Scolaris Content Display Scolaris Content Display

การให้ยาครั้งเดียวแบบอัตโนมัติเทียบกับการให้ยาขนาดน้อยแบบต่อเนื่องสำหรับการรักษาอาการปวดโดยการให้ทาง epidural สำหรับการเจ็บครรภ์คลอด

Collapse all Expand all

บทคัดย่อ

บทนำ

การรักษาอาการปวดแบบ epidural มักใช้เพื่อบรรเทาความเจ็บปวดระหว่างการเจ็บครรภ์คลอดและการคลอดบุตร และเกี่ยวข้องกับการบริหารยาชาเฉพาะที่ (LA) เข้าไปในช่องเหนือไขสันหลัง (epidura)l ส่งผลให้เกิดการระงับความรู้สึกของช่องท้อง เชิงกราน และฝีเย็บ Opioids ทาง epidural จะใช้ร่วมกันเพื่อเพิ่มการระงับอาการปวด การบริหารยาสำหรับ epidural สามารถทำได้โดยการการให้ยาขนาดน้อยแบบต่อเนื่อง (BI) หรือการให้ยาทั้งหมดแบบกำหนดอัตโนมัติ (AMB) ด้วย BI ยาจะได้รับการให้อย่างต่อเนื่องในขณะที่ AMB เกี่ยวข้องกับการฉีดยาตามช่วงเวลาที่กำหนด การระงับปวดแบบ epidural ที่ควบคุมโดยผู้ป่วย (PCEA) เพิ่มเติมจาก AMB หรือ BI ช่วยให้ผู้ป่วยสามารถเริ่มการให้ยาแก้ปวดเพิ่มเติมได้ 

วิธีการที่เหนือกว่าในการให้ยาแก้ปวดจะส่งผลให้อุบัติการณ์ของความเจ็บปวดที่ต้องใช้การจัดการของวิสัญญีแพทย์ลดลง (breakthrough pain) นอกจากนี้ น่าจะสัมพันธ์กับอุบัติการณ์ที่ลดลงของผลข้างเคียงที่เกี่ยวกับ epidural รวมถึงการผ่าตัดคลอด การคลอดด้วยเครื่องมือ (การใช้คีมหรืออุปกรณ์สุญญากาศ) การรักษาอาการเจ็บครรภ์เป็นเวลานาน และการใช้ LA อย่างไรก็ตาม ยังขาดหลักฐานที่ชัดเจนเกี่ยวกับความเหนือกว่าของเทคนิคใดเทคนิคหนึ่ง นอกจากนี้ ความแตกต่างในการเริ่มต้นของ epidural analgesia เช่น การรวม spinal‐epidural (CSE) (ยาที่ให้เข้าไปในช่องไขสันหลังนอกเหนือไปจากช่อง epidural) เมื่อเทียบกับ epidural เท่านั้น และยาที่ใช้ (ชนิดและขนาดยาของ LA หรือ opioids) อาจไม่ได้รับการพิจารณาในการทบทวนวรรณกรรมก่อนหน้านี้ 

การทบทวนวรรณกรรมอย่างเป็นระบบก่อนหน้านี้ของเราชี้ให้เห็นว่า AMB ช่วยลดอุบัติการณ์ของ breakthrough pain เมื่อเทียบกับ BI โดยไม่มีความแตกต่างอย่างมีนัยสำคัญในอุบัติการณ์ของการผ่าตัดคลอดหรือการคลอดด้วยเครื่องมือ ระยะเวลาของการรักษาอาการเจ็บครรภ์เ และการใช้ LA อย่างไรก็ตาม มีการศึกษาหลายชิ้นที่เปรียบเทียบ AMB และ BI ตั้งแต่นั้นมา และการรวมข้อมูลเหล่านี้อาจปรับปรุงความแม่นยำของการประมาณผลของเรา

วัตถุประสงค์

เพื่อประเมินประโยชน์และผลเสียของ AMB เทียบกับ BI ในการรักษาความเจ็บปวดระหว่างการเจ็บครรภ์คลอดแบบ epidural ในสตรีตั้งครรภ์ครบกำหนด

วิธีการสืบค้น

เราค้นหา CENTRAL, Wiley Cochrane Library), MEDLINE, (National Library of Medicine), Embase(Elseiver), Web of Science (Clarivate), WHO‐ICTRP (World Health Organization) และ ClinicalTrials.gov (National Library of Medicine) ในวันที่ 31 ธันวาคม 2022 นอกจากนี้ เรายังคัดกรองรายการอ้างอิงของการทดลองและการทบทวนวรรณกรรมที่เกี่ยวข้องสำหรับเอกสารอ้างอิงที่เข้าเกณฑ์ และเราได้ติดต่อผู้ประพันธ์การศึกษาที่รวบรวมเพื่อหางานวิจัยที่ไม่ได้ตีพิมพ์และการทดลองที่กำลังดำเนินอยู่

เกณฑ์การคัดเลือก

เรารวมการศึกษาแบบสุ่มที่มีกลุ่มควบคุมทั้งหมดที่เปรียบเทียบการให้ยาแบบ AMB กับ BI ระหว่างการระงับความรู้สึกเจ็บปวดแบบ epidural เราไม่รวมการศึกษาสตรีในภาวะคลอดก่อนกำหนด การตั้งครรภ์แฝด ทารกในครรภ์ผิดปกติ การใช้สายสวน intrathecal การศึกษาที่ไม่ได้ใช้ยาแบบอัตโนมัติ และการศึกษาที่รวม AMB และ BI

การรวบรวมและวิเคราะห์ข้อมูล

เราใช้วิธีการมาตรฐานสำหรับการทบทวนอย่างเป็นระบบและ meta‐analysis ที่อธิบายโดย Cochrane ผลลัพธ์หลักได้แก่ อุบัติการณ์ของความเจ็บปวดที่ต้องมีการจัดการของวิสัญญีแพทย์ อุบัติการณ์ของการผ่าตัดคลอด; และอุบัติการณ์การคลอดด้วยเครื่องมือ ประการที่สอง เราประเมินระยะเวลาของการคลอด การใช้ LA ต่อชั่วโมงโดยใช้ bupivacaine equivalents ความพึงพอใจของมารดาหลังคลอดทารกในครรภ์ และคะแนน Apgar ของทารกแรกเกิด 

การวิเคราะห์กลุ่มย่อยต่อไปนี้ได้รับเลือก ตามลำดับความสำคัญ: การแก้ปวดโดย epidural อย่างเดียวกับเทคนิค CSE; สูตรที่ใช้ PCEA กับสูตรที่ไม่ได้ใช้ และ nulli‐ parous เทียบกับ nulli‐ และ multi‐parous รวมกัน

เราใช้ระบบ GRADE เพื่อประเมินความเชื่อมั่นของหลักฐานที่เกี่ยวข้องกับการวัดผลของเรา

ผลการวิจัย

เรารวบรวมการศึกษา 18 ฉบับ มีสตรี 4590 คน โดย 13 ฉบับศึกษาในสตรีครรภ์แรกที่มีสุขภาพดี และ 5 ฉบับศึกษาในสตรีที่เป็นครรภ์แรกและครรภ์หลังที่มีสุขภาพดี การศึกษาทั้งหมดไม่รวมสตรีที่มีครรภ์คลอดก่อนกำหนดหรือตั้งครรภ์ที่มีภาวะแทรกซ้อน เทคนิคที่ใช้ในการเริ่มต้นการระงับปวดแบบ epidural แตกต่างกันระหว่างการศึกษา: การศึกษา 7 ฉบับ ใช้การระงับปวดแบบ spinal epidural ร่วมกัน, การศึกษา 10 ฉบับใช้การระงับปวดแบบ epidural และ การศึกษา 1 ฉบับใช้ dural puncture epidural (DPE) นอกจากนี้ยังมีความแตกต่างในยาแก้ปวดที่ใช้ การศึกษา 8 ฉบับใช้ ropivacaine ร่วมกับ fentanyl, การศึกษา 3 ฉบับใช้ ropivacaine ร่วมกับ sufentanil, การศึกษา 2 ฉบับใช้ levobupivacaine ร่วมกับ sufentanil, การศึกษา 1 ฉบับใช้ levobupivacaine ร่วมกับ fentanyl และ การศึกษา 4 ฉบับใช้ bupivacaine ร่วมกับ fentanyl การศึกษาส่วนใหญ่ได้รับการประเมินว่ามีความเสี่ยงต่ำของอคติใน randomisation, blinding, attrition และ reporting ยกเว้น allocation concealment ที่มีการศึกษา 8 ฉบับที่ได้รับการประเมินว่ามีความเสี่ยงของการมีอคติที่ไม่แน่นอน และการศึกษา 3 ฉบับมีความเสี่ยงของการมีอคติสูง

ผลลัพธ์ของเราแสดงให้เห็นว่า AMB มีความสัมพันธ์กับอุบัติการณ์ของอาการปวดขั้นรุนแรงที่ต่ำกว่าเมื่อเทียบกับ BI (risk ratio (RR) 0.71; 95% ช่วงความเชื่อมั่น (CI) 0.55 ถึง 0.91; I 2 = 57%) (การศึกษา 16 ฉบับ ผู้เข้าร่วม 1528 คน) และ ปริมาณการใช้ LA ต่อชั่วโมงที่ต่ำกว่าโดยใช้ bupivacaine equivalents (mean difference (MD) ‐0.84 มก./ชม. 95% CI ‐1.29 ถึง ‐0.38, I 2 = 87%) (การศึกษา 16 ฉบับ ผู้เข้าร่วม 1642 คน) ทั้งสองมีความเชื่อมั่นในระดับปานกลาง AMB เกี่ยวข้องกับการลดลงโดยประมาณของอุบัติการณ์ความเจ็บปวดที่เกิดระหว่างให้ยา 29.1% (อุบัติการณ์ 202 ต่อ 1000, 95% CI 157 ถึง 259) ดังนั้นจึงถือว่ามีนัยสำคัญทางคลินิก

อุบัติการณ์ของการผ่าตัดคลอด (RR 0.85; 95% CI 0.69 ถึง 1.06; I 2 = 0%) (การศึกษา 16 ฉบับ ผู้เข้าร่วม 1735 คน) และการคลอดด้วยเครื่องมือ (RR 0.85; 95% CI 0.71 ถึง 1.01; I 2 = 0%) (การศึกษา 17 ฉบับ ผู้เข้าร่วม 4550 คน) ไม่มีนัยสำคัญ ทั้ง 2 ฉบับมีความเชื่อมั่นในระดับปานกลาง ไม่มีความแตกต่างอย่างมีนัยสำคัญในระยะเวลาของการระงับเจ็บครรภ์คลอด (MD ‐8.81 นาที; 95% CI ‐19.38 ถึง 1.77; I 2 = 50%) (การศึกษา 17 ฉบับ ผู้เข้าร่วม 4544 คน) มีความเชื่อมั่นในระดับปานกลาง เนื่องจากความแตกต่างในวิธีการและระยะเวลาในการวัดผล เราจึงไม่ได้รวบรวมข้อมูลสำหรับความพึงพอใจของมารดาและคะแนน Apgar ผลลัพธ์ที่รายงานโดยการบรรยายบ่งชี้ว่า AMB อาจเกี่ยวข้องกับความพึงพอใจของมารดาที่เพิ่มขึ้น (การศึกษา 8 ฉบับรายงานความพึงพอใจที่เพิ่มขึ้น และ การศึกษา 6 ฉบับ รายงานว่าไม่มีความแตกต่าง) และการศึกษาทั้งหมดพบว่าไม่มีความแตกต่างในคะแนน Apgar

ยกเว้น epidural อย่างเดียวเทียบกับ CSE ซึ่งพบความแตกต่างอย่างมีนัยสำคัญในกลุ่มย่อยในการใช้ LA ระหว่าง AMB และ BI ไม่พบความแตกต่างที่มีนัยสำคัญในการวิเคราะห์กลุ่มย่อยที่เหลือ

ข้อสรุปของผู้วิจัย

โดยรวมแล้ว AMB มีความสัมพันธ์กับการลดลงของอุบัติการณ์ของความเจ็บปวดที่รุนแรง การใช้ LA ลดลง และอาจทำให้ความพึงพอใจของมารดาดีขึ้น ไม่มีความแตกต่างที่มีนัยสำคัญระหว่าง AMB และ BI ในอุบัติการณ์ของการผ่าตัดคลอด การคลอดด้วยเครื่องมือ ระยะเวลาของการระงับการเจ็บครรภ์คลอด และคะแนน Apgar จำเป็นต้องมีการศึกษาขนาดใหญ่เพื่อประเมินอุบัติการณ์ของการผ่าตัดคลอดและการคลอดด้วยเครื่องมือ

PICOs

Population
Intervention
Comparison
Outcome

The PICO model is widely used and taught in evidence-based health care as a strategy for formulating questions and search strategies and for characterizing clinical studies or meta-analyses. PICO stands for four different potential components of a clinical question: Patient, Population or Problem; Intervention; Comparison; Outcome.

See more on using PICO in the Cochrane Handbook.

ข้้อสรุปภาษาธรรมดา

การให้ยาทั้งหมดอย่างรวดเร็วแบบอัตโนมัติช่วยบรรเทาอาการเจ็บครรภ์คลอดแบบ epidural ได้ดีกว่าการให้ยาขนาดน้อยแบบต่อเนื่องหรือไม่

ใจความสำคัญ

‐ เมื่อใช้เพื่อคงการระงับอาการปวดระหว่างการคลอดบุตรแบบ epidural การให้ยาทั้งหมดอย่างรวดเร็วแบบอัตโนมัติ มีความสัมพันธ์กับการลดลงของอุบัติการณ์ของความเจ็บปวดที่ต้องใช้การรักษาทางคลินิกและการใช้ยา เมื่อเทียบกับการให้ยาขนาดน้อยแบบต่อเนื่อง

‐ ทั้งการให้ยาทั้งหมดอย่างรวดเร็วแบบอัตโนมัติและการให้ยาขนาดน้อยแบบต่อเนื่อง มีความคล้ายคลึงกันในอุบัติการณ์ที่เกี่ยวข้องกันของการผ่าตัดคลอด การคลอดด้วยเครื่องมือ และระยะเวลาของการรักษาความเจ็บปวดแบบ epidural ระหว่างการเจ็บครรภ์คลอด

วิธีการรักษาอาการปวดแบบ epidural ระหว่างการคลอดมีอะไรบ้าง

Epidurals มักใช้เพื่อบรรเทาอาการปวดระหว่างการคลอดและเกี่ยวข้องกับการบริหารยาชาเฉพาะที่ในพื้นที่ epidural รอบกระดูกสันหลัง ในภาพกว้าง สามารถให้ยาได้โดยใช้สองเทคนิค: การให้ยาขนาดน้อยแบบต่อเนื่อง (BI) และการให้ยาทั้งหมดอย่างรวดเร็วแบบอัตโนมัติ (AMB) ด้วย BI การให้ยาโดยไม่หยุดในช่วงเวลาที่นานออกไป ในขณะที่ AMB เกี่ยวข้องกับการบริหารยาตามช่วงเวลาที่กำหนดโดยให้แต่ละโดสภายในระยะเวลาสั้นๆ

วิธีการที่เหนือกว่าในการให้ยาแก้ปวดจะส่งผลให้บรรเทาอาการปวดได้อย่างมีประสิทธิภาพและมีอัตราการเกิดความเจ็บปวดที่ต้องอาศัยการรักษาของวิสัญญีแพทย์ต่ำ (หรือที่เรียกว่าความเจ็บปวดแบบรุนแรง) นอกจากนี้ยังเกี่ยวข้องกับอุบัติการณ์ที่ลดลงของผลข้างเคียงที่เกี่ยวข้องกับให้ยาทาง epidural ซึ่งรวมถึงการผ่าตัดคลอด การคลอดด้วยเครื่องมือ (การใช้คีมหรืออุปกรณ์สุญญากาศเพื่อช่วยการคลอด) การบรรเทาความเจ็บปวดจากการเจ็บครรภ์เป็นเวลานาน และการต้องเพิ่มการใช้ยาชาเฉพาะที่

เราต้องการค้นหาอะไร

การศึกษาก่อนหน้านี้ได้รายงานข้อมูลที่ขัดแย้งกันว่าวิธีใด (AMB เทียบกับ BI) ให้การบรรเทาความเจ็บปวดระหว่างการคลอดที่เหนือกว่า และการทบทวนวรรณกรรมอย่างเป็นระบบก่อนหน้านี้ล้าสมัย เนื่องจากมีการศึกษาใหม่หลายฉบับที่ตีพิมพ์ในหัวข้อนี้ การรวมข้อมูลของพวกเขาอาจปรับปรุงความแม่นยำของผลลัพธ์ของเราเกี่ยวกับประสิทธิภาพและผลกระทบที่อาจเกิดขึ้นของ AMB เทียบกับ BI เพื่อบรรเทาอาการปวดระหว่างการคลอดแบบ epidural 

ดังนั้นเราจึงมุ่งเปรียบเทียบ AMB กับ BI ในแง่ของ:

‐ อุบัติการณ์ของความเจ็บปวดที่รุนแรง (ความเจ็บปวดที่เกิดขึ้นระหว่างการระงับปวดระหว่าคลอดที่ต้องได้รับความช่วยเหลือจากวิสัญญีแพทย์)

‐ อุบัติการณ์ของการผ่าตัดคลอด

‐ อุบัติการณ์ของการช่วยคลอดโดยเครื่องมือ

นอกจากนี้ เราเปรียบเทียบ AMB กับ BI ในแง่ของระยะเวลาของการใช้การระงับความรู้สึกเจ็บปวดโดย epidural และการใช้ยาชาเฉพาะที่

เราทำอะไร

เราค้นหาการศึกษาที่เปรียบเทียบ AMB กับ BI สำหรับการบรรเทาความเจ็บปวดจากการคลอดโดย epidural เราเปรียบเทียบและสรุปผลการศึกษาเหล่านี้และให้คะแนนความเชื่อมั่นของเราในหลักฐาน โดยพิจารณาจากปัจจัยต่างๆ เช่น วิธีการศึกษาและขนาด

เราพบอะไร

การทบทวนวรรณกรรมของเรารวบรวมการศึกษา 18 ฉบับ ที่เกี่ยวข้องกับสตรี 4590 คนในการตั้งครรภ์ครบกำหนดที่ไม่มีภาวะแทรกซ้อน โดยรวมแล้ว เราพบว่า AMB มีความสัมพันธ์กับอุบัติการณ์ของความเจ็บปวดที่รุนแรงและการใช้ยาชาเฉพาะที่ต่ำกว่าเมื่อเทียบกับ BI แต่ทั้งสองวิธีเทียบเคียงกันได้ในเรื่องอุบัติการณ์ของการผ่าตัดคลอด การคลอดด้วยเครื่องมือ และระยะเวลาของการระงับการเจ็บครรภ์แบบ epidural

ข้อจำกัดของหลักฐานคืออะไร

เรามีความเชื่อมั่นปานกลางในหลักฐาน แต่ถูกจำกัดด้วยปัจจัยหลักสองประการ ประการแรก มีความแตกต่างระหว่างการศึกษาในวิธีการของตน ซึ่งรวมถึงความแตกต่างในประเภทของยาที่ใช้ ระยะของการเจ็บครรภ์ที่ทำการให้ยาแก้ปวดแบบ epidural และการใช้รูปแบบการระงับปวดพร้อมกันนอกเหนือจากการระงับการเจ็บครรภ์แบบ epidural ความแตกต่างเหล่านี้ระหว่างการศึกษาที่รวบรวมอาจส่งผลต่อความแตกต่างที่สังเกตได้ระหว่าง AMB และ BI ประการที่สอง ผลลัพธ์บางส่วนของเรามาจากข้อมูลที่ได้รับจากสตรีจำนวนน้อย ซึ่งอาจจำกัดความแม่นยำของการค้นพบของเรา

หลักฐานนี้เป็นปัจจุบันแค่ไหน

การตรวจสอบนี้ปรับปรุงการตรวจสอบก่อนหน้าของเรา และหลักฐานเป็นปัจจุบันถึงวันที่ 31 ธันวาคม 2022

Authors' conclusions

Implications for practice

This systematic review found moderate‐certainty evidence that the use of automated mandatory bolus (AMB) for maintenance of labour analgesia was associated with a decrease in the incidence of breakthrough pain requiring anaesthetic intervention as compared with basal infusion (BI). There is also moderate‐certainty evidence that AMB is associated with reduced hourly local anaesthetic consumption, compared to BI. However, both AMB and BI were associated with comparable incidence of caesarean or instrumental delivery, with moderate certainty. There was no significant difference in duration of labour analgesia between AMB and BI, with moderate certainty. Finally, AMB may be associated with increased maternal satisfaction, but without change in Apgar scores compared to BI.

Implications for research

The certainty of evidence pertaining to the incidence of caesarean and instrumental delivery were mainly limited by imprecision due to the limited number of events resulting in wide confidence intervals. Hence, larger studies assessing these outcomes are required. Furthermore, the majority of studies did not examine the effects of AMB or BI on motor blockade, which may have implications on the incidence of caesarean or instrumental delivery. Additional well‐designed and adequately powered studies utilising standardised definitions for motor block such as the modified Bromage score are required to better delineate this outcome.

The labour stage at which neuraxial analgesia was initiated, the use of concurrent or prior forms of analgesia, and augmentation of labour with oxytocin may influence our outcome measures, but were not adequately controlled in available studies. Furthermore, patient‐centric outcomes, such as maternal satisfaction or cost‐effectiveness analysis, could also be considered given the recent advancements in pump technology.

Summary of findings

Open in table viewer
Summary of findings 1. Automated mandatory bolus versus basal infusion for maintenance of epidural analgesia in labour

Automated mandatory bolus versus basal infusion for maintenance of epidural analgesia in labour

Patient or population: term, pregnant women (nulliparous, or combination of nulli‐ and muliparous) requesting for labour epidural analgesia
Setting: labour ward
Intervention: programmed intermittent boluses (after initiation with combined spinal‐epidural, or epidural alone)
Comparison: continuous infusion (after initiation with combined spinal‐epidural, or epidural alone)

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

№ of participants
(studies)

Certainty of the evidence
(GRADE)

Risk with basal infusion

Risk with automated mandatory boluses

Breakthrough pain
assessed with: need for anaesthetic intervention during labour epidural analgesia

Study population

RR 0.71
(0.55 to 0.91)

1528
(16 RCTs)

⊕⊕⊕⊝
Moderatea

285 per 1000

202 per 1000

(157 to 259)

Caesarean delivery during labour epidural analgesia

Study population

RR 0.85
(0.69 to 1.06)

1735
(16 RCTs)

⊕⊕⊕⊝
Moderateb

173 per 1000

147 per 1000

(120 to 184)

Instrumental delivery during labour epidural analgesia

Study population

RR 0.85
(0.71 to 1.01)

4550
(17 RCTs)

⊕⊕⊕⊝ 

Moderateb

95 per 1000

81 per 1000

(68 to 96)

Duration of labour analgesia in minutes

The mean duration of labour in min ranged from 186.3 to 689.9 min

MD 8.81 min lower
(19.38 lower to 1.77 higher)

4544
(17 RCTs)

⊕⊕⊕⊝
Moderateb

Local anaesthetic consumption per hour (mg/hr)c during labour epidural analgesia

The mean local anaesthetic consumption per hour ranged from 3.0 mg to 16.2 mg

MD 0.84 mg/h lower
(1.29 lower to 0.38 lower)

1642
(16 RCTs)

⊕⊕⊕⊝
Moderatec,d

Maternal satisfaction following fetal delivery

Eight studies (five reported dichotomous data, three reported ordinal data) reported increased maternal satisfaction with automated mandatory boluses compared to basal infusion, while six studies found no difference between the groups.

14 RCTs

Apgar scores at 1‐ and 5‐minutes following fetal delivery

None of the studies reported any significant difference in Apgar scores

14 RCTs

*The risk in the intervention group (AMB) (and its 95% confidence interval) is based on the assumed risk in the comparison group (BI) and the relative effect of the intervention (and its 95% CI). Assumed comparator risks for dichotomous outcomes were derived from the median outcome incidence in patients receiving basal infusion within the studies included in this systematic review.

AMB: automated mandatory bolus; CI: confidence interval; MD: mean difference; RR: risk ratio.

GRADE Working Group grades of evidence
High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

Downgraded one level due to high statistical heterogeneity for this outcome, i.e. I2 = 57%.

Downgraded one level due to imprecision, i.e. the wide range from upper to lower confidence limits and the 95% CI overlaps no effect.

c Converted into bupivacaine equivalents to account for variation in the type of local anaesthetic utilised. 

Downgraded one level due to high statistical inconsistency for this outcome, i.e. I2 = 87%.

Background

Description of the condition

Many women find labour and childbirth to be an extremely painful experience. Provision of pain relief (analgesia) during labour depends on each individual woman's needs and wishes, and requires consideration of medication effectiveness, risk of adverse effects, drug transfer to the fetus, and personal preferences. Modalities used to provide pain relief during labour include epidural analgesia, systemic opioids, nitrous oxide, and non‐pharmacological methods (Jones 2012).

Contemporary epidural analgesia involves the administration of dilute local anaesthetic solutions such as bupivacaine and ropivacaine into the epidural space, resulting in sensory blockade of the lower abdomen, pelvis, and perineum. Opioids including fentanyl and sufentanil are often co‐administered together with local anaesthetic into the epidural space to supplement and improve the analgesic effects. However, there is significant variability in current practice, which involves a variety of local anaesthetics (such as ropivacaine or bupivacaine) and opioids (including fentanyl or sufentanil) used to achieve labour epidural analgesia, at varying doses (Anim‐Somuah 2018Tan 2019). Epidural analgesia can also be initiated through several techniques, including combined spinal‐epidural (CSE: medications given into the intrathecal space via a spinal needle in addition to epidural space), dural puncture epidural (DPE: puncture of the dura with a spinal needle without administration of intrathecal medications, followed by delivery of medications into the epidural space), and the standard epidural technique (administration of medications into the epidural space only) (Anim‐Somuah 2018Tan 2019).

Description of the intervention

Broadly, the delivery of medications into the epidural space can be accomplished via two techniques: basal infusion (BI) and automated mandatory bolus (AMB). BI (also known as continuous epidural infusion, CEI) involves administration of medications without interruption over an extended period of time. Although the analgesic efficacy of BI is well established, it has been associated with higher local anaesthetic consumption and motor blockade, which may impair maternal ability to bear down during the second stage of labour and increase the incidence of instrumental delivery and fetal complications such as shoulder dystocia (Thornton 2001).

Conversely, AMB (also known as programmed intermittent epidural bolus, PIEB) involves the administration of medications into the epidural space at set time intervals with each dose delivered within a short period of time (Wong 2006). AMB delivers medications into the epidural space at higher flow rates compared to BI, which may improve medication spread and distribution within the epidural space. Several studies have reported lower local anaesthetic consumption, decreased motor blockade, reduced incidence of instrumental deliveries, and improved patient satisfaction with AMB compared to BI (Capogna 2011Fettes 2006Leo 2010George 2013Wong 2006).

The addition of patient‐controlled epidural analgesia (PCEA) on top of BI or AMB techniques enables patient‐initiated boluses of local anaesthetic to treat labour pain. Compared to BI alone, the addition of PCEA has been shown to reduce breakthrough pain, decrease local anaesthetic consumption without compromising analgesic efficacy, and improve patient satisfaction (Loubert 2011).

How the intervention might work

Cadaveric and experimental models have demonstrated that AMB resulted in wider and more uniform spread within the epidural space compared to BI (Kaynar 1999Hogan 2002). For instance, Kaynar and Shankar compared the spread of contrast agent within the epidural space when administered via AMB or BI techniques though a multi‐orifice epidural catheter, and showed that AMB resulted in a wider and more uniform spread of contrast agent, while BI was associated with limited spread that was exclusively through the proximal orifice of the epidural catheter (Kaynar 1999). Furthermore, Hogan discovered that fluid spread within the epidural space occurred in a highly non‐uniform manner through multiple small channels (Hogan 2002). Thus, it was hypothesised that higher injectate flow rates associated with the AMB technique enhances local anaesthetic spread by engaging the other catheter orifices and channels within the epidural space, which may in turn result in reduced local anaesthetic consumption, decreased motor blockade, and improved analgesic efficacy (Riazanova 2019).

Why it is important to do this review

The AMB technique for labour analgesia necessitates the use of more sophisticated drug delivery pumps that may not be commonly available. In addition, the transition to pumps that are capable of AMB may incur the need for additional provider training and increase healthcare‐related costs.

Furthermore, available evidence regarding the benefits of AMB over BI is conflicting. Although several studies reported improved analgesia, reduction in the incidence of breakthrough pain (pain requiring anaesthesiologist intervention, despite receiving epidural analgesia), and less motor blockade with the AMB technique (Chua 2004Lim 2005Fettes 2006Wong 2006Capogna 2011Sia 2013Ferrer 2017), others suggest there was no significant difference compared to BI (Salim 2005Sia 2007Leo 2010Lim 2010Capogna 2011). Given the lack of clear evidence of clinical superiority of either AMB or BI techniques, our previous version of this systematic review (Sng 2018) was performed to provide a comprehensive summary of evidence comparing AMB versus BI for labour analgesia. We considered relevant anaesthetic, obstetric and fetal outcomes including the incidence of breakthrough pain, caesarean delivery, instrumental delivery, local anaesthetic consumption, and duration of labour analgesia. Our findings suggested, with moderate‐certainty, that AMB was associated with lower incidence of breakthrough pain, without significant change in mean duration of labour analgesia or hourly local anaesthetic consumption. Also, AMB was not associated with significant change in the incidence of caesarean delivery or instrumental delivery compared to BI, with low certainty. 

However, since the publication of the previous version of this review (Sng 2018), several studies examining the effectiveness of AMB and BI for labour analgesia have been performed, and updating our pooled results may improve the precision of our effect estimates. By evaluating important clinical outcomes associated with AMB or BI, we aim to justify adoption of the superior epidural delivery method for labour analgesia, which may in turn improve analgesic effectiveness and maternal and fetal outcomes.

Objectives

To assess the benefits and harms of automated mandatory bolus (AMB) versus basal infusion (BI) for maintaining labour epidural analgesia in women at term.

Methods

Criteria for considering studies for this review

Types of studies

We included parallel‐group randomised controlled trials (RCTs) that compared automated mandatory bolus (AMB) with basal infusion (BI) for the maintenance of labour epidural analgesia, irrespective of language, publication date, or publication type. 

We excluded non‐randomised studies such as cohort studies due to their increased risk of bias, and cross‐over studies as this methodology was not appropriate to evaluate interventions administered at specific time points. 

Types of participants

We included studies involving term, pregnant women who requested for labour epidural analgesia. Studies in which a subset of participants met our eligibility criteria were included if these participants comprised at least 65% of the study population, and only data relevant to the eligible participants were analysed.

We excluded studies of women in preterm labour, with multiple pregnancies, or with fetal malposition such as breech presentations.

Types of interventions

We included studies that compared AMB with BI to maintain epidural labour analgesia. AMB was defined as automated, intermittent bolus administration of local anaesthetic into the epidural space at set time intervals. Conversely, BI was defined as continuous administration of local anaesthetic into the epidural space without interruption. All forms and doses of local anaesthetics with the addition of opioids administered during labour epidural analgesia were included. Studies that utilised patient‐controlled epidural analgesia (PCEA) were included, as long as the intervention groups compared AMB with BI.

We excluded interventions involving intrathecal or spinal catheters, those that did not use automated delivery or which utilised manual delivery of local anaesthetics to maintain labour analgesia, and interventions where AMB and BI were combined.

Types of outcome measures

Outcomes were dichotomous (breakthrough pain, caesarean delivery, and instrumental delivery), continuous (duration of labour analgesia, and local anaesthetic consumption), or ordinal (maternal satisfaction and Apgar score). 

Outcomes were measured from the start of labour analgesia to immediately after childbirth, as reported by the individual studies. Outcomes were not used as eligibility criteria for study selection.

Primary outcomes

  1. Incidence of breakthrough pain, defined as pain during labour epidural analgesia requiring anaesthetic intervention (dichotomous)

  2. Incidence of caesarean delivery (dichotomous)

  3. Incidence of instrumental delivery, defined as the use of forceps or vacuum‐assisted delivery (dichotomous)

The minimally important risk difference in incidence of breakthrough pain was set at 5%. The minimally important risk difference of caesarean delivery and instrumental delivery was set at 1%.

Methodological differences in the measurement of the outcomes were resolved by contacting the original authors, or reported narratively in our review.

Secondary outcomes

  1. Duration of labour analgesia, defined as the start of epidural analgesia to discontinuation of local anaesthetic administration (continuous)

  2. Local anaesthetic consumption per hour during labour epidural analgesia (continuous)

  3. Maternal satisfaction after fetal delivery (ordinal)

  4. Apgar scores (ordinal) at 1‐ and 5‐minutes after fetal delivery, measured by Apgar score scale

Methodological differences in the measurement of the outcomes were resolved by contacting the original authors, or reported narratively in our review.

Search methods for identification of studies

Electronic searches

Following the Cochrane guidelines for searching and identification of relevant studies (Lefebvre 2021), the databases of Cochrane Central Register of Controlled Trials (CENTRAL, Wiley Cochrane Library); MEDLINE (National Library of Medicine); Embase (Elseiver), Web of Science (Clarivate), the WHO‐ICTRP (World Health Organization) and ClinicalTrials.gov (National Library of Medicine)  were searched from inception to 31 December 2020, with our search strategies detailed in Appendix 1. Updated searches were performed from 1 January 2021 to 31 December 2021, and 1 January 2022 to 31 December 2022. Collections used for the databases were: CENTRAL ‐ all, MEDLINE ‐ Ovid Medline (R) 1946‐2022, Embase ‐ Biomedica, Web of Science ‐ Core Collection, WHO‐ICTRP ‐ all, ClinicalTrials.gov ‐ all.

No language restrictions were placed on our searches. We used free‐text terms in all databases and subject headings in combination when thesauri were a component of a database. 

Searching other resources

We reviewed the 'Related articles' feature of PubMed for all eligible trials and reviews. We screened the reference lists of all eligible trials, reviews, and systematic reviews for potentially eligible studies. We also contacted authors of included studies in this field in order to identify unpublished research and trials still underway. Reference lists of the included articles were screened for potentially relevant articles.

Data collection and analysis

A minimum of two review authors (HST, ZYZ, YYQ, FJS) independently collected and verified data on a standardised data collection form that was pilot‐tested prior to use (see Appendix 1), with a third review author (BLS) available to arbitrate any disagreements through discussion.

Selection of studies

Titles, abstracts, or records identified by our search criteria (Criteria for considering studies for this review) were uploaded into Covidence, a systematic review screening tool (Covidence). A minimum of two review authors (HST, ZYZ, YYQ, FJS) independently reviewed each title and abstract, followed by an examination of the full‐text documents to identify studies meeting the inclusion criteria. Conflicts were resolved by discussion, or with arbitration by a third review author (BLS). 

Data extraction and management

A minimum of two review authors (HST, ZYZ, YYQ, FJS) independently extracted the data using a standardised form that was pilot‐tested prior to use (see Appendix 1). We extracted information pertaining to the study design, method of randomisation, use of allocation concealment, blinding of caregivers and outcome assessors, reporting of the study setting and participants, inclusion and exclusion criteria, sample size, interventions, outcomes, and loss to follow‐up. Two review authors (HST, ZYZ) entered and checked the data independently, and a third review author (BLS) resolved disagreements. The included studies were checked for errata, comments and retractions. The outcomes of included studies were compared with the ones reported in ClinicalTrials.gov protocols.

Non‐English studies were professionally translated prior to data collection.

Assessment of risk of bias in included studies

A minimum of two review authors (HST, ZYZ, YYQ, FJS, RS) independently assessed trial quality and risk of bias for each study using the criteria outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011), and a third review author (BLS) resolved any disagreements.

Based on the Cochrane risk of bias tool in Review Manager Web (RevMan Web), we considered the following domains (Higgins 2011): random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias. Appendix 2 presents the details on the Cochrane risk of bias tool and criteria for judgement.

We graded each of the above dimensions of trial quality as being at low, high or unclear risk of bias. In this review, stratified analysis based on study quality was not performed given the lack of included studies with high risk of bias.

Measures of treatment effect

Dichotomous data

Dichotomous data were presented as summary risk ratio (RR) with 95% confidence intervals (CIs).

Continuous data

Continuous data were summarised as mean difference (MD) with corresponding 95% CIs.

Unit of analysis issues

The woman was the unit of analysis in all of the studies. In the case of multi‐arm studies, only the relevant groups were to be included. In the event that data from multi‐arm studies was used in single meta‐analysis, we divided the number of participants in the control group by the number of arms.

Dealing with missing data

Wherever possible, we contacted the authors of the original articles for missing data via the provided contact information in the original paper.

Assessment of heterogeneity

We evaluated clinical heterogeneity by qualitatively appraising differences in study characteristics such as participants, interventions, outcomes assessed, and study methodology. Quantitative pooling of the data was first justified by a consensus of clinical judgement of sufficient clinical homogeneity. We informally evaluated and investigated the degree of statistical heterogeneity by visual inspection of forest plots and more formally by using the Tau2, I2, and Chi2 statistics. We regarded heterogeneity as considerable if the I2 value was greater than 75%, substantial if the Ivalue was between 50% and 75%, moderate if the I2 value was between 30% and 50%, and low if the I2 value was less than 30%. In future updates of this review outcomes with substantial or considerable heterogeneity (I2 greater than 50%) will be further evaluated for sources of heterogeneity and if found, subgroup analysis or meta‐regression analysis will be considered.

Assessment of reporting biases

We checked the methodology and study protocols of the primary studies where available. We assessed publication bias and other small‐study effects in a qualitative manner using a funnel plot.

Funnel plot asymmetry was tested using weighted linear regression of effect estimates on their standard error (SE) if more than 10 trials were included in an analysis (Egger 1997).

Data synthesis

Statistical analyses were performed using RevMan Web. Data synthesis of dichotomous outcomes was performed using the Mantel‐Haenszel method, with the results presented as  RRs and 95%CIs. The inverse variance method was used for continuous outcomes, and reported as MD with 95%CI. We analysed maternal satisfaction as a continuous outcome, even if measured on an ordinal scale. Some studies administered ropivacaine or levobupivacaine local anaesthetics in place of bupivacaine. For such studies we assumed 60% potency of bupivacaine based on a similar systematic review and meta‐analysis (George 2013), and the means and standard deviations (SDs) in our results were multiplied by 0.6.

In the case of data presented in the included studies as median and range, we attempted to obtain data in the form of mean and standard deviation (SD) from the respective authors. If this was not possible, we converted the median and range to mean and SD using the formula by Hozo 2005. Data presented as 95%CI were converted to SD (Cochrane Handbook 7.7.3.2 Obtaining standard deviations from standard errors and confidence intervals for group means).

We expected both clinical and statistical heterogeneity, and therefore we used the the random‐effects model for all analyses.

Subgroup analysis and investigation of heterogeneity

The following subgroup analyses were chosen a priori based on prior evidence of association with the outcomes in this review. 

  1. Epidural technique: epidural alone versus combined spinal‐epidural technique (the dural‐puncture epidural technique was not included). Rationale: prior evidence suggests that combined spinal‐epidural technique may reduce breakthrough pain and local anaesthetic consumption (Tan 2019).

  2. PCEA: regimens that used PCEA versus those that did not. Rationale: prior studies demonstrated that PCEA use was associated with reduced local anaesthetic consumption and breakthrough pain, while other studies reported that PCEA increased local anaesthetic consumption without improving analgesia (Tan 2019).

  3. Nulliparous versus combination of nulli‐ and multi‐parous women. Rationale: nulliparity has been associated with increased risk of breakthrough pain in several studies (Tan 2019Tan 2021).

Subgroup differences were analysed by testing for heterogeneity across subgroup results (Borenstein 2013).

In addition, outcomes with substantial or considerable heterogeneity (I2 greater than 50%) were evaluated for sources of heterogeneity and if found, subgroup analysis or meta‐regression analysis were considered.

Sensitivity analysis

We did not perform sensitivity analyses on the quality of the studies because the quality of the studies was consistent across the different studies (Risk of bias in included studies). We will consider performing sensitivity analyses in future updates of this review if required.

Sensitivity analysis for trial quality involves analysis based on the rating of selection bias and attrition bias. We excluded studies of poor quality from the analysis (those rated as unclear or high risk of bias) in order to assess for any substantive difference to the overall result. The sensitivity analysis for compliance were based on trials where women did not receive their allocated treatment, combination therapy, or intervention, or if they received an additional form of analgesia to the one allocated. If required, these sensitivity analyses will be performed on the primary outcomes only.

Summary of findings and assessment of the certainty of the evidence

We used the principles of the GRADE system in order to assess the certainty of evidence associated with the following specific outcomes (Guyatt 2008).

  1. Incidence of breakthrough pain requiring anaesthesiologist intervention during labour epidural analgesia

  2. Incidence of caesarean delivery during labour epidural analgesia

  3. Incidence of instrumental delivery during labour epidural analgesia

  4. Duration of labour analgesia 

  5. Hourly dose of local anaesthetic during labour epidural analgesia

  6. Maternal satisfaction following fetal delivery

  7. Apgar score at 1‐ and 5‐minutes following fetal delivery

We constructed a summary of findings table comparing programmed AMB versus BI using GRADEpro software (GRADEpro GDT 2015). The GRADE approach is a transparent and structured system of assessing the certainty of evidence based on the confidence that an estimate of effect reflects the true value. Evidence from randomised trials were assigned high certainty, but can be downgraded based on risk of bias, inconsistency of results, indirectness of evidence, imprecision, or publication bias.

In this review, the risk of bias was considered present if there was a high risk of lack of allocation concealment or assessor blinding, significant loss to follow‐up, or selective reporting that may affect interpretation of results. The GRADE level was downgraded one level for inconsistency if I2 50% to 90%, and two levels if I2 >90%. Imprecision was considered present if the upper or lower 95% CI extended from the line of equality by >5%. Publication bias was considered significant with P < 0.05 in the Egger’s test.

Assumed comparator risks for dichotomous outcomes were derived from the median outcome incidence in patients receiving basal infusion within the studies included in this systematic review.

Results

Description of studies

Please refer to Characteristics of included studies for further details and a summary of study characteristics.

Results of the search

A total of 7704 studies were identified by our search criteria. After the removal of 3524 duplicates, titles and abstracts of 4180 studies were screened to remove clearly irrelevant studies. Subsequently, remaining 66 articles were assessed for eligibility, of which 29 were non‐full text and/or duplicates, 19 full ‐text articles were deemed non‐eligible and excluded, and 18 articles were included in our systematic review.

In addition, through screening the references of relevant studies and systematic reviews, another five studies were identified that were potentially eligible for inclusion (Fang 2016Ji 2016Wang 2016Wang 2017Zhao 2013), but we were unable to obtain full‐text copies and therefore enlisted the assistance of a medical librarian. Pending full‐text review, these five studies were considered 'awaiting classification'.

Non‐English studies (if any) were translated by an external translator.

The disposition of the identified citations is detailed in the PRISMA diagram (Figure 1).


Study flow diagram.

Study flow diagram.

Included studies

We included 18 studies involving 4590 participants (Capogna 2011Chalekar 2021Chua 2004Fan 2019Ferrer 2017Fettes 2006Fidkowski 2019Haidl 2020Leo 2010Lim 2005Lim 2010Lin 2016Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006), of which 13 enrolled healthy, term, nulliparous women (Capogna 2011Chalekar 2021Chua 2004Fan 2019Fettes 2006Leo 2010Lim 2005Lim 2010Lin 2016Morau 2019Sia 2007Sia 2013Song 2020), while five studies enrolled healthy nulli‐ or multiparous women at term (Ferrer 2017Fidkowski 2019Haidl 2020Ojo 2020Wong 2006). All studies excluded women with complicated pregnancies.

Out of 18 studies, 16 reported breakthrough pain, caesarean delivery and local anaesthetic consumption, while 17 reported instrumental delivery and duration of labour analgesia. 

The technique used to initiate epidural analgesia differed between the studies. Seven studies used combined spinal‐epidural (CSE) (Chua 2004Leo 2010Lim 2005Lim 2010Sia 2007Sia 2013Wong 2006), with two of these studies administering only intrathecal opioid (fentanyl in both) without any intrathecal local anaesthetic (Chua 2004Lim 2005). Epidural catheter without any intrathecal injection was used in ten studies (Capogna 2011Chalekar 2021Fan 2019Ferrer 2017Fettes 2006Fidkowski 2019Haidl 2020Lin 2016Morau 2019Ojo 2020), while one study (Song 2020) performed a dural puncture epidural (DPE) for both : automated mandatory bolus (AMB) and basal infusion (BI) groups.

There was also variation in the choice of analgesics and dosages used. Eight studies utilised ropivacaine with fentanyl (Chua 2004Chalekar 2021Fettes 2006Leo 2010Lim 2010Ojo 2020Sia 2007Sia 2013), three used ropivacaine with sufentanil (Fan 2019Lin 2016Song 2020), two utilised levobupivacaine with sufentanil (Capogna 2011Morau 2019), one used levobupivacaine with fentanyl (Lim 2005), and four studies utilised bupivacaine with fentanyl (Ferrer 2017Fidkowski 2019Haidl 2020Wong 2006). 

Please refer to Characteristics of included studies for additional details.

Excluded studies

Out of the 66 studies assessed for eligibility, 48 were excluded for the following reasons.

Nineteen studies full‐text reviewed and excluded:

Non‐articles and/or duplicates:

  • 26 studies ‐ trial registration or conference abstracts of studies included in this review;

  • 3 studies ‐ duplicates of included studies.

Please refer to Characteristics of excluded studies for additional details.

 

Studies awaiting classification

An additional five citations were identified from screening the references of relevant studies and systematic reviews (Fang 2016Ji 2016Wang 2016Wang 2017Zhao 2013). However, we were unable to obtain full‐text copies and therefore enlisted the assistance of a medical librarian. Pending full‐text review, these five citations were considered 'awaiting classification'.

Please refer to Studies awaiting classification for additional details.

 

Ongoing studies

No ongoing studies were identified.

Risk of bias in included studies

Please refer to Figure 2 and Figure 3 for additional details.


Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.


Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Allocation

Twelve studies utilised computer‐generated random numbers for randomisation (Capogna 2011Fan 2019Ferrer 2017Fettes 2006Haidl 2020Leo 2010Lim 2005Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006) and one study utilised shuffling of sealed envelopes as their randomisation method (Fidkowski 2019); these studies were considered to be at low risk for selection bias. However, four studies did not describe the method of randomisation (Chalekar 2021Chua 2004Lim 2010Lin 2016), and one study stated that women were randomised in blocks of four and six but no further details were provided (Morau 2019). We considered the risk of selection bias to be unclear in these studies.

Sealed opaque envelopes were used for allocation in seven studies (Capogna 2011Chua 2004Leo 2010Lim 2010Ojo 2020Sia 2007Sia 2013), and were considered at low risk of selection bias. Seven studies (Chalekar 2021Fan 2019Fettes 2006Fidkowski 2019Haidl 2020Lin 2016Wong 2006) stated that allocation concealment were performed using envelopes, but did not specify if the envelopes were sealed or if they were opaque; these studies were considered at unclear risk for selection bias. One study (Ferrer 2017) stated that the participants, caregivers and outcome assessors were not aware of the treatment allocation but did not specify how this was achieved, and was assessed to be at unclear risk for selection bias. Three studies (Lim 2005Morau 2019Song 2020) did not specify if allocation concealment was performed, and were considered at high risk of selection bias.

Blinding

Blinding of participants and outcome assessors were performed in 13 studies (Capogna 2011Fan 2019Ferrer 2017Haidl 2020Leo 2010Lim 2010Lin 2016Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006), and were considered to be at low risk of performance bias. Four studies (Chalekar 2021Chua 2004Fettes 2006Lim 2005) did not specify if the participants were blinded, and were assessed to be at unclear risk for performance bias. Fidkowski 2019 stated that participants were blinded, but anaesthesia providers were not blinded and was considered to be at high risk of performance bias. 

In assessment of detection bias, studies in which participants were not blinded were considered high risk for detection bias, as several outcomes were patient‐reported. Overall, 13 studies described blinding of both participants and outcome assessors (Capogna 2011Fan 2019Ferrer 2017Haidl 2020Leo 2010Lim 2010Lin 2016Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006) and were considered low risk for detection bias. Four studies (Chalekar 2021Chua 2004Fettes 2006Lim 2005) did not specify if participants were blinded, and one study (Fidkowski 2019) did not specify who performed the outcome assessment; these studies were considered at unclear risk of detection bias.

Incomplete outcome data

With the exception of two studies that excluded over 20% of the cohort from analysis and was assessed to be at high risk of attrition bias (Fidkowski 2019Ojo 2020), the risk of attrition bias was considered low in the remaining studies as all outcome measures were reported, without significant missing data or loss to follow up. 

Intention‐to‐treat analyses were performed in all studies, with the exception of one study that used a per protocol analysis, although this affected only two participants (Fidkowski 2019). 

Selective reporting

Outcome measures were pre‐specified and reported in all included studies, and were therefore considered to be at low risk for reporting bias. The outcomes of all included studies matched their ClinicalTrials.gov protocols.

Other potential sources of bias

No other sources of significant bias was noted in all included studies.

Effects of interventions

See: Summary of findings 1 Automated mandatory bolus versus basal infusion for maintenance of epidural analgesia in labour

See summary of findings Table 1.

Primary outcomes

1. Incidence of breakthrough pain

Breakthrough pain was reported by 16 studies (1528 women) (Capogna 2011Chalekar 2021Chua 2004Ferrer 2017Fettes 2006Fidkowski 2019Haidl 2020Leo 2010Lim 2005Lim 2010Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006). Based on the pooled results, maintenance of labour epidural analgesia using automated mandatory bolus (AMB) was associated with reduced incidence of breakthrough pain (risk ratio (RR) 0.71; 95% confidence (CI) 0.55 to 0.91) compared to basal infusion (BI), although substantial heterogeneity was present (I2 = 57%) (Analysis 1.1). Based on an assumed comparator incidence of 285 per 1000 with BI, AMB was associated with an estimated reduction in breakthrough pain incidence of 29.1% (incidence 202 per 1000, 95%CI 157 to 259), and was therefore considered clinically significant. Due to substantial heterogeneity, this result was assessed as moderate in certainty.

 

Epidural alone versus combined spinal‐epidural technique

Labour analgesia was initiated using combined‐spinal epidural (CSE) in seven studies (Chua 2004Leo 2010Lim 2005Lim 2010Sia 2007Sia 2013Wong 2006), while eight studies used epidural alone (Capogna 2011Chalekar 2021Ferrer 2017Fettes 2006Fidkowski 2019Haidl 2020Morau 2019Ojo 2020). One study used dural puncture epidural, and was not included in this subgroup analysis (Song 2020). In subgroup analysis of women who received CSE versus those who received epidural only, no significant difference was found between the subgroups in terms of the incidence of breakthrough pain (test for subgroup differences: Chi2=0.01, df=1, P = 0.94, I2 = 0%) (Analysis 1.2).

 

Regimens that used PCEA versus those that did not

Patient controlled epidural analgesia (PCEA) was utilised in nine studies (Capogna 2011Haidl 2020Leo 2010Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006), while seven studies did not use PCEA (Chalekar 2021Chua 2004Ferrer 2017Fettes 2006Fidkowski 2019Lim 2005Lim 2010). In subgroup analysis of women who received PCEA versus those who did not, no significant difference was found between the subgroups in terms of the incidence of breakthrough pain (test for subgroup differences: Chi2= 0.32, df =1, P = 0.57, I2 = 0%) (Analysis 1.3).

 

Nulliparous versus combination of nulli‐ and multi‐parous women

Out of 16 studies that reported breakthrough pain, 11 enrolled nulliparous women only (Capogna 2011Chalekar 2021Chua 2004Fettes 2006Leo 2010Lim 2005Lim 2010Morau 2019Sia 2007Sia 2013Song 2020), while five enrolled both nulliparous and multiparous women (Ferrer 2017Fidkowski 2019Haidl 2020Ojo 2020Wong 2006). In subgroup analysis of nulliparous women versus a combination of nulliparous and multiparous women, no significant difference was found between the subgroups in terms of the incidence of breakthrough pain (test for subgroup differences: Chi2 = 0.05, df = 1, P = 0.83, I 2 = 0%) (Analysis 1.4).

 

2. Incidence of caesarean delivery

The incidence of caesarean delivery was reported in 16 studies involving 1735 women (Capogna 2011Chalekar 2021Ferrer 2017Fettes 2006Fidkowski 2019Haidl 2020Leo 2010Lim 2005Lim 2010Lin 2016Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006). The pooled results showed that the use of AMB to maintain labour analgesia were not associated with significant change in the incidence of caesarean delivery compared to BI (RR 0.85; 95% CI 0.69 to 1.06) (Analysis 1.7). Although this result was associated with low heterogeneity (I2 = 0%), the overall certainty of evidence was considered moderate due to imprecision. Based on an assumed comparator incidence of 173 per 1000 with BI, AMB was associated with an estimated reduction in caesarean delivery incidence of 15.0% (incidence 147 per 1000, 95%CI 120 to 184), and was therefore considered clinically significant. 

 

Epidural alone versus combined spinal‐epidural technique

Labour analgesia was initiated using CSE in six studies (Leo 2010Lim 2005Lim 2010Sia 2007Sia 2013Wong 2006), while nine studies used epidural alone (Capogna 2011Chalekar 2021Ferrer 2017Fettes 2006Fidkowski 2019Haidl 2020Lin 2016Morau 2019Ojo 2020). One study used dural puncture epidural, and was not included in this subgroup analysis (Song 2020). In subgroup analysis of women who received epidural only versus those who received CSE, no significant difference was found between the subgroups in terms of the incidence of caesarean delivery (test for subgroup differences: Chi2 = 2.00, df = 1, P = 0.16, I2 = 50.1%) (Analysis 1.6).

 

Regimens that used PCEA versus those that did not

PCEA was utilised in ten studies (Capogna 2011Haidl 2020Leo 2010Lin 2016Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006), while six studies did not use PCEA (Chalekar 2021Ferrer 2017Fettes 2006Fidkowski 2019Lim 2005Lim 2010). In subgroup analysis of women who received PCEA versus those who did not, no significant difference was found between the subgroups in terms of the incidence of caesarean delivery (test for subgroup differences: Chi2 = 0.88, df = 1, P = 0.35, I2 = 0%) (Analysis 1.7).

 

Nulliparous versus combination of nulli‐ and multi‐parous women

Out of 16 studies that reported caesarean delivery, 11 enrolled nulliparous women (Capogna 2011Chalekar 2021Fettes 2006Leo 2010Lim 2005Lim 2010Lin 2016Morau 2019Sia 2007Sia 2013Song 2020) while five enrolled both nulliparous and multiparous women (Ferrer 2017Fidkowski 2019Haidl 2020Ojo 2020Wong 2006). In subgroup analysis of nulliparous women versus a combination of nulli‐ and multiparous women, no significant difference was found between the subgroups in terms of the incidence of caesarean delivery (test for subgroup differences: Chi2=0.43, df =1, P = 0.51, I2 = 0%) (Analysis 1.8).

 

3. Incidence of instrumental delivery

The incidence of instrumental delivery was reported in 17 studies that enrolled 4550 women (Capogna 2011Chalekar 2021Fan 2019Ferrer 2017Fettes 2006Fidkowski 2019Haidl 2020Leo 2010Lim 2005Lim 2010Lin 2016Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006). The use of AMB or BI was not associated with significant change in the incidence of instrumental delivery (RR 0.85; 95% CI 0.71 to 1.01) (Analysis 1.9), with low heterogeneity present (I2 = 0%) (Analysis 1.9). We assessed the certainty of evidence as moderate, due to the imprecision. Based on an assumed comparator incidence of 95 per 1000 with BI, AMB was associated with an estimated reduction in instrumental delivery incidence of 14.7% (incidence 81 per 1000, 95%CI 68 to 96), and was therefore considered clinically significant. 

 

Epidural alone versus combined spinal‐epidural technique

Labour analgesia was initiated using CSE in six studies (Leo 2010Lim 2005Lim 2010Sia 2007Sia 2013Wong 2006), while ten studies used epidural alone (Capogna 2011Chalekar 2021Fan 2019Ferrer 2017Fettes 2006Fidkowski 2019Haidl 2020Lin 2016Morau 2019Ojo 2020). One study used dural puncture epidural, and was not included in this subgroup analysis (Song 2020). In subgroup analysis of women who received epidural alone versus those who received CSE, no significant difference was found between the subgroups in terms of the incidence of instrumental delivery (test for subgroup differences: Chi2=1.63, df=1, P = 0.20, I2 = 38.5%) (Analysis 1.10).

 

Regimens that used PCEA versus those that did not

PCEA was utilised in 11 studies (Capogna 2011Fan 2019Haidl 2020Leo 2010Lin 2016Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006), while six studies did not use PCEA (Chalekar 2021Ferrer 2017Fettes 2006Fidkowski 2019Lim 2005Lim 2010). In subgroup analysis of women who received PCEA  versus those who did not, no significant difference was found between the subgroups in terms of the incidence of instrumental delivery (test for subgroup differences: Chi2 = 0.89, df = 1, P = 0.34, I2 = 0%) (Analysis 1.11).

 

Nulliparous versus combination of nulli‐ and multi‐parous women

Of 17 studies, 12 enrolled only nulliparous women (Capogna 2011Chalekar 2021Fan 2019Fettes 2006Leo 2010Lim 2005Lim 2010Lin 2016Morau 2019Sia 2007Sia 2013Song 2020), while five studies enrolled both nulliparous and multiparous women (Ferrer 2017Fidkowski 2019Haidl 2020Ojo 2020Wong 2006). In subgroup analysis of nulliparous women versus a combination of nulli‐ and multiparous women, no significant difference was found between the subgroups in terms of the incidence of instrumental delivery (test for subgroup differences: Chi2=0.74, df = 1, P = 0.39, I2 = 0%) (Analysis 1.12).

 

Secondary outcomes

1. Duration of labour analgesia in minutes

The duration of labour analgesia was reported in 17 studies involving 4544 women (Capogna 2011Chalekar 2021Fan 2019Ferrer 2017Fettes 2006Fidkowski 2019Haidl 2020Leo 2010Lim 2005Lim 2010Lin 2016Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006). The use of AMB or BI was not associated with a significant difference in the duration of labour analgesia (mean difference (MD) ‐8.81 min; 95% CI ‐19.38 to 1.77), with moderate heterogeneity (I2 = 50%) (Analysis 1.13). Due to the presence of imprecision, the certainty of evidence for this outcome was assessed as moderate.

 

Epidural alone versus combined spinal‐epidural technique

One study used dural puncture epidural, and was not included in this subgroup analysis (Song 2020). In subgroup analysis of women who received epidural alone versus those who received CSE, no significant difference was found between the subgroups in terms of duration of labour analgesia (test for subgroup differences: Chi2 = 2.89, df = 1, P = 0.09, I2 = 65.4%) (Analysis 1.14).

 

Regimens that used PCEA versus those that did not

In subgroup analysis of women who received PCEA versus those who did not, no significant difference was found between the subgroups in terms of duration of labour analgesia (test for subgroup differences: Chi2=0.64, df=1, P = 0.42, I2 = 0%) (Analysis 1.15).

 

Nulliparous versus combination of nulli‐ and multi‐parous women

In subgroup analysis of nulliparous women versus a combination of nulli‐ and multiparous women, no significant difference was found between the subgroups in terms of duration of labour analgesia (test for subgroup differences: Chi2 = 0.86, df = 1, P = 0.35, I2 = 0%) (Analysis 1.16).

 

2. Local anaesthetic consumption in milligrams per hour

Hourly consumption of local anaesthetics (LA) was reported by 16 studies (1642 women) (Capogna 2011Chalekar 2021Chua 2004Ferrer 2017Fettes 2006Haidl 2020Leo 2010Lim 2005Lim 2010Lin 2016Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006). The pooled results demonstrate that AMB was associated with lower LA consumption compared to BI (MD ‐0.84 mg/h; 95% CI ‐1.29 to ‐0.38) (Analysis 1.17). Due to the presence of considerable heterogeneity (I2 = 87%), the certainty of this result was considered moderate.

 

Epidural alone versus combined spinal‐epidural technique

One study used dural puncture epidural, and was not included in this subgroup analysis (Song 2020). There was a significant subgroup difference between epidural alone versus CSE, in terms of LA consumption with AMB and BI (test for subgroup differences: Chi2=5.75, df=1, P = 0.02, I2 = 82.5%). The use of AMB following initiation of labour analgesia with epidural alone was associated with significantly lower LA consumption compared to BI (MD ‐1.22 mg/h; 95% CI ‐1.75 to ‐0.69), although no significant difference was found between AMB and BI with CSE (MD ‐0.36 mg/h; 95% CI ‐0.82 to 0.10) (Analysis 1.18).

 

Regimens that used PCEA versus those that did not

In subgroup analysis of women who received PCEA versus those who did not, no significant difference was found between the subgroups in terms of LA consumption (test for subgroup differences: Chi2 = 0.01, df =1, P = 0.91, I2 = 0%) (Analysis 1.19).

 

Nulliparous versus combination of nulli‐ and multi‐parous women

In subgroup analysis of nulliparous women versus a combination of nulli‐ and multiparous women, no significant difference was found between the subgroups in terms of LA consumption (test for subgroup differences: Chi2 = 1.72, df = 1, P = 0.19, I2 = 41.7%) (Analysis 1.20).

 

3. Maternal satisfaction

Maternal satisfaction scores were reported in 14 studies (Chalekar 2021Fan 2019Ferrer 2017Fidkowski 2019Haidl 2020Leo 2010Lim 2005Lim 2010Morau 2019Ojo 2020Sia 2007Sia 2013Song 2020Wong 2006). Most studies assessed maternal satisfaction using a Likert scale or visual analogue scale (VAS). The results are described narratively, due to the inter‐study heterogeneity in the methods used for evaluating maternal satisfaction. Out of 14 studies, six reported increased maternal satisfaction with AMB compared to BI (Fan 2019Leo 2010Lim 2005Lim 2010Sia 2013Wong 2006), while six studies found no difference in maternal satisfaction between AMB and BI (Chalekar 2021Ferrer 2017Haidl 2020Morau 2019Ojo 2020Sia 2007). Using a Likert scale (0: unsatisfied; 1: satisfied; 2: very satisfied) Fidkowski 2019 reported that 95.4% of women receiving AMB had satisfaction scores of 1 or 2 compared to 94.1% of women who received BI. Song 2020 reported that the use of AMB was associated with median satisfaction scores of 97.5/100 (assessed using VAS, 0: not satisfied; 100: very satisfied), compared to BI (median satisfaction score = 92.5/100). In summary, a total of eight studies (five reported dichotomous data, and three reported ordinal data) reported increased maternal satisfaction with AMB than BI, while six reported no difference between the groups.

 

4. Apgar scores

Fourteen studies reported Apgar scores. One study reporting Apgar scores at 1, 5, and 10 minutes (Ferrer 2017), four studies reporting Apgar scores at 5 minutes (Leo 2010Lim 2005Lim 2010Sia 2013), eight studies reporting Apgar scores at both 1 and 5 minutes (Chalekar 2021Fan 2019Fettes 2006Lin 2016Morau 2019Ojo 2020Salim 2005Song 2020), and one study reporting Apgar scores greater than seven at 5 minutes (Sia 2007). In view of the inter‐study heterogeneity in reporting Apgar scores, the results were described narratively. None of the 14 studies reported any significant difference in Apgar scores associated with the use of AMB or BI.

Discussion

Summary of main results

Cumulative data from 18 studies showed that the use of automated mandatory bolus (AMB) for maintenance of labour analgesia was associated with significantly lower incidence of breakthrough pain compared to basal infusion (BI), with moderate certainty. There was no significant difference in the incidence of caesarean delivery or instrumental delivery between AMB and BI, with moderate certainty for both outcomes. 

Additionally, we found that AMB was associated with significantly lower hourly local anaesthetic consumption in bupivacaine equivalents, with moderate certainty. The use of AMB or BI was not associated with significant difference in the duration of labour analgesia, with moderate certainty.  Most of the included studies reported that AMB may be associated with increased maternal satisfaction, and was not associated with significant difference in Apgar scores compared to BI. 

Please refer to the summary of findings Table 1 for additional details.

Overall completeness and applicability of evidence

Overall, the included studies were of sufficient scope, utilised clinical methodology, and evaluated relevant outcome measures that addressed the objectives of this review. 

The initiation of epidural analgesia in the included studies reflects contemporary practice; at present, combined spinal‐epidural (CSE) and epidural are the most commonly used techniques for initiation of labour analgesia. In our review, seven of the included studies utilised CSE, ten used epidural, and only one study (Song 2020) used dural puncture epidural (DPE), which is not as commonly employed compared to CSE or epidural. In addition, most of the studies utilised patient controlled epidural analgesia (PCEA), which is also commonly used in contemporary practice.

Most of the included studies used ropivacaine with fentanyl (eight studies) and bupivacaine with fentanyl (four studies), while few studies used ropivacaine with sufentanil (three studies), levobupivacaine with sufentanil (two studies), and levobupivacaine with fentanyl (one study). There was variation in the concentrations of local anaesthetic (LA) and opioids utilised in the included studies, but variations in the types and concentrations of epidural medications are reflective of contemporary practice. 

The majority of included studies enrolled nulliparous women (13 studies), while five included both nulliparous and multiparous women. Of note, women with preterm or complicated pregnancies were excluded from all studies.

Hence, potential biases may arise from clinical heterogeneity between the studies included in this review, such as variation in the LAs or supplemental opioids used, as well as method of initiation of labour analgesia. Additionally, the labour stage at which neuraxial analgesia was initiated, the use of concurrent or prior forms of analgesia, and augmentation of labour with oxytocin may influence our outcome measures (Tan 2019Tan 2021). 

Quality of the evidence

Overall, the majority of included studies (13 studies) were assessed to be at low risk of bias relating to random sequence generation, with the exception of five studies that were considered to be at unclear risk as they did not specify the method of randomisation.

Similarly, seven studies were at low risk of bias relating to allocation concealment, while another seven studies stated that allocation concealment was performed using envelopes, but did not state if these envelopes were sealed or opaque and were hence considered to be at unclear risk. Of note, three studies were assessed to be at high risk of bias as they did not specify if allocation concealment was performed.

The majority of studies (13 studies) were at low risk of performance bias and detection bias, with the exception of four studies judged to be at unclear risk as they did not specify if the participants were blinded. One study (Fidkowski 2019) blinded the participants but not anaesthesia providers, and was considered to be at high risk of performance bias, and unclear risk of detection bias as the outcome assessor was not stated.

Only two studies had high risk of attrition bias (Fidkowski 2019Ojo 2020). All of the studies had a low risk of reporting or other biases.

The GRADE certainty of evidence was assessed to be moderate for the incidence of breakthrough pain, caesarean delivery, instrumental delivery, duration of labour, and hourly local anaesthetic consumption, mainly due to potential imprecision or heterogeneity.

Potential biases in the review process

Statistical heterogeneity may be present despite our pre‐planned subgroup analyses. However, these subgroups were selected after careful consideration of clinically‐meaningful sub‐populations, instead of based on anticipated statistical heterogeneity.

Our highly‐sensitive search strategy was extended beyond CENTRAL, Embase, Web of Science, and Pubmed to include trial registries (clinicaltrials.gov and www.who.int/ictrp/en), and the reference lists of relevant studies in order to reduce the risk of publication bias and omission of unpublished studies. Of note, we identified five citations that were potentially relevant, but as full‐text copies were unavailable, these citations were therefore listed as 'awaiting classification'.

Finally, Alex Sia is an author of six of the studies that are included in this review (Chua 2004Leo 2010Lim 2005Lim 2010Sia 2007Sia 2013). In this review, he was not involved in study selection, data entry, or data analysis, however, he coordinated the review, was an author in the previous version of this review (Sng 2018) that laid the foundation for the current study, and contributed to the writing and rechecking of the final manuscript prior to submission.

No significant bias in funding sources were noted in the included studies.

Agreements and disagreements with other studies or reviews

Our results showed good agreement with that of a recent review and meta‐analysis by Hussain 2020. Similar results were reported in the incidence of breakthrough pain (decreased with automated mandatory bolus, AMB), mode of delivery (no difference), and local anaesthetic consumption (decreased with AMB). However, Hussain 2020 reported that AMB was associated with shortened labour duration, while our overall pooled result showed no significant difference. Furthermore, the review by Hussain 2020 included five studies that were not included in our review due to the unavailability of full‐text copies (see Studies awaiting classification).

Study flow diagram.

Figures and Tables -
Figure 1

Study flow diagram.

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Figures and Tables -
Figure 2

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Figures and Tables -
Figure 3

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 1: Breakthrough pain

Figures and Tables -
Analysis 1.1

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 1: Breakthrough pain

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 2: Breakthrough pain (epidural vs CSE)

Figures and Tables -
Analysis 1.2

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 2: Breakthrough pain (epidural vs CSE)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 3: Breakthrough pain (PCEA vs no PCEA)

Figures and Tables -
Analysis 1.3

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 3: Breakthrough pain (PCEA vs no PCEA)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 4: Breakthrough pain (nulliparous vs nulliparous + multiparous)

Figures and Tables -
Analysis 1.4

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 4: Breakthrough pain (nulliparous vs nulliparous + multiparous)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 5: Caesarean delivery

Figures and Tables -
Analysis 1.5

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 5: Caesarean delivery

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 6: Caesarean delivery (epidural vs CSE)

Figures and Tables -
Analysis 1.6

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 6: Caesarean delivery (epidural vs CSE)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 7: Caesarean delivery (PCEA vs no PCEA)

Figures and Tables -
Analysis 1.7

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 7: Caesarean delivery (PCEA vs no PCEA)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 8: Caesarean delivery (nulliparous vs nulliparous + multiparous)

Figures and Tables -
Analysis 1.8

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 8: Caesarean delivery (nulliparous vs nulliparous + multiparous)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 9: Instrumental delivery

Figures and Tables -
Analysis 1.9

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 9: Instrumental delivery

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 10: Instrumental delivery (epidural vs CSE)

Figures and Tables -
Analysis 1.10

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 10: Instrumental delivery (epidural vs CSE)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 11: Instrumental delivery (PCEA vs No PCEA)

Figures and Tables -
Analysis 1.11

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 11: Instrumental delivery (PCEA vs No PCEA)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 12: Instrumental delivery (nulliparous vs nulliparous + multiparous)

Figures and Tables -
Analysis 1.12

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 12: Instrumental delivery (nulliparous vs nulliparous + multiparous)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 13: Duration of labour analgesia in minutes

Figures and Tables -
Analysis 1.13

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 13: Duration of labour analgesia in minutes

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 14: Duration of labour analgesia in minutes (epidural vs CSE)

Figures and Tables -
Analysis 1.14

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 14: Duration of labour analgesia in minutes (epidural vs CSE)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 15: Duration of labour analgesia in minutes (PCEA vs no PCEA)

Figures and Tables -
Analysis 1.15

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 15: Duration of labour analgesia in minutes (PCEA vs no PCEA)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 16: Duration of labour analgesia in minutes (nulliparous vs nulliparous + multiparous)

Figures and Tables -
Analysis 1.16

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 16: Duration of labour analgesia in minutes (nulliparous vs nulliparous + multiparous)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 17: LA consumption per hour

Figures and Tables -
Analysis 1.17

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 17: LA consumption per hour

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 18: LA consumption per hour (epidural vs CSE)

Figures and Tables -
Analysis 1.18

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 18: LA consumption per hour (epidural vs CSE)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 19: LA consumption per hour (PCEA vs no PCEA)

Figures and Tables -
Analysis 1.19

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 19: LA consumption per hour (PCEA vs no PCEA)

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 20: LA consumption per hour (nulliparous vs nulliparous + multiparous)

Figures and Tables -
Analysis 1.20

Comparison 1: Automated mandatory bolus vs basal infusion, Outcome 20: LA consumption per hour (nulliparous vs nulliparous + multiparous)

Summary of findings 1. Automated mandatory bolus versus basal infusion for maintenance of epidural analgesia in labour

Automated mandatory bolus versus basal infusion for maintenance of epidural analgesia in labour

Patient or population: term, pregnant women (nulliparous, or combination of nulli‐ and muliparous) requesting for labour epidural analgesia
Setting: labour ward
Intervention: programmed intermittent boluses (after initiation with combined spinal‐epidural, or epidural alone)
Comparison: continuous infusion (after initiation with combined spinal‐epidural, or epidural alone)

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

№ of participants
(studies)

Certainty of the evidence
(GRADE)

Risk with basal infusion

Risk with automated mandatory boluses

Breakthrough pain
assessed with: need for anaesthetic intervention during labour epidural analgesia

Study population

RR 0.71
(0.55 to 0.91)

1528
(16 RCTs)

⊕⊕⊕⊝
Moderatea

285 per 1000

202 per 1000

(157 to 259)

Caesarean delivery during labour epidural analgesia

Study population

RR 0.85
(0.69 to 1.06)

1735
(16 RCTs)

⊕⊕⊕⊝
Moderateb

173 per 1000

147 per 1000

(120 to 184)

Instrumental delivery during labour epidural analgesia

Study population

RR 0.85
(0.71 to 1.01)

4550
(17 RCTs)

⊕⊕⊕⊝ 

Moderateb

95 per 1000

81 per 1000

(68 to 96)

Duration of labour analgesia in minutes

The mean duration of labour in min ranged from 186.3 to 689.9 min

MD 8.81 min lower
(19.38 lower to 1.77 higher)

4544
(17 RCTs)

⊕⊕⊕⊝
Moderateb

Local anaesthetic consumption per hour (mg/hr)c during labour epidural analgesia

The mean local anaesthetic consumption per hour ranged from 3.0 mg to 16.2 mg

MD 0.84 mg/h lower
(1.29 lower to 0.38 lower)

1642
(16 RCTs)

⊕⊕⊕⊝
Moderatec,d

Maternal satisfaction following fetal delivery

Eight studies (five reported dichotomous data, three reported ordinal data) reported increased maternal satisfaction with automated mandatory boluses compared to basal infusion, while six studies found no difference between the groups.

14 RCTs

Apgar scores at 1‐ and 5‐minutes following fetal delivery

None of the studies reported any significant difference in Apgar scores

14 RCTs

*The risk in the intervention group (AMB) (and its 95% confidence interval) is based on the assumed risk in the comparison group (BI) and the relative effect of the intervention (and its 95% CI). Assumed comparator risks for dichotomous outcomes were derived from the median outcome incidence in patients receiving basal infusion within the studies included in this systematic review.

AMB: automated mandatory bolus; CI: confidence interval; MD: mean difference; RR: risk ratio.

GRADE Working Group grades of evidence
High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

Downgraded one level due to high statistical heterogeneity for this outcome, i.e. I2 = 57%.

Downgraded one level due to imprecision, i.e. the wide range from upper to lower confidence limits and the 95% CI overlaps no effect.

c Converted into bupivacaine equivalents to account for variation in the type of local anaesthetic utilised. 

Downgraded one level due to high statistical inconsistency for this outcome, i.e. I2 = 87%.

Figures and Tables -
Summary of findings 1. Automated mandatory bolus versus basal infusion for maintenance of epidural analgesia in labour
Comparison 1. Automated mandatory bolus vs basal infusion

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1.1 Breakthrough pain Show forest plot

16

1528

Risk Ratio (M‐H, Random, 95% CI)

0.71 [0.55, 0.91]

1.2 Breakthrough pain (epidural vs CSE) Show forest plot

15

1450

Risk Ratio (M‐H, Random, 95% CI)

0.73 [0.56, 0.94]

1.2.1 Epidural

8

966

Risk Ratio (M‐H, Random, 95% CI)

0.72 [0.52, 1.01]

1.2.2 CSE

7

484

Risk Ratio (M‐H, Random, 95% CI)

0.71 [0.44, 1.13]

1.3 Breakthrough pain (PCEA vs no PCEA) Show forest plot

16

1528

Risk Ratio (M‐H, Random, 95% CI)

0.71 [0.55, 0.91]

1.3.1 PCEA

9

1071

Risk Ratio (M‐H, Random, 95% CI)

0.76 [0.54, 1.07]

1.3.2 No PCEA

7

457

Risk Ratio (M‐H, Random, 95% CI)

0.65 [0.44, 0.98]

1.4 Breakthrough pain (nulliparous vs nulliparous + multiparous) Show forest plot

16

1528

Risk Ratio (M‐H, Random, 95% CI)

0.71 [0.55, 0.91]

1.4.1 Nulliparous

11

927

Risk Ratio (M‐H, Random, 95% CI)

0.71 [0.49, 1.01]

1.4.2 Nulliparous + multiparous

5

601

Risk Ratio (M‐H, Random, 95% CI)

0.67 [0.49, 0.93]

1.5 Caesarean delivery Show forest plot

16

1735

Risk Ratio (M‐H, Random, 95% CI)

0.85 [0.69, 1.06]

1.6 Caesarean delivery (epidural vs CSE) Show forest plot

15

1657

Risk Ratio (M‐H, Random, 95% CI)

0.85 [0.69, 1.06]

1.6.1 Epidural

9

1215

Risk Ratio (M‐H, Random, 95% CI)

0.77 [0.60, 1.00]

1.6.2 CSE

6

442

Risk Ratio (M‐H, Random, 95% CI)

1.08 [0.73, 1.59]

1.7 Caesarean delivery (PCEA vs no PCEA) Show forest plot

16

1735

Risk Ratio (M‐H, Random, 95% CI)

0.85 [0.69, 1.06]

1.7.1 PCEA

10

1320

Risk Ratio (M‐H, Random, 95% CI)

0.91 [0.71, 1.18]

1.7.2 No PCEA

6

415

Risk Ratio (M‐H, Random, 95% CI)

0.73 [0.50, 1.07]

1.8 Caesarean delivery (nulliparous vs nulliparous + multiparous) Show forest plot

16

1735

Risk Ratio (M‐H, Random, 95% CI)

0.85 [0.69, 1.06]

1.8.1 Nulliparous

11

1134

Risk Ratio (M‐H, Random, 95% CI)

0.90 [0.69, 1.17]

1.8.2 Nulliparous + multiparous

5

601

Risk Ratio (M‐H, Random, 95% CI)

0.77 [0.54, 1.11]

1.9 Instrumental delivery Show forest plot

17

4550

Risk Ratio (M‐H, Random, 95% CI)

0.85 [0.71, 1.01]

1.10 Instrumental delivery (epidural vs CSE) Show forest plot

16

4472

Risk Ratio (M‐H, Random, 95% CI)

0.84 [0.71, 1.01]

1.10.1 Epidural

10

4030

Risk Ratio (M‐H, Random, 95% CI)

0.88 [0.73, 1.06]

1.10.2 CSE

6

442

Risk Ratio (M‐H, Random, 95% CI)

0.59 [0.33, 1.05]

1.11 Instrumental delivery (PCEA vs No PCEA) Show forest plot

17

4550

Risk Ratio (M‐H, Random, 95% CI)

0.85 [0.71, 1.01]

1.11.1 No PCEA

6

415

Risk Ratio (M‐H, Random, 95% CI)

1.05 [0.66, 1.67]

1.11.2 PCEA

11

4135

Risk Ratio (M‐H, Random, 95% CI)

0.82 [0.68, 0.99]

1.12 Instrumental delivery (nulliparous vs nulliparous + multiparous) Show forest plot

17

4550

Risk Ratio (M‐H, Random, 95% CI)

0.85 [0.71, 1.01]

1.12.1 Nulliparous

12

3949

Risk Ratio (M‐H, Random, 95% CI)

0.82 [0.68, 1.00]

1.12.2 Nulliparous + multiparous

5

601

Risk Ratio (M‐H, Random, 95% CI)

1.02 [0.65, 1.58]

1.13 Duration of labour analgesia in minutes Show forest plot

17

4544

Mean Difference (IV, Random, 95% CI)

‐8.81 [‐19.38, 1.77]

1.14 Duration of labour analgesia in minutes (epidural vs CSE) Show forest plot

16

4473

Mean Difference (IV, Random, 95% CI)

‐7.68 [‐18.08, 2.71]

1.14.1 Epidural

10

4031

Mean Difference (IV, Random, 95% CI)

‐4.31 [‐15.87, 7.24]

1.14.2 CSE

6

442

Mean Difference (IV, Random, 95% CI)

‐31.62 [‐60.92, ‐2.32]

1.15 Duration of labour analgesia in minutes (PCEA vs no PCEA) Show forest plot

17

4544

Mean Difference (IV, Random, 95% CI)

‐8.81 [‐19.38, 1.77]

1.15.1 PCEA

11

4129

Mean Difference (IV, Random, 95% CI)

‐8.51 [‐18.92, 1.91]

1.15.2 No PCEA

6

415

Mean Difference (IV, Random, 95% CI)

‐26.52 [‐69.42, 16.39]

1.16 Duration of labour analgesia in minutes (nulliparous vs nulliparous + multiparous) Show forest plot

17

4544

Mean Difference (IV, Random, 95% CI)

‐8.81 [‐19.38, 1.77]

1.16.1 Nulliparous

12

3943

Mean Difference (IV, Random, 95% CI)

‐10.72 [‐19.97, ‐1.48]

1.16.2 Nulliparous + multiparous

5

601

Mean Difference (IV, Random, 95% CI)

14.65 [‐38.13, 67.43]

1.17 LA consumption per hour Show forest plot

16

1642

Mean Difference (IV, Random, 95% CI)

‐0.84 [‐1.29, ‐0.38]

1.18 LA consumption per hour (epidural vs CSE) Show forest plot

15

1564

Mean Difference (IV, Random, 95% CI)

‐0.84 [‐1.33, ‐0.36]

1.18.1 Epidural

8

1080

Mean Difference (IV, Random, 95% CI)

‐1.22 [‐1.75, ‐0.69]

1.18.2 CSE

7

484

Mean Difference (IV, Random, 95% CI)

‐0.36 [‐0.82, 0.10]

1.19 LA consumption per hour (PCEA vs no PCEA) Show forest plot

16

1642

Mean Difference (IV, Random, 95% CI)

‐0.84 [‐1.29, ‐0.38]

1.19.1 PCEA

10

1262

Mean Difference (IV, Random, 95% CI)

‐0.95 [‐1.19, ‐0.71]

1.19.2 No PCEA

6

380

Mean Difference (IV, Random, 95% CI)

‐0.90 [‐1.85, 0.06]

1.20 LA consumption per hour (nulliparous vs nulliparous + multiparous) Show forest plot

16

1642

Mean Difference (IV, Random, 95% CI)

‐0.84 [‐1.29, ‐0.38]

1.20.1 Nulliparous

12

1118

Mean Difference (IV, Random, 95% CI)

‐0.66 [‐1.14, ‐0.19]

1.20.2 Nulliparous + multiparous

4

524

Mean Difference (IV, Random, 95% CI)

‐1.89 [‐3.67, ‐0.11]

Figures and Tables -
Comparison 1. Automated mandatory bolus vs basal infusion