis de subgrupos e investigación de la heterogeneidad

We explored the following potential sources of clinical heterogeneity using the following subgroup analyses:

  • different doses of BCG installations;

  • different doses of MMC installations;

  • different strains of BCG;

  • different BCG maintenance therapies (posthoc subgroup analyses).

We used the fixed‐effect models for the subgroup analyses due to the limited number of available studies (Bender 2018).

Análisis de sensibilidad

We aimed at examining the methodological quality according to risk of bias, by conducting separate meta‐analyses for low risk of bias studies, excluding studies judged as high or unclear (or both) risk of bias. As there were no studies with low risk of bias, this analysis was not performed.

Instead we tested the robustness of results using sensitivity analysis. The fixed‐effect model was used to explore visually if results of the meta‐analysis varied substantially when using a model that does assume homogeneity of effects among studies and gives greater weight to larger studies. Furthermore, the second MMC arm in Friedrich 2007 (three years) was used instead of the six weeks MMC arm for a sensitivity analysis.

'Summary of findings' table

We presented the overall certainty of the evidence for each outcome according to the GRADE approach, which takes into account five criteria related to internal validity (risk of bias, inconsistency, imprecision, publication bias), and external validity, such as directness of results (Guyatt 2008). For each comparison, two review authors (SS and JJM) independently rated the certainty of evidence for each outcome as 'high', 'moderate', 'low' or 'very low' using GRADEpro GDT. We resolved any discrepancies by consensus, or, if needed, by arbitration by a third review author (PD). For each comparison, we presented a summary of the evidence for the main outcomes in Summary of findings table 1, which provides key information about the best estimate of the magnitude of the effect in relative terms and absolute differences for each relevant comparison of alternative management strategies; numbers of participants and studies addressing each important outcome; and the rating of the overall confidence in effect estimates for each outcome (Guyatt 2011; Schünemann 2011).

Results

Description of studies

Results of the search

The literature search identified 1125 records, of which 12 studies fulfilled our inclusion criteria (based on 29 publications). Eleven were included in the meta‐analyses. The one study that was not included in the meta‐analysis was only available as a conference proceeding (Michielsen 2013), which did not provide sufficient data for inclusion in the analysis. Figure 1 shows the flow chart for the selection of studies. For one study, there was only the trial registry entry available (NCT00974818). This study has been terminated early due to accrual problems. For this review, we used the results available from the clinical trial website for analyses (clinicaltrials.gov/ct2/show/NCT00974818). We identified no relevant ongoing trials.


Study flow diagram.

Study flow diagram.

Included studies

The 12 included studies are: Di Stasi 2003; Friedrich 2007; Krege 1996; Lamm 1995; Malmström 1999; Mangiarotti 2008; Michielsen 2013; NCT00974818; Ojea 2007b and Ojea 2007a; Rintala 1991; Witjes 1998a; and Witjes 1996a and Witjes 1996b. In total, the studies randomised 3080 participants. Table 1 gives a detailed description of interventions of included studies, and the Characteristics of included studies table and Table 2 give a detailed description of included studies.

Open in table viewer
Table 1. Description of interventions

Study

Intervention (route, frequency, total dose/day)

Comparator (route, frequency, total dose/day)

Michielsen 2013

I1: BCG group (full dose) for 6 weeks; each group had a specific maintenance programme.

C1: MMC group (40 mg in 50 mL saline) weekly for 6 weeks; each group had a specific maintenance programme.

NCT00974818

I1: MMC 40 mg, dissolved in 20 mL sterile water.

C1: BCG 81 mg, dissolved in 53 mL of diluent and saline.

Mangiarotti 2008

I1: therapy started 1 month after TUR. BCG Tice, weekly instillations for 6 weeks, thereafter once a month for 1 year.

C1: therapy started 1 month after TUR. MMC 40 mg in 50 mL saline for once a week for 8 weeks, thereafter for once a month for 1 year.

Friedrich 2007

I1: 6 weekly instillations of BCG RIVM 2 × 108 cfu (BCG 6 week). Therapy started 4 weeks after TUR.

C1: 6 weekly instillations of MMC 20 mg (MMC 6 week). Therapy started 4 weeks after TUR.

C2: 6 weekly instillations of MMC 20 mg followed by monthly instillations of MMC 20 mg for 3 years (MMC 3 year). Therapy started 4 weeks after TUR.

Ojea 2007b ; Ojea 2007a

I1: low‐dose BCG 27 mg. Connaught strain. Instillations started 14–21 days after TUR. The instillations were repeated once a week for 6 weeks followed by another 6 instillations given once every 2 weeks for 12 weeks.

C1: MMC 30 mg, instillations started 14–21 days after TUR. The instillations were repeated once a week for 6 weeks followed by another 6 instillations given once every 2 weeks for 12 weeks.

I2: very low‐dose BCG 13.5 mg. Connaught strain. Instillations started 14–21 days after TUR. The instillations were repeated once a week for 6 weeks followed by another 6 instillations given once every 2 weeks for 12 weeks.

Di Stasi 2003

I1: Pasteur BCG instillations with 81 mg wet weight (mean 10.2, SEM 9.0 × 108 cfu). Lyophilised BCG was suspended in 50 mL bacteriostatic‐free 0.9% saline solution. Suspension was instilled and retained for 120 minutes. Treatment started 3 weeks after TUR.

Participants who had a complete response to the initial 6 weekly treatments underwent a further 10 monthly instillations.

If cancer persisted at 3 months, a second 6‐week course was given. If disease persisted at 6 months, there was a cross‐over to a 6‐week second‐line course of BCG for participants in the 2 MMC groups and electromotive MMC for participants in the BCG group.

C1: participants were placed on fluid restriction and oral sodium bicarbonate before intravesical MMC treatments. Under ultrasound control, the bladder was thoroughly drained by repositioning the catheter or participant, or both. MMC 40 mg with 960 mg excipient NaCl dissolved in 100 mL water was instilled and retained in the bladder for 60 minutes. Treatment started 3 weeks after TUR.

C2: participants were placed on fluid restriction and oral sodium bicarbonate before intravesical MMC treatments. Under ultrasound control the bladder was thoroughly drained by repositioning the catheter or participant. Electromotive instillations of MMC 40 mg with 960 mg excipient NaCl dissolved in 100 mL water, retained for 30 minutes with 20 mA pulsed electric current (600 mA minute). Treatment started 3 weeks after TUR.

Malmström 1999

I1: BCG (Danish strain 1331) 120 mg containing 1 × l09 cfu, dissolved in 50 mL saline. Therapy was begun 1–3 weeks after TUR or biopsies, and was given weekly for 6 weeks, then monthly for up to 1 year and every 3 months during year 2.

C1: MMC 40 mg dissolved in 50 mL phosphate buffer (pH 7.4). Therapy was begun 1–3 weeks after TUR or biopsies, and was given weekly for 6 weeks, then monthly for up to 1 year and every 3 months during year 2.

Witjes 1998a

I1: Intravesical therapy was started 7–15 days after resection. BCG‐RIVM (5 × 108 bacilli in 50 mL saline) was given weekly for 6 consecutive weeks. In case of a recurrence at 3 months, a complete resection was performed, where after in BCG‐treated participants a second course was given.

C1: intravesical therapy was started 7–15 days after resection. MMC 30 mg in 50 mL saline was given weekly for 4 consecutive weeks and thereafter monthly for 5 months. In case of a recurrence at 3 months, a complete resection was performed, and instillations were continued.

Krege 1996

I1: 6 weeks after TUR, BCG 120 mg Connaught strain in 50 mL sodium chloride was instilled intravesically for 1 hour. At the same time, BCG 0.5 mg was applied subcutaneously by multiple punctures in the forearm. Therapy was continued once weekly for 6 weeks and once a month for 4 months.

C1: 6 weeks after TUR, MMC 20 mg in 50 mL sodium chloride was instilled via a catheter and kept in the bladder for 2 hours. Instillations were performed every 2 weeks during year 1 and once a month during year 2.

Witjes 1996a ; Witjes 1996b

I1: Treatment start 7–20 days after TUR. BCG‐RIVM 5 × 108 bacilli in 50 mL saline was administered once a week for 6 weeks. If disease recurred within 6 months in the BCG treatment group, a second course of 6 weekly instillations was administered after complete tumour resection.

C1: treatment start 7–20 days after TUR. MMC 30 mg in 50 mL saline instilled once a week for 1 month (weeks 1–4) and thereafter once a month for 6 months. If a recurrence was detected in the MMC group, complete resection was carried out and the MMC treatment continued monthly for another 3 months.

I2: Treatment start 7–20 days after TUR. BCG‐Tice 5 × 108 bacilli in 50 mL saline was administered once a week for 6 weeks. If disease recurred within 6 months in the BCG treatment group, a second course of 6 weekly instillations was administered after complete tumour resection.

Lamm 1995

I1: lyophilised Tice BCG 50 mg 5 × 108 cfu diluted in 50 mL of sterile, preservative‐free saline. The 50 mL suspension was instilled into the bladder by gravity flow. Participants were instructed to lie on their abdomen for 15 minutes and on their left, right and back for 15 minutes each and to retain the suspension, if possible, for 2 hours. Treatments were repeated weekly for 6 weeks and at 8 and 12 weeks, then monthly to 1 year. Treatment was initiated no sooner than 1 week and no later than 2 weeks after TUR.

C1: MMC 20 mg in 20 mL of sterile water. Treatments were repeated weekly for 6 weeks and at 8 and 12 weeks, then monthly to 1 year. Treatment was initiated no sooner than 1 week and no later than 2 weeks after TUR.

Rintala 1991

I1: Intravesical BCG 75 mg in 50 mL distilled water for 2 hours 6 × 108 cfu Pasteur Strain F. Instillations started 2 weeks after TUR. Weekly repetition during the first month, then once a month for 2 years.

C1: MMC 20–40 mg (AUC method) for 2 hours. Instillations started 2 weeks after TUR. Weekly repetition during the first month, then once a month for 2 years.

aThe term 'clinical practice setting' refers to the specification of the intervention/comparator as used in the course of a standard medical treatment (such as dose, dose escalation, dosing scheme, provision for contraindications and other important features).

AUC: area under the curve; BCG: Bacillus Calmette Guérin; C: comparator; cfu: colony‐forming units; I: intervention; MMC: mitomycin C; NaCl: sodium chloride, TUR: transurethral resection.

Open in table viewer
Table 2. Baseline characteristics

Study

Intervention(s) and comparator(s)

Duration of intervention (duration of follow‐up)

Description of participants

Trial period

Country

Setting

Michielsen 2013

I1: BCG full dose

Weekly for 6 weeks, each group with specific maintenance programme.

Intermediate‐risk non‐muscle invasive urothelial carcinoma of the bladder

Belgium

Hospital

C1: MMC 40 mg

Mangiarotti 2008

I1: BCG Tice

BCG weekly for 6 weeks, then 1 × month for 1 year.

MMC 1 × week for 8 weeks, then 1 × month for 1 year (follow‐up 42–45 months).

Intermediate‐risk non‐muscle invasive urothelial carcinoma of the bladder, Ta‐T1 G1‐2

Italy

Hospital

C1: MMC 40 mg

Friedrich 2007

I1: BCG RIVM 2 × 108 cfu

All 3 treatments for 6 weeks; long‐term MMC continued for 3 years

Intermediate‐risk pTa G1 tumours or pTa G2 up to pT1 tumours (G1‐3)

1995–2002

Germany

Hospital

C1: MMC 20 mg

C2: MMC 20 mg long‐term

Ojea 2007b ; Ojea 2007a

I1: BCG Connaught strain low‐dose 27 mg

Once a week for 6 weeks, followed by another 6 instillations every 2 weeks for 12 weeks.

Intermediate‐risk Ta G2 and T1 G1‐2 without Cis

1995–1998

Spain

Hospital, multicentre

I2: BCG Connaught strain very low‐dose 13.5 mg

C1: MMC 30 mg

Di Stasi 2003

I1: BCG Pasteur 81 mg

Weekly for 6 weeks, a further 6 weeks for non‐responders and a follow‐up 10 monthly treatments.

Multifocal Cis and most had concurrent pT1

1994–2001

Italy

Hospital, multicentre

C1: MMC 40 mg

C2: MMC 40 mg electromotive

Malmström 1999

I1: BCG 120 mg Danish strain

Weekly for 6 weeks, then monthly for 1 year and then every 3 months for 3 years.

Ta G1‐3 or T1 G1‐2

1987–1992

Sweden‐Norway

Hospital, multicentre

C1: MMC 40 mg

Witjes 1998a

I1: BCG RIVM

MMC: weekly for 4 weeks, then monthly for 5 months.

BCG: weekly for 6 weeks.

pTa and pT1 including Cis

1985–1986

Europe

Hospital, multicentre

C1: MMC 30 mg

Krege 1996

I: TUR

BCG: weekly for 6 weeks, then monthly for 4 months.

MMC: every 2 weeks for 12 months, then once a months for 2 years.

pTa/1 G1‐3

1985–1992

Germany

Hospital, multicentre

C1: BCG 120 mg Connaught strain

C2: MMC 20 mg

Witjes 1996a ; Witjes 1996b

I1: BCG RIVM 5 × 108 bacilli

BCG: weekly for 6 weeks, a further 6 weeks for non‐responders.

MMC: once a week for 1 month, then once a month for 6 months, for non‐responders monthly another 3 months.

Ta or T1 including Cis

1987–1990

Hospital, multicentre

I2: BCG Tice 5 × 108 bacilli

C1: MMC 30 mg

Lamm 1995

I1: BCG Tice 50 mg (5 × 108 cfu)

Weekly for 6 weeks and at 8 and 12 weeks, then monthly to 1 year.

Ta or T1 at increased risk

Hospital, multicentre

C1: MMC 20 mg

Rintala 1991

I1: BCG Pasteur strain 75 mg

Weekly for 1 month, then once per months for 2 years.

Cis G1‐3, Ta‐T1 G1‐3

1984–1987

Hospital, multicentre

C1: MMC 20–40 mg

BCG: Bacillus Calmette‐Guérin; Cis: carcinoma in situ; cfu: colony‐forming units; MMC: mitomycin C; NaCl: sodium chloride, TUR: transurethral resection.

Study design and settings

Most of the studies were multicentre prospective RCTs, except Mangiarotti 2008, which was a single‐centre study. Di Stasi 2003; Friedrich 2007; Krege 1996; Ojea 2007b; Ojea 2007a; Witjes 1996a; Witjes 1996b were three arm studies. The studies of Ojea and Witjes are introduced twice in the reference section, as we have used the arms separately in the analyses. All trials were conducted in the hospital setting and most were conducted in Europe. Studies were published from 1991 to 2013.

Participants

A total of 2932 participants were randomised to either BCG or MMC. Follow‐up ranged from 20 month to 20 years. Rintala 1991 reported the longest follow‐up. Trials included men and women with histologically confirmed pTa/T1 grades 1 to 3 of intermediate‐ or high‐risk non‐muscle invasive transitional cell carcinoma of the bladder. Participants had undergone a prior transurethral resection without prior adjuvant therapy. Major exclusion criteria were: prior cancer, muscle invasive disease, concurrent treatment with chemotherapy or radiotherapy and pregnancy.

Interventions and comparators

BCG dosages ranged from 120 mg (Krege 1996; Malmström 1999) to 13.5 mg (very low dose, Ojea 2007a). Studies used different BCG strains (Tice, RIVM, Connaught and Pasteur). Most studies administered BCG weekly for six weeks, followed by different maintenance schemes. Rintala 1991 started BCG therapy with weekly instillations for four weeks. MMC dosages were 20 mg (Friedrich 2007; Krege 1996; Lamm 1995), 30 mg (Ojea 2007b; Witjes 1996a; Witjes 1996b; Witjes 1998a), or 40 mg (Di Stasi 2003; Malmström 1999; Mangiarotti 2008; Michielsen 2013). Rintala 1991 administered MMC 20 mg to 40 mg. Instillations were mostly given weekly for six weeks. Mangiarotti 2008 used a weekly schedule of eight weeks, Witjes 1996a; Witjes 1996b; Witjes 1998a; and Rintala 1991 used weekly for four weeks and Krege 1996 used every two weeks instillations for 12 months.

Outcomes

Most data were available for time to recurrence (11 studies, 2616 participants), followed by adverse effects. Five studies reported time to death from any cause (Di Stasi 2003; Lamm 1995; Malmström 1999; Rintala 1991; Witjes 1998a; 1132 participants). Six studies provided information on time to progression (Di Stasi 2003; Lamm 1995; Malmström 1999; Ojea 2007a; Ojea 2007b; Witjes 1998a; 1622 participants). Reporting of adverse effects was inhomogeneous. Studies reported on 18 different adverse effects. Only one study aimed at evaluating quality of life in these participant groups (Michielsen 2013). Information was only available in abstract form (conference proceeding) and hence gave no further insights.

Funding sources and conflicts

Three studies had at least one coauthor with a financial relationship with a company or the study was at least partly financed by a company (Di Stasi 2003; Friedrich 2007; Malmström 1999). Four studies provided no information on funding (Mangiarotti 2008; Michielsen 2013; Ojea 2007b; Witjes 1996a).

Excluded studies

A list of 95 excluded studies is in the Characteristics of excluded studies table.

Risk of bias in included studies

The Characteristics of included studies table, Figure 2, and Figure 3 show the detailed risk of bias evaluation. In summary, unclear or incomplete reporting in primary studies seriously hindered definitive risk of bias assessment.


Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.


Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Allocation

Random sequence generation

Malmström 1999; Mangiarotti 2008; Michielsen 2013; NCT00974818; Ojea 2007b; Ojea 2007a; and Witjes 1998a had unclear random sequence generation. One study randomised participants to treatment arms, but based allocation on date of birth and so was judged at high risk of bias (Rintala 1991). The remaining studies had low risk of random sequence generation (Di Stasi 2003; Friedrich 2007; Krege 1996; Lamm 1995; Witjes 1996a; Witjes 1996b).

Allocation concealment

Most studies did not report allocation concealment and, therefore, this domain was at unclear risk of bias (Friedrich 2007; Krege 1996; Lamm 1995; Mangiarotti 2008; Ojea 2007a; Witjes 1996a; Witjes 1996b; Witjes 1998a). Only Di Stasi 2003 and Malmström 1999 reported the method for allocation concealment, which was adequate and at low risk. Rintala 1991 was at high risk as participant selection was based on date of birth, which might have influenced the concealment of the allocation.

Blinding

Blinding of participants and personnel

None of the studies reported that blinding was done. Given that blinding is a well‐known mechanism to reduce bias in trials, we assumed that if blinding was not reported, it was not done. Therefore, we judged this domain at high risk of bias for most outcomes. For the clinical trial entry (NCT00974818) and the study that was only available as conference proceeding (Michielsen 2013), we rated this domain as unclear.

Blinding of outcome assessment

We judged that a lack of blinding had no effect on assessment of objective outcomes, such as survival or death. For the studies that evaluated time to death from any cause, this domain was rated at low risk of bias, although blinding was not performed.

For outcomes based on a more subjective assessment (time to recurrence and time to progression, adverse effects and serious adverse effects), we judged this domain at high risk of bias.

Only one study assessed quality of life (Michielsen 2013), Unfortunately, the conference proceeding did not provide sufficient information on trial methodology and conduct. Therefore, all studies were at unclear risk of bias for quality of life.

Incomplete outcome data

Most studies clearly reported participant flow and there was no indication of important attrition bias.

Time‐to‐event outcomes

In the study of Lamm 1995 there was a concern regarding the time to death from any cause outcomes as only 85% (BCG) and 84% (MMC) of participants were included in the analyses. In NCT00974818, there was no analysis for time to death from any cause due to a lack of accrual. Also, the number of participants throughout the website entry was not congruent. Thus, we rated it at high risk of bias.

Adverse effect outcomes

The only concern was in the NCT00974818 study where the number of participants throughout the website entry was not congruent, which might indicate a possible bias. In the Krege 1996 study, there was no precise information on the number of patients included in this analysis. In the conference proceeding of Michielsen 2013 there is insufficient information to rate the bias due to attrition.

Quality of life outcomes

One study assessed quality of life but the conference proceeding gave no detailed results and was at high risk of bias (Michielsen 2013). Therefore, all studies were at unclear risk of bias.

Selective reporting

Most studies had no study protocol available. Therefore, we judged this domain as unclear in all but one study (NCT00974818). In NCT00974818, there was no information why data on the primary outcome (relapse rate) were not reported but data on the secondary outcomes (adverse effects) were. Therefore, we rated this domain at high risk of bias.

Other potential sources of bias

We identified no other sources of bias.

Effects of interventions

See: Summary of findings for the main comparison Bacillus Calmette‐Guérin (BCG) compared to mitomycin C (MMC) for Ta and T1 bladder cancer

The effects of the intervention are presented in summary of findings Table for the main comparison for the main outcomes. All other effects are presented in Figure 4; Figure 5; Figure 6; Figure 7; Figure 8; and Figure 9. None of the included studies calculated the sample size with respect to time to death from any cause to achieve a certain power.


Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.1 Time to death from any cause.

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.1 Time to death from any cause.


Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.2 Serious adverse effects.

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.2 Serious adverse effects.


Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.3 Time to recurrence.

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.3 Time to recurrence.


Funnel plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.3 Time to recurrence.

Funnel plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.3 Time to recurrence.


Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.4 Time to progression.

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.4 Time to progression.


Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.5 Adverse effects.

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.5 Adverse effects.

1 Bacillus Calmette‐Guérin versus mitomycin C

1.1 Primary outcomes
1.1.1 Time to death from any cause

BCG may have little or no effect on time to death from any cause in adults with intermediate‐ and high‐risk non‐muscle invasive bladder cancer (HR 0.97, 95% CI 0.79 to 1.20; studies = 5, participants = 1132; 567 participants in the BCG arm and 565 in the MMC arm; I² = 0%; Analysis 1.1; Figure 4). This corresponds to six fewer deaths (40 fewer to 36 more) per 1000 participants with BCG at five years.

Certainty of the evidence was low because of study limitations (performance bias and allocation concealment) and imprecision (the CIs were wide with a possibility for either important benefit or harm). The results are based on study data with different lengths of follow‐up (3.5 to 20 years).

1.1.2 Serious adverse effects

Twelve of 577 participants on BCG had serious non‐fatal adverse effects compared to four of 447 participants in the MMC group. BCG may increase the risk of experiencing a serious adverse event. The pooled RR was 2.31 (95% CI 0.82 to 6.52; studies = 5, participants = 1024; I² = 0%; Analysis 1.2; Figure 5); although BCG may increase the risk for serious adverse effects compared to MMC, the 95% CI includes the possibility of no difference. This corresponds to nine more serious adverse effects (1 fewer to 37 more) with BCG. Certainty of the evidence was low because of study limitations (performance bias and allocation concealment) and the CIs were wide and were consistent with both no effect and clinically relevant harm). Length of follow‐up among the studies ranged from 1.6 to 10 years.

1.2 Secondary outcomes
1.2.1 Time to recurrence

Pooled data demonstrated a 12% hazard reduction over time for BCG (HR 0.88, 95% CI 0.71 to 1.09; studies = 11, participants = 2616; 1273 participants in the BCG arm and 1343 in the MMC arm; I² = 61%; Analysis 1.3; Figure 6). This corresponds to 41 fewer recurrences (104 fewer to 29 more) with BCG at five years. These data are based on a follow‐up from 3 to 20 years.

Certainty of the evidence was low because of study limitations (performance bias and allocation concealment), the CIs were imprecise (possibility for either important benefit or large harm), and the results of the point estimates of primary studies varied substantially and showed inconsistency. In aggregate, we downgraded twice. The funnel plot showed no asymmetry (Figure 7). Hence, we did not downgrade for publication bias.

1.2.2 Time to progression

BCG may have little to no effect on time to progression in adults with intermediate‐ and high‐risk non‐muscle invasive bladder cancer (HR 0.96, 95% CI 0.73 to 1.26; studies = 6, participants = 1622; 804 participants in the BCG arm and 818 in the MMC arm; I² = 0%; Analysis 1.4; Figure 8). This corresponds to four fewer progressions (29 fewer to 27 more) with BCG at five years. Certainty of the evidence was low because of study limitations (performance bias and allocation concealment) and the CIs were imprecise (possibility for both important benefit or large harm). Length of follow‐up ranged from 1.6 to 20 years.

1.2.3 Adverse effects

Reporting of adverse effects was heterogeneous in the included studies. The studies reported 18 different adverse effects. Adverse events were as follows (Analysis 1.5; Figure 9):

  • urinary frequency: RR 1.57, 95% CI 0.99 to 2.50; studies = 4, participants = 814; I² = 82%;

  • cystitis: RR 1.41, 95% CI 0.80 to 2.51; studies = 5, participants = 1049; I² = 77%;

  • incontinence: RR 2.64, 95% CI 0.71 to 9.83; studies = 1, participants = 442; I² = 0%;

  • cramps: RR 1.98, 95% CI 0.91 to 4.32; studies = 1, participants = 442; I² = 0%;

  • visible haematuria: RR 1.61, 95% CI 1.20 to 2.16; studies = 6, participants = 1387; I² = 52%;

  • prostatitis: RR 5.09, 95% CI 0.87 to 29.87; studies = 3, participants = 379; I² = 0%;

  • epididymitis: RR 3.51, 95% CI 1.17 to 10.55; studies = 3, participants = 379; I² = 0%;

  • fever: RR 2.87, 95% CI 0.97 to 8.48; studies = 6, participants = 1387; I² = 73%;

  • general malaise/discomfort: RR 1.75, 95% CI 0.61 to 4.97; studies = 3, participants = 830; I² = 74%;

  • fatigue: RR 4.98, 95% CI 0.07 to 350.40; studies = 2, participants = 322; I² = 0%;

  • allergic reactions: RR 0.38, 95% CI 0.14 to 1.07; studies = 5, participants = 1155; I² = 38%);

  • dysuria: RR 1.14, 95% CI 0.69 to 1.90; studies = 2, participants = 758; I² = 75%);

  • skin alterations: RR 2.37, 95% CI 0.07 to 76.28; studies = 2, participants = 465; I² = 83%);

  • pain: RR 1.45, 95% CI 1.16 to 1.82; studies = 3, participants = 742; I² = 0%);

  • nausea: RR 1.38, 95% CI 1.02 to 1.87; studies = 2, participants = 692; I² = 0%);

  • bacterial cystitis: RR 1.29, 95% CI 0.99 to 1.68; studies = 3, participants = 848; I² = 0%);

  • drug‐induced cystitis: RR 1.55, 95% CI 0.83 to 2.91; studies = 3, participants = 848; I² = 82%);

  • systemic adverse effects: RR 12.64, 95% CI 2.56 to 62.55; studies = 2, participants = 867; I² = 88%).

1.2.4 Quality of life

One study evaluated quality of life (Michielsen 2013). Information was only available as a conference proceeding. The study used the EORTC‐BLS‐24 instrument. There were no statistical differences when comparing groups, except for abdominal bloating and flatulence, which was worse in the BCG group.

More detailed results on quality of life were not available.

2 Subgroup analyses

Below we present the results of the subgroup analyses. All other initially planned subgroup analyses could not be conducted due to a lack of data.

2.1 Different doses of Bacillus Calmette‐Guérin installations (subgroup analyses)

In Analysis 2.1, we tested the effect of different doses of BCG on serious adverse effects. Compared to MMC, BCG 120 mg (RR 4.46, 95% CI 0.76 to 26.16; studies = 2, participants = 465; I² = 0%) showed higher serious adverse effects than BCG administered in lower doses (less than 120 mg: RR 1.64, 95% CI 0.46 to 5.86; studies = 3, participants = 559; I² = 0%). The difference of the subgroup test showed no statistical difference (P = 0.37, I² = 0%). This was the only subgroup analysis possible in this context. Results are shown graphically in Figure 10.


Forest plot of comparison: 2 Different doses of Bacillus Calmette‐Guérin (BCG) (subgroup analyses), outcome: 2.1 Serious adverse effect (subgroup analyses).

Forest plot of comparison: 2 Different doses of Bacillus Calmette‐Guérin (BCG) (subgroup analyses), outcome: 2.1 Serious adverse effect (subgroup analyses).

2.2 Different doses of mitomycin C installations (subgroup analyses)

In Analysis 3.1, we tested the effect of different doses of MMC on time to recurrence (see Figure 11). Compared to BCG, MMC 30 mg (HR 1.04, 95% CI 0.86 to 1.26; studies = 5, participants = 0; I² = 65%) showed little or no effect compared to MMC 20 mg (HR 0.85, 95% CI 0.67 to 1.07; studies = 3, participants = 0; I² = 50%). MMC 40 mg had a longer time to recurrences (HR 0.60, 95% CI 0.40 to 0.90; studies = 2, participants = 0; I² = 72%), but data were based on two studies with high heterogeneity. The difference of the subgroup test showed statistical difference (P = 0.01, I² = 73%). This was the only outcome we could address.


Forest plot of comparison: 3 Different doses of mitomycin C (MMC) (subgroup analyses), outcome: 3.1 Time to recurrence (subgroup analyses).

Forest plot of comparison: 3 Different doses of mitomycin C (MMC) (subgroup analyses), outcome: 3.1 Time to recurrence (subgroup analyses).

2.3 Different strains of Bacillus Calmette‐Guérin (subgroup analyses)

In Analysis 4.1, we tested the effect of different BCG strains compared to MMC on time to recurrence. Findings suggested that there might be relevant differences among BCG strains regarding time to recurrence. Especially the Pasteur strain, but also the Connaught and Tice strains showed some effects on recurrence. The RIVM strain might be less effective. Results are presented in Figure 12.


Forest plot of comparison: 4 Different Bacillus Calmette‐Guérin (BCG) strains (subgroup analyses), outcome: 4.1 Time to recurrence (subgroup analyses).

Forest plot of comparison: 4 Different Bacillus Calmette‐Guérin (BCG) strains (subgroup analyses), outcome: 4.1 Time to recurrence (subgroup analyses).

  • Connaught strain: HR 0.80, 95% CI 0.59 to 1.07; studies = 3; I² = 58%.

  • Pasteur strain: HR 0.52, 95% CI 0.35 to 0.78; studies = 2; I² = 0%.

  • RIVM strain: HR 1.13, 95% CI 0.91 to 1.41; studies = 3; I² = 0%.

  • Tice strain: HR 0.90, 95% CI 0.72 to 1.12; studies = 3; I² = 78%.

The test for subgroup differences was statistically significant (P = 0.008, I² = 74.7%).

2.4 Different Bacillus Calmette‐Guérin maintenance therapies (subgroup analyses)

In Analysis 5.1; Analysis 5.2; Analysis 5.3; and Analysis 5.4, we tested the effect of different BCG maintenance therapies between each other. We compared induction regimens (six weeks or greater) versus maintenance regimens (greater than one year).

2.4.1 Time to death from any cause

Figure 13 shows the results of the time to death from any cause analysis. Results were as follows: six weeks or greater: HR 0.94, 95% CI 0.65 to 1.36; studies = 2, participants = 416; greater than one year group: HR 0.99, 95% CI 0.77 to 1.27; studies = 3, participants = 339 (Analysis 5.1). The test for subgroup effect was not significant (P = 0.81).


Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.1 Time to death from any cause.

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.1 Time to death from any cause.

2.4.2 Serious adverse effects

Results for the subgroup analyses for serious adverse effects were as follows: BCG induction therapy six weeks or greater: RR 2.09, 95% CI 0.56 to 7.84; studies = 3, participants = 724; I² = 0%); BCG maintenance therapy greater than one year: RR 2.71, 95% CI 0.51 to 14.48; studies = 2, participants = 300; I² = 0%) (Analysis 5.2; Figure 14). The test for subgroup effect was not significant (P = 0.81).


Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.2 Serious adverse effects (greater than six weeks).

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.2 Serious adverse effects (greater than six weeks).

2.4.3 Time to recurrence

Eight studies reported data on time to recurrence for this subgroup analysis. Results were as follows: six weeks or greater group (HR 1.12, 95% CI 0.85 to 1.47; participants = 1137; studies = 4; Analysis 5.3; Figure 15). BCG maintenance therapy greater than one year (HR 0.68, 95% CI 0.56 to 0.82; studies = 4, participants = 89). The test for subgroup effect was significant (P = 0.004), but showed high heterogeneity (I² = 88%).


Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.3 Time to recurrence.

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.3 Time to recurrence.

2.4.4 Time to progression

Six studies reported data on time to progression for this subgroup analysis. Results were as follows: six weeks or greater group (HR 1.23, 95% CI 0.85 to 1.77; participants = 416; studies = 3); BCG maintenance therapy greater than one year (HR 0.86, 95% CI 0.63 to 1.16; studies = 3, participants = 250). The test for subgroup effect was not significant (P = 0.14; Analysis 5.4; Figure 16).


Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.4 Time to progression.

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.4 Time to progression.

3 Sensitivity analyses

The use of the fixed‐effect model compared to the random‐effect model showed no relevant differences (data not shown). Friedrich 2007 only reported summary data for time to recurrence. In a sensitivity analysis using the BCG six weeks arm versus the MMC three years arm for Friedrich 2007 (instead of MMC six weeks arm; adjusted HR 2.87, 95% CI 1.67 to 4.90) resulted in an overall HR of 0.95 (95% CI 0.71 to 1.26; I² = 76%; random‐effect model) and thus a smaller treatment difference for recurrence‐free survival.

Discusión

disponible en

Resumen de los resultados principales

Esta última actualización de una revisión Cochrane anterior (Shelley 2003) sobre el tema del BCG versus MMC para los pacientes con tumores vesicales sin invasión muscular de grado intermedio o alto, basada en 12 ECA, aporta evidencia de certeza baja para todos los resultados, excepto la calidad de vida, para informar la toma de decisiones clínicas y de políticas sanitarias.

Los datos indicaron que el BCG probablemente reduce el riesgo de recidiva con el transcurso del tiempo (450 recidivas por 1000 participantes tratados con MMC y 41 recidivas menos con el BCG), pero puede dar lugar a más efectos adversos graves (siete efectos adversos graves por 1000 participantes tratados con MMC y nueve efectos adversos graves más con el BCG). El BCG puede tener poco o ningún efecto sobre el tiempo transcurrido hasta la muerte por cualquier causa o el tiempo transcurrido hasta la progresión. Los estudios informaron varios efectos adversos con el tratamiento con BCG y MMC. No se encontró evidencia de ECA sobre la calidad de vida.

Compleción y aplicabilidad general de las pruebas

Esta revisión se basó en 12 ECA en pacientes con tumores vesicales sin invasión muscular de riesgo intermedio y alto. Los resultados se basaron en una búsqueda sistemática de la literatura que incluyó varias bases de datos. Dos autores de la revisión examinaron los estudios para su inclusión y evaluaron la certeza de la evidencia. Es probable que las características de los participantes y los tratamientos reflejen la práctica clínica diaria. Por lo tanto, los estudios incluidos proporcionan evidencia directa para la pregunta de la revisión.

La primera revisión Cochrane sobre este tema se publicó en 2003 (Shelley 2003), e incluyó siete ensayos basados en 1901 participantes. Esta actualización de la revisión incluye cinco ensayos adicionales y se basó en 3080 participantes. Ahora refleja también la metodología Cochrane actual, que incluye la certeza de la evaluación de la evidencia según los criterios GRADE.

Se identificó una heterogeneidad considerable en los análisis (I² = 66% para los análisis del tiempo hasta la recidiva e I² = 77% para la cistitis). Lo anterior puede deberse a las diferencias en el diseño del estudio (p.ej. en la duración del seguimiento, las cepas de BCG utilizadas, la dosis y el programa de tratamiento) así como a los diferentes riesgos iniciales de recidiva y la progresión de los participantes incluidos.

En esta revisión, se utilizaron las categorías de riesgo de la EAU, que difieren de las categorías de riesgo establecidas por la American Urological Association (AUA). La aplicación de las categorías de riesgo de la AUA probablemente afectaría los resultados de esta revisión.

No fue posible evaluar los efectos del tratamiento entre los grupos de riesgo intermedio y alto, que pueden ser diferentes.

Calidad de la evidencia

El juicio de certeza baja de la evidencia para todos los resultados con datos disponibles significa que es muy probable que la investigación adicional tenga un impacto importante en la confianza en las estimaciones de los efectos y es probable que cambie las estimaciones.

De los 12 estudios identificados, seis se planificaron y realizaron en la década de 1990 y no cumplen con los estándares de calidad metodológica de alrededor del año 2019. Solo un ensayo se realizó después de 2010; aunque los resultados de dicho ensayo aún no se han publicado. Un ensayo (reclutamiento de 2009 a 2012) se interrumpió antes de su finalización debido a la falta de acumulación. El cegamiento de los participantes no tuvo lugar en ninguno de los 12 ensayos. Las preocupaciones generales, que dieron lugar a la disminución de la calidad fueron las limitaciones del estudio (sesgo de realización y ocultación de la asignación), los IC amplios que resultaron en imprecisión (posibilidad de un beneficio importante o de un efecto perjudicial grande) y la heterogeneidad del estudio.

La disponibilidad de evidencia de certeza baja para el cáncer de vejiga sin invasión muscular solamente no es sorprendente. Un metanálisis reveló que la evidencia sobre la resección transuretral versus la resección transuretral más quimioterapia (MMC y otras) también fue de certeza baja a muy baja (Perlis 2013). Aunque la anterior no es la pregunta de estudio que se considera en esta revisión, destaca cuestiones metodológicas similares.

Sesgos potenciales en el proceso de revisión

Se realizó una búsqueda sistemática extensiva de la literatura sin restricciones de idioma o de fecha de publicación, así como una búsqueda en los registros de ensayos clínicos de estudios no publicados, planificados o en curso. Por lo tanto, probablemente se ha identificado toda la información relevante sobre este tema. Sin embargo, siempre existe la posibilidad de que no se hayan identificado publicaciones pertinentes.

Esta revisión sigue la metodología estándar de Cochrane, e incluye los últimos estándares de MECIR. No se recibió financiamiento para esta revisión y los autores declaran que no tienen conflictos de intereses económicos.

Acuerdos y desacuerdos con otros estudios o revisiones

La Agency for Healthcare Research and Quality realizó una revisión sistemática con una evaluación de la calidad de la evidencia incluida (AHRQ 2016). Los autores no identificaron diferencias entre el tratamiento con BCG y MMC para la recidiva del cáncer (RR 0,95; IC del 95%: 0,81 a 1,11; diez ensayos). Lo anterior contrasta con los resultados que incluyeron dos estudios adicionales (Michielsen 2013; Rintala 1991). Los resultados indicaron un efecto (CRI 0,88; IC del 95%: 0,71 a 1,09) aunque los IC cruzaron la línea de ningún efecto. Sobre la base de un análisis de subgrupos, la revisión de la AHRQ indicó además una disminución del riesgo de recidiva del cáncer con el uso de BCG versus MMC (RR 0,79; IC del 95%: 0,71 a 0,87; cinco ensayos). No encontró diferencias entre el BCG y la MMC para la mortalidad por todas las causas, la mortalidad específica por cáncer de vejiga o la progresión (mortalidad por todas las causas): RR 0,94; IC del 95%: 0,83 a 1,0; siete ensayos; mortalidad específica por cáncer de vejiga: RR 0,77; IC del 95%: 0,54 a 1,10; cinco ensayos; progresión: RR 0,88; IC del 95%: 0,66 a 1,17; siete ensayos). Sin embargo, el BCG también aumentó el riesgo de eventos adversos locales y de fiebre en comparación con la MMC (AHRQ 2016).

El metanálisis de los datos de un participante individual basado en 9/12 ECA incluidos en esta revisión estableció la conclusión de que solo cuando el BCG se usó en forma de tratamiento de mantenimiento fue superior a la MMC con respecto a la prevención de las recidivas (Malmström 2009a). No hubo diferencias significativas entre el BCG y la MMC, a menos que el tratamiento se estratificara por recepción del tratamiento de mantenimiento. Además, no hubo diferencias en cuanto a la supervivencia general, la supervivencia específica del cáncer y la progresión. El efecto sobre la recidiva para el grupo de tratamiento de mantenimiento con BCG siguió siendo estadísticamente significativo independientemente del tratamiento de quimioterapia previo (Malmström 2009a). El 3% de los participantes incluidos pertenecían al grupo de riesgo bajo, el 74% al grupo de riesgo intermedio y el 23% al grupo de riesgo alto (mediana de seguimiento de 4,4 años, máximo 17,7 años). Este metanálisis además estableció la conclusión de que aún no se conoce la cepa, la dosis y la duración óptimas del tratamiento de mantenimiento con BCG (Malmström 2009b).

Una revisión sistemática con metanálisis en red (que incluyó 65 ensayos de 12 246 participantes) que no se limitó a la MMC como comparador estableció la conclusión de que no era posible establecer una conclusión definitiva con respecto a la superioridad de una determinada cepa de BCG y la reducción de la recidiva (Boehm 2017). Los ensayos clínicos disponibles carecen de medidas preventivas metodológicas importantes contra el sesgo; por lo tanto, se necesitan comparaciones directas de mayor calidad para considerar esta cuestión (Boehm 2017; Miyazaki 2018). Los resultados del subgrupo sugirieron un efecto positivo relevante entre las cepas de BCG, especialmente para la cepa Pasteur, pero también para las cepas Connaught y Tice en el tiempo hasta la recidiva. La cepa RIVM puede ser menos efectiva. Sin embargo, estos análisis de subgrupos se basan en pocos estudios y pocos participantes y deben interpretarse con cautela.

Las diferencias en los resultados de las revisiones sistemáticas existentes podrían deberse a las diferencias en los participantes incluidos en los ensayos primarios. El grupo de participantes con cáncer de vejiga sin invasión muscular es altamente heterogéneo, y puede incluir a participantes que no responden al BCG, con recidiva al recibir BCG, intolerantes al BCG y no receptivos al BCG (Packiam 2017). La combinación de estos participantes en los ensayos puede causar dificultad en la interpretación de los resultados, especialmente debido a que algunos tipos de fracaso, como los participantes con recidiva al recibir BCG, tienen resultados superiores en comparación con otros (Packiam 2017). Además, las diferentes dosis de los regímenes de BCG y MMC (dosis y esquemas) pueden dar lugar a heterogeneidad en los datos, lo que dificulta la posibilidad de establecer conclusiones definitivas. Los resultados también deben interpretarse con cautela debido a las limitaciones metodológicas de los estudios primarios, que se reflejan en la certeza baja de la calificación de la evidencia.

Se han desarrollado y examinado otras modalidades de administración. Las sustancias intravesicales pueden ser suministradas a través de la administración de fármacos electromotrices (AFEM). Un ECA pequeño demostró la eficacia de la MMC mediante el uso de la AFEM combinada secuencialmente con BCG en pacientes con tumores de riesgo alto (Di Stasi 2006a). Una revisión Cochrane estableció la conclusión de que el uso de la AFEM para la MMC intravesical puede dar lugar a un retraso en el tiempo hasta la recidiva en las poblaciones de participantes seleccionadas, pero que todavía no hay información sobre los efectos adversos graves (Jung 2017). La administración de quimioterapia intravesical hipertérmica también puede utilizarse para la administración de MMC. Este procedimiento aumenta la temperatura de la MMC instilada. Este ECA comparó un año de BCG con un año de MMC e hipertermia inducida por microondas en pacientes con cáncer de vejiga de riesgo intermedio y alto y encontró una reducción del tiempo hasta la recidiva a los 24 meses en el grupo de MMC (Arends 2016). Sin embargo, estas técnicas más nuevas de aplicación de la MMC no se incluyen en esta revisión, que considera la modalidad de administración estándar.

También existe la opción de la administración secuencial del BCG y la MMC, pero todavía hay controversia sobre la efectividad de este enfoque (AHRQ 2016; Kaasinen 2016; Solsona 2016). Actualmente hay un ensayo de fase III con participantes de alto riesgo en curso (NCT02948543). Además, la eficacia y la toxicidad del BCG y la MMC pueden depender de los componentes de la fabricación, lo cual podría influir en los resultados de los participantes.

Es posible que la atención al paciente no siempre se ajuste a la evidencia científica, sino que dependa de cuestiones prácticas, como la escasez de suministros. Debido a la actual necesidad mundial de BCG y a los problemas de fabricación en el pasado, ha habido un retraso en el suministro de BCG para algunos países (Abufaraj 2018; Cernuschi 2018). Este tema debe tenerse en cuenta cuando se planifique la atención del paciente de forma prospectiva. Por lo tanto, el uso de BCG debe ser estudiado más a fondo para predecir los pacientes que responden más al tratamiento con BCG, y para determinar el esquema y la cantidad óptima de administración de BCG por paciente.

Study flow diagram.
Figuras y tablas -
Figure 1

Study flow diagram.

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.
Figuras y tablas -
Figure 2

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.
Figuras y tablas -
Figure 3

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.1 Time to death from any cause.
Figuras y tablas -
Figure 4

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.1 Time to death from any cause.

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.2 Serious adverse effects.
Figuras y tablas -
Figure 5

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.2 Serious adverse effects.

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.3 Time to recurrence.
Figuras y tablas -
Figure 6

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.3 Time to recurrence.

Funnel plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.3 Time to recurrence.
Figuras y tablas -
Figure 7

Funnel plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.3 Time to recurrence.

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.4 Time to progression.
Figuras y tablas -
Figure 8

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.4 Time to progression.

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.5 Adverse effects.
Figuras y tablas -
Figure 9

Forest plot of comparison: 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), outcome: 1.5 Adverse effects.

Forest plot of comparison: 2 Different doses of Bacillus Calmette‐Guérin (BCG) (subgroup analyses), outcome: 2.1 Serious adverse effect (subgroup analyses).
Figuras y tablas -
Figure 10

Forest plot of comparison: 2 Different doses of Bacillus Calmette‐Guérin (BCG) (subgroup analyses), outcome: 2.1 Serious adverse effect (subgroup analyses).

Forest plot of comparison: 3 Different doses of mitomycin C (MMC) (subgroup analyses), outcome: 3.1 Time to recurrence (subgroup analyses).
Figuras y tablas -
Figure 11

Forest plot of comparison: 3 Different doses of mitomycin C (MMC) (subgroup analyses), outcome: 3.1 Time to recurrence (subgroup analyses).

Forest plot of comparison: 4 Different Bacillus Calmette‐Guérin (BCG) strains (subgroup analyses), outcome: 4.1 Time to recurrence (subgroup analyses).
Figuras y tablas -
Figure 12

Forest plot of comparison: 4 Different Bacillus Calmette‐Guérin (BCG) strains (subgroup analyses), outcome: 4.1 Time to recurrence (subgroup analyses).

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.1 Time to death from any cause.
Figuras y tablas -
Figure 13

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.1 Time to death from any cause.

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.2 Serious adverse effects (greater than six weeks).
Figuras y tablas -
Figure 14

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.2 Serious adverse effects (greater than six weeks).

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.3 Time to recurrence.
Figuras y tablas -
Figure 15

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.3 Time to recurrence.

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.4 Time to progression.
Figuras y tablas -
Figure 16

Forest plot of comparison: 5 Different maintenance therapies (posthoc subgroup analyses), outcome: 5.4 Time to progression.

Comparison 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), Outcome 1 Time to death from any cause.
Figuras y tablas -
Analysis 1.1

Comparison 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), Outcome 1 Time to death from any cause.

Comparison 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), Outcome 2 Serious adverse effects.
Figuras y tablas -
Analysis 1.2

Comparison 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), Outcome 2 Serious adverse effects.

Comparison 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), Outcome 3 Time to recurrence.
Figuras y tablas -
Analysis 1.3

Comparison 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), Outcome 3 Time to recurrence.

Comparison 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), Outcome 4 Time to progression.
Figuras y tablas -
Analysis 1.4

Comparison 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), Outcome 4 Time to progression.

Comparison 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), Outcome 5 Adverse effects.
Figuras y tablas -
Analysis 1.5

Comparison 1 Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC), Outcome 5 Adverse effects.

Comparison 2 Different doses of Bacillus Calmette‐Guérin (BCG) (subgroup analyses), Outcome 1 Serious adverse effect (subgroup analyses).
Figuras y tablas -
Analysis 2.1

Comparison 2 Different doses of Bacillus Calmette‐Guérin (BCG) (subgroup analyses), Outcome 1 Serious adverse effect (subgroup analyses).

Comparison 3 Different doses of mitomycin C (MMC) (subgroup analyses), Outcome 1 Time to recurrence (subgroup analyses).
Figuras y tablas -
Analysis 3.1

Comparison 3 Different doses of mitomycin C (MMC) (subgroup analyses), Outcome 1 Time to recurrence (subgroup analyses).

Comparison 4 Different Bacillus Calmette‐Guérin (BCG) strains (subgroup analyses), Outcome 1 Time to recurrence (subgroup analyses).
Figuras y tablas -
Analysis 4.1

Comparison 4 Different Bacillus Calmette‐Guérin (BCG) strains (subgroup analyses), Outcome 1 Time to recurrence (subgroup analyses).

Comparison 5 Different maintenance therapies (posthoc subgroup analyses), Outcome 1 Time to death from any cause.
Figuras y tablas -
Analysis 5.1

Comparison 5 Different maintenance therapies (posthoc subgroup analyses), Outcome 1 Time to death from any cause.

Comparison 5 Different maintenance therapies (posthoc subgroup analyses), Outcome 2 Serious adverse effects (≥ 6 weeks).
Figuras y tablas -
Analysis 5.2

Comparison 5 Different maintenance therapies (posthoc subgroup analyses), Outcome 2 Serious adverse effects (≥ 6 weeks).

Comparison 5 Different maintenance therapies (posthoc subgroup analyses), Outcome 3 Time to recurrence.
Figuras y tablas -
Analysis 5.3

Comparison 5 Different maintenance therapies (posthoc subgroup analyses), Outcome 3 Time to recurrence.

Comparison 5 Different maintenance therapies (posthoc subgroup analyses), Outcome 4 Time to progression.
Figuras y tablas -
Analysis 5.4

Comparison 5 Different maintenance therapies (posthoc subgroup analyses), Outcome 4 Time to progression.

Summary of findings for the main comparison. Bacillus Calmette‐Guérin (BCG) compared to mitomycin C (MMC) for Ta and T1 bladder cancer

BCG compared to MMC for Ta and T1 bladder cancer

Participants: Adults (≥18 years) with intermediate and high‐risk non‐muscle invasive urothelial bladder cancer

Setting: hospital

Intervention: BCG

Comparison: MMC

Outcomes

№ of participants
(studies)

Certainty of the evidence
(GRADE)

Relative effect
(95% CI)

Anticipated absolute effects* (95% CI)

Risk with MMC

Risk difference with BCG

Time to death from any cause (absolute effect size estimates based on event rate at 5 years).

Follow‐up: range 3.5–20 years

1132
(5 RCTs)

⊕⊕⊝⊝
Lowa,b

HR 0.97
(0.79 to 1.20)

Study population

210 per 1000c

6 fewer per 1000
(40 fewer to 36 more)

Serious adverse effects

Follow‐up: range 1.6–10 years

1024
(5 RCTs)

⊕⊕⊝⊝
Lowa,b

RR 2.31
(0.82 to 6.52)

Study population

7 per 1000

9 more per 1000
(1 fewer to 37 more)

Time to recurrence (absolute effect size estimates based on event rate at 5 years)

Follow‐up: range 3–20 years

2616
(11 RCTs)

⊕⊝⊝⊝
Lowa,b,d

HR 0.88
(0.71 to 1.09)

Study population

450 per 1000e

41 fewer per 1000
(104 fewer to 29 more)

Time to progression (absolute effect size estimates based on event rates at 5 years)

Follow‐up: range 1.6–20 years

1622
(6 RCTs)

⊕⊕⊝⊝
Lowa,b

HR 0.96
(0.73 to 1.26)

Study population

112 per 1000c

4 fewer per 1000
(29 fewer to 27 more)

Quality of life

(measured using EORTC QLQ‐BLS24 at baseline and after each installation weekly for 6 weeks)

110
(1 RCT)

Not estimablef

Not estimable

There was no evidence of a difference between BCG and MMC groups, except for abdominal bloating and flatulence, which was worse in the BCG group.f

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; HR: hazard ratio; RCT: randomised controlled trial; RR: risk ratio.

GRADE Working Group grades of evidence
High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aDowngraded one level for study limitations: concerns with performance or detection bias (or both), as well as with regard to allocation concealment and selective outcome reporting.

bDowngraded one level for imprecision: 95% CI was consistent with the possibility for important benefit and large harm.

cThe assumed risk was based on five‐year mortality rate from Gardmark 2007.

dDowngraded one level for inconsistency: variation in point estimates or substantial heterogeneity among studies (or both).

eThe assumed risk is based on five‐year mortality rate based on Ojea 2007b

fMore detailed results on quality of life were not available (conference abstract only)

Figuras y tablas -
Summary of findings for the main comparison. Bacillus Calmette‐Guérin (BCG) compared to mitomycin C (MMC) for Ta and T1 bladder cancer
Table 1. Description of interventions

Study

Intervention (route, frequency, total dose/day)

Comparator (route, frequency, total dose/day)

Michielsen 2013

I1: BCG group (full dose) for 6 weeks; each group had a specific maintenance programme.

C1: MMC group (40 mg in 50 mL saline) weekly for 6 weeks; each group had a specific maintenance programme.

NCT00974818

I1: MMC 40 mg, dissolved in 20 mL sterile water.

C1: BCG 81 mg, dissolved in 53 mL of diluent and saline.

Mangiarotti 2008

I1: therapy started 1 month after TUR. BCG Tice, weekly instillations for 6 weeks, thereafter once a month for 1 year.

C1: therapy started 1 month after TUR. MMC 40 mg in 50 mL saline for once a week for 8 weeks, thereafter for once a month for 1 year.

Friedrich 2007

I1: 6 weekly instillations of BCG RIVM 2 × 108 cfu (BCG 6 week). Therapy started 4 weeks after TUR.

C1: 6 weekly instillations of MMC 20 mg (MMC 6 week). Therapy started 4 weeks after TUR.

C2: 6 weekly instillations of MMC 20 mg followed by monthly instillations of MMC 20 mg for 3 years (MMC 3 year). Therapy started 4 weeks after TUR.

Ojea 2007b ; Ojea 2007a

I1: low‐dose BCG 27 mg. Connaught strain. Instillations started 14–21 days after TUR. The instillations were repeated once a week for 6 weeks followed by another 6 instillations given once every 2 weeks for 12 weeks.

C1: MMC 30 mg, instillations started 14–21 days after TUR. The instillations were repeated once a week for 6 weeks followed by another 6 instillations given once every 2 weeks for 12 weeks.

I2: very low‐dose BCG 13.5 mg. Connaught strain. Instillations started 14–21 days after TUR. The instillations were repeated once a week for 6 weeks followed by another 6 instillations given once every 2 weeks for 12 weeks.

Di Stasi 2003

I1: Pasteur BCG instillations with 81 mg wet weight (mean 10.2, SEM 9.0 × 108 cfu). Lyophilised BCG was suspended in 50 mL bacteriostatic‐free 0.9% saline solution. Suspension was instilled and retained for 120 minutes. Treatment started 3 weeks after TUR.

Participants who had a complete response to the initial 6 weekly treatments underwent a further 10 monthly instillations.

If cancer persisted at 3 months, a second 6‐week course was given. If disease persisted at 6 months, there was a cross‐over to a 6‐week second‐line course of BCG for participants in the 2 MMC groups and electromotive MMC for participants in the BCG group.

C1: participants were placed on fluid restriction and oral sodium bicarbonate before intravesical MMC treatments. Under ultrasound control, the bladder was thoroughly drained by repositioning the catheter or participant, or both. MMC 40 mg with 960 mg excipient NaCl dissolved in 100 mL water was instilled and retained in the bladder for 60 minutes. Treatment started 3 weeks after TUR.

C2: participants were placed on fluid restriction and oral sodium bicarbonate before intravesical MMC treatments. Under ultrasound control the bladder was thoroughly drained by repositioning the catheter or participant. Electromotive instillations of MMC 40 mg with 960 mg excipient NaCl dissolved in 100 mL water, retained for 30 minutes with 20 mA pulsed electric current (600 mA minute). Treatment started 3 weeks after TUR.

Malmström 1999

I1: BCG (Danish strain 1331) 120 mg containing 1 × l09 cfu, dissolved in 50 mL saline. Therapy was begun 1–3 weeks after TUR or biopsies, and was given weekly for 6 weeks, then monthly for up to 1 year and every 3 months during year 2.

C1: MMC 40 mg dissolved in 50 mL phosphate buffer (pH 7.4). Therapy was begun 1–3 weeks after TUR or biopsies, and was given weekly for 6 weeks, then monthly for up to 1 year and every 3 months during year 2.

Witjes 1998a

I1: Intravesical therapy was started 7–15 days after resection. BCG‐RIVM (5 × 108 bacilli in 50 mL saline) was given weekly for 6 consecutive weeks. In case of a recurrence at 3 months, a complete resection was performed, where after in BCG‐treated participants a second course was given.

C1: intravesical therapy was started 7–15 days after resection. MMC 30 mg in 50 mL saline was given weekly for 4 consecutive weeks and thereafter monthly for 5 months. In case of a recurrence at 3 months, a complete resection was performed, and instillations were continued.

Krege 1996

I1: 6 weeks after TUR, BCG 120 mg Connaught strain in 50 mL sodium chloride was instilled intravesically for 1 hour. At the same time, BCG 0.5 mg was applied subcutaneously by multiple punctures in the forearm. Therapy was continued once weekly for 6 weeks and once a month for 4 months.

C1: 6 weeks after TUR, MMC 20 mg in 50 mL sodium chloride was instilled via a catheter and kept in the bladder for 2 hours. Instillations were performed every 2 weeks during year 1 and once a month during year 2.

Witjes 1996a ; Witjes 1996b

I1: Treatment start 7–20 days after TUR. BCG‐RIVM 5 × 108 bacilli in 50 mL saline was administered once a week for 6 weeks. If disease recurred within 6 months in the BCG treatment group, a second course of 6 weekly instillations was administered after complete tumour resection.

C1: treatment start 7–20 days after TUR. MMC 30 mg in 50 mL saline instilled once a week for 1 month (weeks 1–4) and thereafter once a month for 6 months. If a recurrence was detected in the MMC group, complete resection was carried out and the MMC treatment continued monthly for another 3 months.

I2: Treatment start 7–20 days after TUR. BCG‐Tice 5 × 108 bacilli in 50 mL saline was administered once a week for 6 weeks. If disease recurred within 6 months in the BCG treatment group, a second course of 6 weekly instillations was administered after complete tumour resection.

Lamm 1995

I1: lyophilised Tice BCG 50 mg 5 × 108 cfu diluted in 50 mL of sterile, preservative‐free saline. The 50 mL suspension was instilled into the bladder by gravity flow. Participants were instructed to lie on their abdomen for 15 minutes and on their left, right and back for 15 minutes each and to retain the suspension, if possible, for 2 hours. Treatments were repeated weekly for 6 weeks and at 8 and 12 weeks, then monthly to 1 year. Treatment was initiated no sooner than 1 week and no later than 2 weeks after TUR.

C1: MMC 20 mg in 20 mL of sterile water. Treatments were repeated weekly for 6 weeks and at 8 and 12 weeks, then monthly to 1 year. Treatment was initiated no sooner than 1 week and no later than 2 weeks after TUR.

Rintala 1991

I1: Intravesical BCG 75 mg in 50 mL distilled water for 2 hours 6 × 108 cfu Pasteur Strain F. Instillations started 2 weeks after TUR. Weekly repetition during the first month, then once a month for 2 years.

C1: MMC 20–40 mg (AUC method) for 2 hours. Instillations started 2 weeks after TUR. Weekly repetition during the first month, then once a month for 2 years.

aThe term 'clinical practice setting' refers to the specification of the intervention/comparator as used in the course of a standard medical treatment (such as dose, dose escalation, dosing scheme, provision for contraindications and other important features).

AUC: area under the curve; BCG: Bacillus Calmette Guérin; C: comparator; cfu: colony‐forming units; I: intervention; MMC: mitomycin C; NaCl: sodium chloride, TUR: transurethral resection.

Figuras y tablas -
Table 1. Description of interventions
Table 2. Baseline characteristics

Study

Intervention(s) and comparator(s)

Duration of intervention (duration of follow‐up)

Description of participants

Trial period

Country

Setting

Michielsen 2013

I1: BCG full dose

Weekly for 6 weeks, each group with specific maintenance programme.

Intermediate‐risk non‐muscle invasive urothelial carcinoma of the bladder

Belgium

Hospital

C1: MMC 40 mg

Mangiarotti 2008

I1: BCG Tice

BCG weekly for 6 weeks, then 1 × month for 1 year.

MMC 1 × week for 8 weeks, then 1 × month for 1 year (follow‐up 42–45 months).

Intermediate‐risk non‐muscle invasive urothelial carcinoma of the bladder, Ta‐T1 G1‐2

Italy

Hospital

C1: MMC 40 mg

Friedrich 2007

I1: BCG RIVM 2 × 108 cfu

All 3 treatments for 6 weeks; long‐term MMC continued for 3 years

Intermediate‐risk pTa G1 tumours or pTa G2 up to pT1 tumours (G1‐3)

1995–2002

Germany

Hospital

C1: MMC 20 mg

C2: MMC 20 mg long‐term

Ojea 2007b ; Ojea 2007a

I1: BCG Connaught strain low‐dose 27 mg

Once a week for 6 weeks, followed by another 6 instillations every 2 weeks for 12 weeks.

Intermediate‐risk Ta G2 and T1 G1‐2 without Cis

1995–1998

Spain

Hospital, multicentre

I2: BCG Connaught strain very low‐dose 13.5 mg

C1: MMC 30 mg

Di Stasi 2003

I1: BCG Pasteur 81 mg

Weekly for 6 weeks, a further 6 weeks for non‐responders and a follow‐up 10 monthly treatments.

Multifocal Cis and most had concurrent pT1

1994–2001

Italy

Hospital, multicentre

C1: MMC 40 mg

C2: MMC 40 mg electromotive

Malmström 1999

I1: BCG 120 mg Danish strain

Weekly for 6 weeks, then monthly for 1 year and then every 3 months for 3 years.

Ta G1‐3 or T1 G1‐2

1987–1992

Sweden‐Norway

Hospital, multicentre

C1: MMC 40 mg

Witjes 1998a

I1: BCG RIVM

MMC: weekly for 4 weeks, then monthly for 5 months.

BCG: weekly for 6 weeks.

pTa and pT1 including Cis

1985–1986

Europe

Hospital, multicentre

C1: MMC 30 mg

Krege 1996

I: TUR

BCG: weekly for 6 weeks, then monthly for 4 months.

MMC: every 2 weeks for 12 months, then once a months for 2 years.

pTa/1 G1‐3

1985–1992

Germany

Hospital, multicentre

C1: BCG 120 mg Connaught strain

C2: MMC 20 mg

Witjes 1996a ; Witjes 1996b

I1: BCG RIVM 5 × 108 bacilli

BCG: weekly for 6 weeks, a further 6 weeks for non‐responders.

MMC: once a week for 1 month, then once a month for 6 months, for non‐responders monthly another 3 months.

Ta or T1 including Cis

1987–1990

Hospital, multicentre

I2: BCG Tice 5 × 108 bacilli

C1: MMC 30 mg

Lamm 1995

I1: BCG Tice 50 mg (5 × 108 cfu)

Weekly for 6 weeks and at 8 and 12 weeks, then monthly to 1 year.

Ta or T1 at increased risk

Hospital, multicentre

C1: MMC 20 mg

Rintala 1991

I1: BCG Pasteur strain 75 mg

Weekly for 1 month, then once per months for 2 years.

Cis G1‐3, Ta‐T1 G1‐3

1984–1987

Hospital, multicentre

C1: MMC 20–40 mg

BCG: Bacillus Calmette‐Guérin; Cis: carcinoma in situ; cfu: colony‐forming units; MMC: mitomycin C; NaCl: sodium chloride, TUR: transurethral resection.

Figuras y tablas -
Table 2. Baseline characteristics
Comparison 1. Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC)

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Time to death from any cause Show forest plot

5

1132

Hazard Ratio (Random, 95% CI)

0.97 [0.79, 1.20]

2 Serious adverse effects Show forest plot

5

1024

Risk Ratio (M‐H, Random, 95% CI)

2.31 [0.82, 6.52]

3 Time to recurrence Show forest plot

11

2616

Hazard Ratio (Random, 95% CI)

0.88 [0.71, 1.09]

4 Time to progression Show forest plot

6

1622

Hazard Ratio (Random, 95% CI)

0.96 [0.73, 1.26]

5 Adverse effects Show forest plot

10

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

5.1 Urinary frequency

4

814

Risk Ratio (M‐H, Random, 95% CI)

1.57 [0.99, 2.50]

5.2 Cystitis

5

1049

Risk Ratio (M‐H, Random, 95% CI)

1.41 [0.80, 2.51]

5.3 Incontinence

1

442

Risk Ratio (M‐H, Random, 95% CI)

2.64 [0.71, 9.83]

5.4 Cramps

1

442

Risk Ratio (M‐H, Random, 95% CI)

1.98 [0.91, 4.32]

5.5 Visible haematuria

6

1387

Risk Ratio (M‐H, Random, 95% CI)

1.61 [1.20, 2.16]

5.6 Prostatitis

3

379

Risk Ratio (M‐H, Random, 95% CI)

5.09 [0.87, 29.87]

5.7 Epididymitis

3

379

Risk Ratio (M‐H, Random, 95% CI)

3.51 [1.17, 10.55]

5.8 Fever

6

1387

Risk Ratio (M‐H, Random, 95% CI)

2.87 [0.97, 8.48]

5.9 General malaise/discomfort

3

830

Risk Ratio (M‐H, Random, 95% CI)

1.75 [0.61, 4.97]

5.10 Fatigue

2

322

Risk Ratio (M‐H, Random, 95% CI)

4.98 [0.07, 350.40]

5.11 Allergic reactions

5

1155

Risk Ratio (M‐H, Random, 95% CI)

0.38 [0.14, 1.07]

5.12 Dysuria

2

758

Risk Ratio (M‐H, Random, 95% CI)

1.14 [0.69, 1.90]

5.13 Skin alterations

2

465

Risk Ratio (M‐H, Random, 95% CI)

2.37 [0.07, 76.28]

5.14 Pain

3

742

Risk Ratio (M‐H, Random, 95% CI)

1.45 [1.16, 1.82]

5.15 Nausea

2

692

Risk Ratio (M‐H, Random, 95% CI)

1.38 [1.02, 1.87]

5.16 Bacterial cystitis

3

848

Risk Ratio (M‐H, Random, 95% CI)

1.29 [0.99, 1.68]

5.17 Drug‐induced cystitis

3

848

Risk Ratio (M‐H, Random, 95% CI)

1.55 [0.83, 2.91]

5.18 Systemic adverse events

2

867

Risk Ratio (M‐H, Random, 95% CI)

12.64 [2.56, 62.55]

Figuras y tablas -
Comparison 1. Bacillus Calmette‐Guérin (BCG) versus mitomycin C (MMC)
Comparison 2. Different doses of Bacillus Calmette‐Guérin (BCG) (subgroup analyses)

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Serious adverse effect (subgroup analyses) Show forest plot

5

1024

Risk Ratio (M‐H, Fixed, 95% CI)

2.45 [0.89, 6.73]

1.1 BCG 120 mg

2

465

Risk Ratio (M‐H, Fixed, 95% CI)

4.46 [0.76, 26.16]

1.2 BCG < 120 mg

3

559

Risk Ratio (M‐H, Fixed, 95% CI)

1.64 [0.46, 5.86]

Figuras y tablas -
Comparison 2. Different doses of Bacillus Calmette‐Guérin (BCG) (subgroup analyses)
Comparison 3. Different doses of mitomycin C (MMC) (subgroup analyses)

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Time to recurrence (subgroup analyses) Show forest plot

11

Hazard Ratio (Fixed, 95% CI)

0.88 [0.77, 1.00]

1.1 MMC 30 mg

5

Hazard Ratio (Fixed, 95% CI)

1.04 [0.86, 1.26]

1.2 MMC 20 mg

3

Hazard Ratio (Fixed, 95% CI)

0.85 [0.67, 1.07]

1.3 MMC 40 mg

2

Hazard Ratio (Fixed, 95% CI)

0.60 [0.40, 0.90]

1.4 MMC mixed dose (20–40 mg)

1

Hazard Ratio (Fixed, 95% CI)

0.50 [0.29, 0.85]

Figuras y tablas -
Comparison 3. Different doses of mitomycin C (MMC) (subgroup analyses)
Comparison 4. Different Bacillus Calmette‐Guérin (BCG) strains (subgroup analyses)

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Time to recurrence (subgroup analyses) Show forest plot

11

Hazard Ratio (Fixed, 95% CI)

0.90 [0.79, 1.02]

1.1 Connaught strain

3

Hazard Ratio (Fixed, 95% CI)

0.80 [0.59, 1.07]

1.2 Pasteur strain

2

Hazard Ratio (Fixed, 95% CI)

0.52 [0.35, 0.78]

1.3 RIVM strain

3

Hazard Ratio (Fixed, 95% CI)

1.13 [0.91, 1.41]

1.4 Tice strain

3

Hazard Ratio (Fixed, 95% CI)

0.90 [0.72, 1.12]

Figuras y tablas -
Comparison 4. Different Bacillus Calmette‐Guérin (BCG) strains (subgroup analyses)
Comparison 5. Different maintenance therapies (posthoc subgroup analyses)

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Time to death from any cause Show forest plot

5

Hazard Ratio (Random, 95% CI)

0.97 [0.79, 1.20]

1.1 ≥ 6 weeks

2

Hazard Ratio (Random, 95% CI)

0.94 [0.65, 1.36]

1.2 > 1 year

3

Hazard Ratio (Random, 95% CI)

0.99 [0.77, 1.27]

2 Serious adverse effects (≥ 6 weeks) Show forest plot

5

1024

Risk Ratio (M‐H, Random, 95% CI)

2.31 [0.82, 6.52]

2.1 ≥ 6 weeks

3

724

Risk Ratio (M‐H, Random, 95% CI)

2.09 [0.56, 7.84]

2.2 > 1 year

2

300

Risk Ratio (M‐H, Random, 95% CI)

2.71 [0.51, 14.48]

3 Time to recurrence Show forest plot

10

Hazard Ratio (Random, 95% CI)

0.86 [0.68, 1.09]

3.1 ≥ 6 weeks

5

Hazard Ratio (Random, 95% CI)

1.12 [0.85, 1.47]

3.2 > 1 year

5

Hazard Ratio (Random, 95% CI)

0.68 [0.56, 0.82]

4 Time to progression Show forest plot

7

Hazard Ratio (Random, 95% CI)

1.00 [0.79, 1.26]

4.1 ≥ 6 weeks

3

Hazard Ratio (Random, 95% CI)

1.23 [0.85, 1.77]

4.2 > 1 year

4

Hazard Ratio (Random, 95% CI)

0.86 [0.63, 1.16]

Figuras y tablas -
Comparison 5. Different maintenance therapies (posthoc subgroup analyses)