Scolaris Content Display Scolaris Content Display

Cochrane Database of Systematic Reviews

Intervenciones para facilitar la toma de decisiones conjunta en cuanto al uso de antibióticos para las infecciones respiratorias agudas en la atención primaria

Información

DOI:
https://doi.org/10.1002/14651858.CD010907.pub2Copiar DOI
Base de datos:
  1. Cochrane Database of Systematic Reviews
Versión publicada:
  1. 11 noviembre 2015see what's new
Tipo:
  1. Intervention
Etapa:
  1. Review
Grupo Editorial Cochrane:
  1. Grupo Cochrane de Infecciones respiratorias agudas

Copyright:
  1. Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Cifras del artículo

Altmetric:

Citado por:

Citado 0 veces por enlace Crossref Cited-by

Contraer

Autores

  • Peter Coxeter

    Centre for Research in Evidence‐Based Practice (CREBP), Bond University, Gold Coast, Australia

  • Chris B Del Mar

    Centre for Research in Evidence‐Based Practice (CREBP), Bond University, Gold Coast, Australia

  • Leanne McGregor

    Centre of National Research on Disability and Rehabilitation (CONROD), Menzies Health Institute Queensland | School of Allied Health, Griffith University, Southport, Australia

  • Elaine M Beller

    Centre for Research in Evidence‐Based Practice (CREBP), Bond University, Gold Coast, Australia

  • Tammy C Hoffmann

    Correspondencia a: Centre for Research in Evidence‐Based Practice (CREBP), Bond University, Gold Coast, Australia

    [email protected]

    School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia

Contributions of authors

Tammy Hoffmann (TH) conceived the original idea for the review.
Peter Coxeter (PC) was responsible for drafting the protocol.
TH and Chris Del Mar (CDM) contributed content and methodological expertise and provided advice and guidance on the development of the draft protocol and final editing.
Elaine Beller (EB) provided statistical advice and guidance.
Leanne McGregor conducted independent screening (titles/abstract and full text) and data extraction.

Sources of support

Internal sources

  • No sources of support supplied

External sources

  • National Health and Medical Research (NHMRC), Australia.

    The Centre for Research Excellence in Minimising Antibiotic Resistance from Acute Respiratory Infections (CREMARA; NHMRC grant APP1044904).

Declarations of interest

Peter Coxeter: none declared
Chris B Del Mar: none declared
Leanne McGregor: none declared
Elaine M Beller: none declared
Tammy Hoffmann: none declared

Acknowledgements

Thanks to the staff and editors of the Cochrane Acute Respiratory Infections Group. We thank the following people for commenting on the draft protocol: Adrian Edwards, Sreekumaran Nair and Sandra Arnold, and Inge Axelsson. We also thank those people commenting on the draft of this review: Jenny Negus, Noorin Bhimani, Sandra Arnold, Helena Liirra, Teresa Neeman, Inge Axelsson and Susan Smith. Finally, we are grateful to Toby Lasserson for comments during pre‐publication screening (Cochrane Editorial Unit).

Version history

Published

Title

Stage

Authors

Version

2015 Nov 11

Interventions to facilitate shared decision making to address antibiotic use for acute respiratory infections in primary care

Review

Peter Coxeter, Chris B Del Mar, Leanne McGregor, Elaine M Beller, Tammy C Hoffmann

https://doi.org/10.1002/14651858.CD010907.pub2

2014 Jan 13

Shared decision making for acute respiratory infections in primary care

Protocol

Peter Coxeter, Tammy Hoffmann, Chris B Del Mar

https://doi.org/10.1002/14651858.CD010907

Keywords

MeSH

PICO

Population
Intervention
Comparison
Outcome

El uso y la enseñanza del modelo PICO están muy extendidos en el ámbito de la atención sanitaria basada en la evidencia para formular preguntas y estrategias de búsqueda y para caracterizar estudios o metanálisis clínicos. PICO son las siglas en inglés de cuatro posibles componentes de una pregunta de investigación: paciente, población o problema; intervención; comparación; desenlace (outcome).

Para saber más sobre el uso del modelo PICO, puede consultar el Manual Cochrane.

PRISMA study flow diagram.
Figuras y tablas -
Figure 1

PRISMA study flow diagram.

'Risk of bias' summary: review authors' judgements about each risk of bias item for each included study.
Figuras y tablas -
Figure 2

'Risk of bias' summary: review authors' judgements about each risk of bias item for each included study.

'Risk of bias' graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.
Figuras y tablas -
Figure 3

'Risk of bias' graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.1 Antibiotics prescribed, dispensed or decision to use (short‐term, index consultation to ≤ 6 weeks).
Figuras y tablas -
Figure 4

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.1 Antibiotics prescribed, dispensed or decision to use (short‐term, index consultation to ≤ 6 weeks).

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.2 Antibiotics prescribed or dispensed (longer‐term, ≥ 12 months).
Figuras y tablas -
Figure 5

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.2 Antibiotics prescribed or dispensed (longer‐term, ≥ 12 months).

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.3 Antibiotic prescriptions (index consultation) (adjusted odds ratio).
Figuras y tablas -
Figure 6

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.3 Antibiotic prescriptions (index consultation) (adjusted odds ratio).

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.4 Antibiotic prescriptions (index consultation) (adjusted risk ratio).
Figuras y tablas -
Figure 7

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.4 Antibiotic prescriptions (index consultation) (adjusted risk ratio).

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.5 Antibiotic prescriptions (index consultation or population rate per unit of time) (adjusted risk difference).
Figuras y tablas -
Figure 8

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.5 Antibiotic prescriptions (index consultation or population rate per unit of time) (adjusted risk difference).

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.6 Number or rate of re‐consultations (risk ratio).
Figuras y tablas -
Figure 9

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.6 Number or rate of re‐consultations (risk ratio).

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.7 Patient satisfaction with the consultation.
Figuras y tablas -
Figure 10

Forest plot of comparison: 1 Shared decision making versus usual care (control), outcome: 1.7 Patient satisfaction with the consultation.

Comparison 1 Shared decision making versus usual care (control), Outcome 1 Antibiotics prescribed, dispensed or decision to use (short‐term, index consultation to ≤ 6 weeks).
Figuras y tablas -
Analysis 1.1

Comparison 1 Shared decision making versus usual care (control), Outcome 1 Antibiotics prescribed, dispensed or decision to use (short‐term, index consultation to ≤ 6 weeks).

Comparison 1 Shared decision making versus usual care (control), Outcome 2 Antibiotics prescribed or dispensed (longer‐term, ≥ 12 months).
Figuras y tablas -
Analysis 1.2

Comparison 1 Shared decision making versus usual care (control), Outcome 2 Antibiotics prescribed or dispensed (longer‐term, ≥ 12 months).

Comparison 1 Shared decision making versus usual care (control), Outcome 3 Antibiotic prescriptions (index consultation) (adjusted odds ratio).
Figuras y tablas -
Analysis 1.3

Comparison 1 Shared decision making versus usual care (control), Outcome 3 Antibiotic prescriptions (index consultation) (adjusted odds ratio).

Comparison 1 Shared decision making versus usual care (control), Outcome 4 Antibiotic prescriptions (index consultation) (adjusted risk ratio).
Figuras y tablas -
Analysis 1.4

Comparison 1 Shared decision making versus usual care (control), Outcome 4 Antibiotic prescriptions (index consultation) (adjusted risk ratio).

Comparison 1 Shared decision making versus usual care (control), Outcome 5 Antibiotic prescriptions (index consultation or population rate per unit of time) (adjusted risk difference).
Figuras y tablas -
Analysis 1.5

Comparison 1 Shared decision making versus usual care (control), Outcome 5 Antibiotic prescriptions (index consultation or population rate per unit of time) (adjusted risk difference).

Comparison 1 Shared decision making versus usual care (control), Outcome 6 Number or rate of re‐consultations (risk ratio).
Figuras y tablas -
Analysis 1.6

Comparison 1 Shared decision making versus usual care (control), Outcome 6 Number or rate of re‐consultations (risk ratio).

Comparison 1 Shared decision making versus usual care (control), Outcome 7 Patient satisfaction with the consultation.
Figuras y tablas -
Analysis 1.7

Comparison 1 Shared decision making versus usual care (control), Outcome 7 Patient satisfaction with the consultation.

Summary of findings for the main comparison. Shared decision making compared to usual care for acute respiratory infections in primary care

Shared decision making compared to usual care for acute respiratory infections in primary care

Patient or population: antibiotic use in acute respiratory infections
Setting: primary care
Intervention: interventions to facilitate shared decision making
Comparison: usual care

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

№ of participants
(studies)

Quality of the evidence
(GRADE)

Comments

Risk with usual care

Risk with Interventions to facilitate shared decision making

Antibiotics prescribed or dispensed (6 weeks or less)
assessed with: risk ratio

Moderate

RR 0.61
(0.55 to 0.68)

10172
(8 RCTs)

⊕⊕⊕⊝
MODERATE 1

47 per 100

29 per 100
(26 to 32)

Antibiotics prescribed or dispensed (12 months or greater)
assessed with: risk ratio

Moderate

RR 0.74
(0.49 to 1.11)

481588
(3 RCTs) 3

⊕⊕⊝⊝
LOW 1 2

47 per 100

35 per 100
(23 to 52)

Patient initiated re‐consultations for the same illness episode

Moderate

RR 0.87
(0.74 to 1.03)

1861
(4 RCTs)

⊕⊕⊕⊝
MODERATE 1

40 per 100

35 per 100
(30 to 41)

Patient satisfaction with the consultation

Moderate

OR 0.86
(0.57 to 1.30)

1052
(2 RCTs)

⊕⊕⊝⊝
LOW 1 4

71 per 100

68 per 100
(58 to 76)

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; OR: Odds ratio; RCT: randomised controlled trial; RR: Risk ratio

GRADE Working Group grades of evidence
High quality: We are very confident that the true effect lies close to that of the estimate of the effect
Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

1 Downgraded one level because of risk of bias: participants in most studies were aware of whether they had received the intervention or not.

2 Downgraded one level because of imprecision: confidence interval includes reduction and possible increase in use of antibiotics. There was considerable heterogeneity in the rates of antibiotic prescribing during longer‐term follow‐up (12 months or greater).

3 Sample numbers in one trial, Butler 2012, were calculated from mean list size at baseline multiplied by the number of participating practices in each group (practice list sizes vary over time and no denominator data were available).

4 Downgraded one level due to imprecision: confidence interval includes both satisfaction and lack of satisfaction of patients with the consultation.

Figuras y tablas -
Summary of findings for the main comparison. Shared decision making compared to usual care for acute respiratory infections in primary care
Table 1. TIDieR intervention summary (Hoffmann 2014)

Author year

Brief name

Recipient

Why

What (materials)

What (procedures)

Who provided

How

Where

When and how much

Tailoring

Modification of intervention throughout trial

Strategies to improve or maintain intervention fidelity

Extent of intervention fidelity

Altiner 2007

Complex GP peer‐led educational intervention

GPs and patients

Focused on communication within a consultation and the mutual discordance between patients' expectations and doctors' perceived patient expectations, empowering patients to raise the issue within the consultation. By 'informing' both sides in the consultation, it is hoped that doctors and patients would openly talk about the issue and thus reduce unnecessary antibiotic prescriptions

Peers used a semi‐structured dialogue script for outreach visits

Patient materials (leaflet and poster) provided in waiting room primarily focused on the patients' role doctor‐patient 'antibiotic misunderstanding' and brief evidence‐based information on acute cough and antibiotics

GP peer‐led outreach visits. Peers were trained to explore GPs' 'opposite' motivational background to address their beliefs and attitudes. GPs were motivated to explore patient expectations and demands, to elicit anxieties and make antibiotic prescribing a subject in the consultation

Patient materials were aimed at empowering patients to raise and clarify issues within the consultation

5 practising GPs and teaching academics in the lead authors' department (2 female, 33 to 63 years of age); trained in 3 sessions for outreach visits

Face‐to‐face outreach visits to GPs

GP clinics during normal working hours

1 outreach visit performed per GP (duration not specified)

Not described

Not described

Not described

51/52 GPs received intervention

Briel 2006

Brief training programme in patient‐centred communication

GPs

Focused on teaching GPs how to understand and modify patients' concepts and beliefs about the use of antibiotics for ARIs. GPs were introduced to a model (Prochaska 1992) for identifying patients' attitude and readiness for behaviour change

Evidence‐based guidelines for diagnosis and treatment of ARIs (updated, locally adapted and reviewed by local experts) distributed as a booklet [URL provided is no longer active]

GPs were trained in elements of active listening, to respond to emotional cues, and to tailor information given to patients. Physicians used a model were introduced to a model (Prochaska 1992) to identify patients' attitude and readiness for behaviour change

Not specified

Seminar in small groups (number not specified) and personal feedback by telephone prior to the start of the trial. Evidence‐based guidelines were distributed as a booklet

Not specified

Attendance at 1 x 6‐hour seminar and 1 x 2‐hour telephone call to give personal feedback prior to the trial start

Not described

Not described

Not described

Not described

Butler 2012

Multifaceted flexible blended learning approach for clinicians

GPs and nurse practitioners

Blended learning experience to develop clinicians' sense of the importance about change and their confidence in their ability to achieve change based on Social Learning Theory

Clinicians reflected on practice‐level antibiotic dispensing and resistance data, reflected on own clinical practice (context‐bound learning), and were trained in novel communication skills derived from principles of motivational interviewing

Summaries of research evidence and guidelines, web‐based modules using video‐rich material presenting novel communication skills, and a web‐based forum to share experiences and views (see

www.stemmingthetide.org

for online component)

Intervention consist of 7 components: experiential learning, updated summaries of research evidence and guidelines; web‐based learning in novel communication skills; practising consulting skills in routine care; facilitator‐led practice‐based seminar on practice‐level data on antibiotic prescribing and resistance; reflections on own clinical practice, and a web‐based forum to share experiences and views

A facilitator conducted the face‐to‐face seminar

Intervention consisted of 7 parts (5 online modules, 1 face‐to‐face seminar and 1 facilitator‐led practice‐based seminar)

The face‐to‐face and facilitator‐led seminars were presented at the general practice

7 components (5 online, 1 face‐to‐face and 1 facilitator‐led practice‐based seminar)

A booster module (6 to 8 months after completion of initial training) reinforced these skills

Intervention was flexible so clinicians could access the online components and try out new skills with their patients at their convenience

Not described

Not described

138/139 completed all online training and uploaded descriptions of consultations for the portfolio tasks; 129/139 attended the practice‐based seminars; 76/139 completed the optional booster session at 6 months; 11/139 entered new threads on the online forum with 81 posts and 1485 viewings of posts and threads

Cals 2009

Enhanced communication skills training

GPs

Focused on information exchange based on the elicit‐provide‐elicit framework from counselling in behaviour change ‐ exploring patients' fears and expectations, patients' opinion on antibiotics and outlining the natural duration of cough in lower respiratory tract infections

Pre and post‐workshop transcripts of simulated patients

Brief context‐learning based workshop in small groups (5 to 8 GPs), preceded and followed by practice‐based consultations with simulated patients. GPs reflected on own transcripts of consultations with simulated patients, which were also peer‐reviewed by colleagues

Experienced moderator to lead seminars

Brief workshop (5 to 8 GPs), preceded and followed by practice‐based consultation with simulated patients

General practice

1 x 2‐hour moderator‐led small groups workshop, preceded and followed by practice‐based consultation with simulated patients

Not described

Not described

Not described

66% of patients recruited by GPs allocated to training in enhanced communication skills recalled their GP's use at least 3 of 4 specific communication skills compared with 19% in the no training group

Francis 2009

Interactive booklet for parents and clinician training in its use

GPs and patients

Focused on specific communication skills, such as exploring parent's main concerns, asking about their expectations, and discussing prognosis, treatment options and reasons that should prompt re‐consultation

8‐page booklet (now at

www.whenshouldIworry.com

); online training in use of the booklet included videos to demonstrate use of the booklet within a consultation, as well as audio feeds, pictures and links to study materials [original URL no longer active]

Booklet given to parents to use in the consultation and as a take‐home resource (no further details provided)

Online training on the use of the booklet was provided to GPs: describing the content and aims of the booklet, and encouraging use within the consultation to facilitate use of specific communication skills

N/A (online training)

Parents used the booklet face‐to‐face in the consultation with GPs and took it home; GP training in use of booklet was online

General practice; parents' homes

1 x 40‐minute online training module

Not described

Not described

Online clinician training monitored through study website: whether a GP has logged on to the site, how much time spent on it and which pages were viewed

Stated that treatment fidelity was not measured so that assessors could remain blind to the study group

Légaré 2012

Shared decision making training program (DECISION+2)

Family physicians (including teachers and residents)

A shared decision making training program that aimed to help physicians communicate to patients the probability of a bacterial ARI and the benefits and harms associated with the use of antibiotics

Online tutorial and workshop included videos, exercises and decision aids to help physicians communicate to their patients the probability of bacterial ARIs and benefits/harms of antibiotic use. Decision aids were available in the consultation rooms in all family practice teaching units

Online self tutorial comprising 5 modules 2‐hour online tutorial followed by a facilitator‐led on‐site interactive workshops aimed to help physicians review and integrate concepts acquired during online training

Trained facilitators

Online tutorial and face‐to‐face workshop

Family practice teaching units

1 x 2‐hour online tutorial, followed by 1 x 2‐hour on‐site interactive workshop. Participants had 1 month to complete the programme

Not described

Not described

Not described

Of the 162 physicians, 103 completed both the online tutorial and workshop; 16 completed only the workshop; 15 only the tutorial; and 28 completed none of the training components

Légaré 2011

Multiple‐component, continuing professional development program in shared decision making (DECISION+)

Family medicine groups (physicians and nurses)

Aimed to help family physicians communicate to patients the probability of bacterial ARI and benefits and harms of antibiotic use

Workshops included videos (simulated consultations of usual care and SDM) and exercises (facilitators and barriers to SDM). GPs trained in the use of 5 decision support tools using video examples and group exercises. A booklet summarising workshop content provided to participants. Postcard reminders sent

Interactive workshops and related material, reminders of expected behaviours and GP feedback on agreement between their decisional conflict and that of their patients

Trained facilitators

Face‐to‐face workshop

Family medicine groups

3 x 3‐hour interactive workshops and related material, in addition to reminders of expected behaviours and GP feedback on agreement between their decisional conflict and that of their patients. DECISION+ conducted over 4 to 6 months

Not described

4 pilot workshops held rather than 3 as the second workshop was redesigned and re‐piloted after feedback on its first testing

Not described

Not described

Little 2013

Internet‐based training in enhanced communication skills

GPs

Rationale was that Internet‐based training can be more widely disseminated than face‐to‐face training. Training focused on eliciting patients' expectations and concerns, natural disease course, treatments, agreement on a management plan, summing up and guidance on when to re‐consult

Interactive booklet for use by GPs within consultations Training supported by video demonstrations of consultation techniques

Online modules and an interactive booklet for use within consultations. (Group practices also appointed a lead GP to organise a structured meeting on prescribing issues)

N/A (online modules) other than lead GP at each practice to organise a meeting (not specific to just this arm of the intervention though)

Online modules (and GP‐led structured practice‐based meeting)

General practice

Internet modules completed alone or in a group

Not described

Not described

Not described

94/108 practices (87%) completed the communication training. Mean (SD) time spent on the website was 37 (29) minutes

Welschen 2004

Group education meeting with consensus procedure and communication skills training

GPs/pharmacists and their assistants, and patients

GPs discussed evidence for antibiotic benefit/risk, and learned communication techniques to explore patients' expectations and concerns, inform about natural course of symptoms, self‐ medication and alarm symptoms. Patient education provided information on the self‐ limiting nature or ARIs, self‐medication and alarm symptoms requiring re‐consultation

Group consensus guidelines and patient waiting room materials (poster/leaflets)

Group education meeting with consensus procedure, with a summary, and guidelines mailed 1 month later to reinforce consensus reached; feedback on prescribing behaviour (post‐ and pre‐intervention insurance claims data) and practice‐level reporting of extent prescribing behaviours aligned with consensus reached; group education session for GP and pharmacists assistants (Dutch guidelines and skills training in patient education); waiting room education al material for patients

Jointly led by GP and pharmacist

Group education meeting for GPs with consensus procedure and communication skills training,

Group education for GPs' and pharmacists' assistants, monitoring and feedback on prescribing behaviour, and patient education materials

Not described

1 x group education meeting with consensus procedure; 1 x 2‐hour group education session for GP and pharmacists' assistants; monitoring and feedback of prescribing behaviour at 6 months post‐intervention

Not described

Not described

Not described

Not described

ARI: acute respiratory infection
GP: general practitioner
N/A: not applicable

Figuras y tablas -
Table 1. TIDieR intervention summary (Hoffmann 2014)
Table 2. Antibiotic prescriptions per index consultation or population rate over time

Author

Outcome

Measurement time point

Intervention (n)

Control

Effect estimate

P value

Notes

Adjusted odds ratio (95% CI)

Francis (2009)

Antibiotics prescribed at the index consultation

14 days

(30 practices) Patients = 50/256 (19.5%)

(31 practices)
Patients = 111/272 (40.8%)

0.29 (0.14 to 0.60)a

NR

ICC = 0.24

Altiner (2007)

Rate of antibiotic prescriptions (per acute cough and per GP)

6 weeks

GPs = 42
Patients = 1021

GPs = 44
Patients = 1143

0.38 (0.26 to 0.56)b

< 0.001

ICC=0.20

12 months

GPs = 28
Patients = 787

GPs = 33
Patients = 920

0.55 (0.38 to 0.80)b

0.002

Briel (2006)

Uptake of antibiotic prescriptions as reported by pharmacists < 2 weeks after the consultation

14 days

GPs = 15
Patients = 259

GPs = 15
Patients = 293

0.86 (0.40 to 1.93)c

NR

ICC = 0.04

Design effect = 1.6

Adjusted risk ratio (95% CI)

Little (2013)

Antibiotic prescription

index consultation

Practices = 61
Patients = 2332

Practices = 61
Patients = 1932

0.69 (0.54 to 0.87)d

< 0.0001

Légaré (2012)

% patients who decided to use antibiotics immediately after the consultation

Index consultation

Practice units = 6
GPs = 77
Patients = 181

Practice units = 6
GPs = 72
Patients = 178

0.50 (0.30 to 0.70)e

Adjusted risk difference (95% CI)

Légaré (2011)

% patients who decided to use antibiotics immediately after the consultation

Index consultation

Medicine groups = 2
GPs = 18
Patients = 81

Medicine groups
GPs = 14
Patients = 70

‐16 (‐31 to 1)f

0.08

Butler (2012)

Total no. dispensed oral antibiotic items per 1000 registered patients for the year after the intervention

12‐month period

Practices = 34 Patients = 7053

Practices = 34 Patients = 7050

‐4.2 (‐0.6 to ‐7.7)

0.02

Cals (2009)

Antibiotic prescribing at the index consultation

Index consultation

n/N = 55/201

% crude (95% CI)G

27.4 (25.6 to 36.6)

n/N = 123/230

% crude (95% CI)g

53.5 (43.8 to 63.2)

‐26.1 (% crude)

< 0.01h

ICC = 0.12

Cals (2013)

Proportion of episodes of respiratory tract infections during follow‐up for which a GP was seen and that antibiotics were prescribed for

Mean 3.67 years follow‐up

n = 178

% (95% CI)

26.3 (20.6 to 32.0)

n = 201

% (95% CI)

39.1 (33.1 to 45.1)

‐10.4i

0.02i

Welschen (2006)

% practice encounters for acute symptoms of the respiratory tract for which antibiotics were prescribed

Index consultation

Review groups = 6

Review groups = 6

–10.7 (–20.3 to –1.0)j

Practice =

0.17

Review group =

0.09

aTwo level (practice and patient) random intercept logistic regression models.
bAfter backward elimination, four explanatory variables remained in the model: patients' disease severity, measured on a four‐point scale (odds ratio 4.8, 95% CI 3.9 to 5.9 per step on scale, P value < 0.001), and average practice severity (severity of the disease rated by the GP) (odds ratio 0.14, 95% CI 0.06 to 0.33, P value < 0.001 per category step on the scale), patients having fever (odds ratio 1.80, 95% CI 1.35 to 2.39, P value < 0.001 compared with no fever) and frequency of fever in practice, as determined by the log odds (odds ratio 1.31, 95% CI 1.08 to 1.59, P value = 0.007 per category step on the scale).
cLogistic regression with random effects for each cluster and patient covariates (age, sex, education, days with restrictions at baseline).
dThe adjusted model adjusted for baseline prescribing and clustering by physician and practice, and additionally controlled for age, smoking, sex, major cardiovascular or respiratory comorbidity, baseline symptoms, crepitations, wheeze, pulse higher than 100 beats per minute, temperature higher than 37.8°C, respiratory rate, blood pressure, physician's rating of severity and duration of cough.
eAdjusted for cluster design, baseline values and patient age group (for analyses at teaching unit and physician levels).
fP value adjusted for baseline values and the study's cluster design.
gCalculated and inflated for clustering by using standard deviation inflated by variance inflation factor.
hCalculated from second order penalised quasi‐likelihood multilevel logistic regression model adjusted for variance at general practitioner and practice level (random intercept at practice and general practitioner level). Models included both interventions and interaction term of interventions.
iP values from multilevel linear regression model to account and correct for variation at the level of family physician, and to adjust for both interventions, RTI‐episodes treated with antibiotics during baseline period, chronic obstructive pulmonary disease comorbidity.
jIntervention effect in multi‐level analysis

CI: confidence interval
GP: general practitioner
NR: not reported

Figuras y tablas -
Table 2. Antibiotic prescriptions per index consultation or population rate over time
Table 3. Number or rate of re‐consultations

Author

Outcome

Measurement time point

Intervention

Control

Effect estimate

P value

Notes

Briel (2006)

Re‐consultations

Within 14 days

n/N (%)

113/253 (44.7)

n/N (%)

143/290 (49.3)

Adjusted rate ratio (95% CI)a

0.97 (0.78 to 1.21)

NR

Butler (2013)

Re‐consultations after index consultation)b

Within 7 days

Within 14 days

Within 31 days

Median (IQR)

2.66 (1.88 to 4.25)

5.10 (4.70 to 7.92)

9.06 (7.53 to 12.62)

Median (IQR)

3.35 (2.16 to 4.31)

6.43 (4.04 to 7.84)

11.38 (7.39 to 14.05)

Median difference (95% CI)c

‐0.65 (‐1.69 to 0.55)

‐1.33 (‐2.12 to 0.74)

‐2.32 (‐4.76 to 1.95)

P value = 0.446d

P value = 0.411d

P value = 0.503d

Cals (2009)

Re‐consultations

Within 28 days

n/N = 56/201

% crude (95% CI)e

27.9 (21.4 to 34.4)

n/N = 85/230

% crude (95% CI)e

37.0 (30.4, 43.6)

Absolute difference

9.1 (% crude)

0.14f

ICC = 0.01

Francis (2009)

Re‐consultationg

Within 14 days

n/N (%)

33/256 (12.9)

n/N (%)

44/272 (16.2)

Adjusted odds ratio (95% CI)

0.75 (0.41 to 1.38)

NR

ICC = 0.06

Légaré (2012)

Re‐consultation

Baseline (pre)

21.6 (12.1 to 29.7)

22.7 (10.3 to 27.3)

Adjusted risk ratio (95% CI)h

1.3 (0.7 to 2.3)

Absolute difference = 7.5

NR

Within 14 days (post)

13.4 (9.9 to 15.9)

15.2 (11.9 to 19.4)

Little (2013)

New or worsening symptomsi

n/N (%)

451/2242 (20%)

n/N (%)

309/1879 (16%)

Adjusted risk ratio (95% CI)j

1.33 (0.99 to 1.74)

P value = 0.055

aPoisson regression with random effects for each cluster and patient covariates (age, sex, education, days with restrictions at baseline).
bCollected from the electronic records of a subsample of 37 general practices (20 intervention/17 control). 47 patients (10.9%) re‐consulted more than once within 28 days with pattern similar across groups.
cComputed with bootstrapping methods.
dFrom Mann‐Whitney U test.
eCalculated and inflated for clustering by using standard deviation inflated by variance inflation factor.
fCalculated from second order penalised quasi‐likelihood multilevel logistic regression model adjusted for variance at general practitioner and practice level (random intercept at practice and general practitioner level). Models included both interventions and interaction term of interventions.
gParental report that child attended a face‐to‐face consultation with a primary care clinician in their general practice, or with an out of hours provider, in the 2 weeks after registration.
hAdjusted for cluster design and baseline values.
iDefined as re‐consultation for new or worsening symptoms within 4 weeks, new signs or hospital admission.
jThe adjusted model adjusted for baseline prescribing and clustering by physician and practice, and additionally controlled for age, smoking, sex, major cardiovascular or respiratory comorbidity, baseline symptoms, crepitations, wheeze, pulse higher than 100 beats per minute, temperature higher than 37.8°C, respiratory rate, blood pressure, physician's rating of severity and duration of cough.

CI: confidence interval

ICC: intra‐class correlation co‐efficient
IQR: interquartile range
NR: not reported

Figuras y tablas -
Table 3. Number or rate of re‐consultations
Table 4. Incidence of hospital admissions

Author

Outcome

Measurement time point

Intervention

Control

Effect estimate

P value

Notes

Briel (2006)

Hospital admissions

< 28 days of study enrolment

n/N = 2/253

n/N = 1/290

NR

NR

Butler (2012)

Hospital admissionsa

Baseline

Follow‐up

Mean

7.7

7.5

Mean

8.7

8.0

% reduction (intervention relative to controlsb (95% CI)

‐1.9 (‐13.2 to 8.2)

P value = 0.72

Cals (2013)

Hospital admissions

Mean 3.67 year follow‐up

n/N

0/178

n/N

5/201

NR

NR

Francis (2009)

Hospital admissions (or observed in a paediatric assessment unit)

< 14 days

n/N

3/256

n/N

4/272

NR

NR

Little (2013)

Hospital admissionsc

< 4 weeks

n/N

6/1170

n/N

2/870

NR

aAnnual number of hospital episodes for possible respiratory tract infections and complications of common infections per 1000 registered patients. A single admission occurred if patient admitted to hospital for a possible RTI or complication. If patient admitted more than once, and gap between admissions was 30 days or more, this was considered a separate complication episode.

bDifference between means in intervention group and control group as percentage of mean control group.

cFactorial analysis data not reported

NR: not reported
RTI: respiratory tract infection
SAEs: serious adverse events

Figuras y tablas -
Table 4. Incidence of hospital admissions
Table 5. Incidence of pneumonia

Author

Outcome

Measurement time point

Intervention

Control

Effect estimate

P value

Notes

Briel (2006)

Pneumonia

< 28 days

n/N = 0/253

1/290

NR

NR

Cals (2013)

Pneumonia

Mean 3.67 year follow‐up

n/N = 0/178

n/N = 1/201

NR

NR

NR: not reported

Figuras y tablas -
Table 5. Incidence of pneumonia
Table 6. Patient satisfaction

Author

Outcome

Measurement time point

Intervention

Control

Effect estimate

P value

Notes

Briel (2006)

Patient satisfaction (Patient Satisfaction Questionnaire)a

7 and 14 days

121/253 (47.8)

142/290 (49.0)

Adjusted OR (95% CI)b

1.00 (0.64 to 1.31)

NR

Cals (2009)

Patient satisfaction (% at least 'very satisfied' on Likert scale)c

28 days

n/N = 144/201

% (crude 95% CI)d

78.7 (72.5 to 84.9)

n/N = 151/230

% (crude 95% CI)d

74.4 (68.2 to 80.6)

4.3

P value = 0.88e

Francis (2009)

Parent satisfaction (Likert scale)f

14 days

n/N (%) = 222/246 (90.2)

n/N (%) = 246/263 (93.5)

Adjusted OR (95% CI)g

0.6 (0.3 to 1.2)

NR

Welschen (2006)

Patient satisfaction (Likert scale)h

Index consultation

Patient satisfaction (%)

Baseline (pre) = 4.3 (0.3)

Follow‐up (post) = 4.3 (0.3)

% change (SD) = 0 (0.4)

Patient satisfaction (%)

Baseline (pre) = 4.2 (0.4)

Follow‐up (post) = 4.2 (0.3)

% change (SD): 0 (0.4)

Mean difference of changes (95% CI)

0 (–0.2 to 0.1) i

NR

a% patients with a maximum score of 70 reported, as satisfaction scores (scale 14 to 70; median 68/70) were highly skewed.
bLogistic regression with random effects for each cluster and patient covariates (age, sex, education, days with restrictions at baseline).
c% at least 'very satisfied'.
dCalculated and inflated for clustering by using standard deviation inflated by variance inflation factor.
eCalculated from models adjusted for variance at general practitioner and practice level.
fTransformed into binary outcomes: 'very satisfied' and 'satisfied' versus 'neutral', 'dissatisfied' and 'very dissatisfied'.
gOdds ratio (95% CI) from multilevel modelling.
h1 = very dissatisfied to 5 = very satisfied.
iIntervention effect in multilevel analysis.

CI: confidence interval
OR: odds ratio
SD: standard deviation

Figuras y tablas -
Table 6. Patient satisfaction
Table 7. Decisional conflict

Author

Outcome

Measurement time point

Intervention

Control

Effect estimate

P value

Notes

Légaré (2012)

Decisional conflict (GPs)a

Immediately after consultation

Baseline: 4.5 (0 to 9.0)

Follow‐up: 4.6 (0 to 6.1)

Baseline: 3.0 (0 to 5.9)

Follow‐up:1.1 (0 to 2.4)

Adjusted RR

3.4 (0.3 to 38.0)

NR

Légaré (2012)

Decisional conflict (patients)a

Immediately after consultation

Baseline: 5.1 (0 to 13.5)

Follow‐up: 4.6 (2.6 to 7.4)

Baseline: 4.2 (0 to 8.9)

Follow‐up: 6.3 (0 to 12.8)

Adjusted RR:

0.8 (0.2 to 2.4)

NR

Légaré (2011)

Correlation of decisional conflict between GPs and patientsa

Immediately after consultation

Baseline: 0.14

Follow‐up: 0.24

Baseline: ‐0.05

Follow‐up: 0.02

Difference at follow‐up (95% CI)

0.26 (‐0.06 to 0.53)

0.06

aProportion of participants who had a value of 2.5 or more on the Decision Conflict Scale (where 1 = low decisional conflict and 5 = very high decisional conflict).
bPresented as correlation of family physicians' and patient's DCS scores (Pearson's r).

CI: confidence interval
GP: general practitioner
NR: not reported
RR: risk ratio

Figuras y tablas -
Table 7. Decisional conflict
Table 8. Decisional regret

Author

Outcome

Measurement time point

Intervention

Control

Effect estimate

P value

Notes

Légaré (2012)

Decisional regret a

2 weeks after consultation

Baseline: 10.5 ± 15.4

Follow‐up: 12.4 ± 19.1

Baseline: 10.8 ± 20.8

Follow‐up: 7.6 ± 13.7

Adjusted mean difference

4.8 (0.9 to 8.7)

Légaré (2011)

Patients (%) with decisional regret

2 weeks after consultation

Baseline: 1

Follow‐up: 7

Baseline: 1

Follow‐up: 9

Difference at follow‐up (95% CI)

‐2 (‐12 to 5)

0.91

a = Decisional Regret Scale used, where 0 = very low regret and 100 = very high regret

CI: confidence interval

Figuras y tablas -
Table 8. Decisional regret
Table 9. Patient enablement

Author

Outcome

Measurement time point

Intervention

Control

Effect estimate

P value

Notes

Briel (2006)

Patient enablement (Patient Enablement Instrument; scale 0 to 12)

7 and 14 days

Mean (SD): 8.49 (1.98)

Mean (SD): 8.15 (2.03)

Adjusted coefficient (95% CI)a

0.35 (‐0.05 to 0.75)

NR

Cals (2009)

Patient enablement (Patient Enablement Instrument; max score is 12)

28 days

Median (IQR) score: 3 (4)

Mean (SD) score: 3.29 (2.52)

Median (IQR) score: 3 (4)d

Mean (SD) score: 3.06 (2.54)

NR

0.70b

Francis (2009)

Parent enablement (Modified Patient Enablement Instrument, scale 1 to 10)c

14 days

n/N (%): 99/246 (40.2)

n/N (%): 94/262 (35.9)

Adjusted OR (95% CI)

1.20 (0.84 to 1.73)

NR

aLinear regression with random effects for each cluster and patient covariates (age, sex, education, days with restrictions at baseline).
bCalculated from models adjusted for variance at general practitioner and practice level.
cPresented results are % with parent enablement score of 5 or more (binary outcome).
dComparator is 'no skills training'.

CI: confidence interval
IQR: interquartile range
NR: not reported
OR: odds ratio
SD: standard deviation

Figuras y tablas -
Table 9. Patient enablement
Table 10. Quality of the decision made (GPs)

Author

Outcome

Measurement time point

Intervention

Control

Effect estimate

P value

Notes

Légaré (2012)

Quality of decision made (GPs) (0 to 10 Likert scale)

After consultation

Baseline: 8.7 ± 1.5

Follow‐up: 8.5 ± 1.6

Baseline: 8.7 ± 1.5

Follow‐up: 8.5 ± 1.5

Adjusted mean difference

0.0 (‐0.4 to 0.4)

NR

Légaré (2011)

Quality of decision made (GPs) (0 to 10 Likert scale)

After consultation

Baseline: 8.8 ± 1.1

Follow‐up: 8.7 ± 1.2

Baseline: 8.3 ± 1.4

Follow‐up: 8.5 ± 1.3

Difference at follow‐up (95% CI)

0.2 (‐0.34 to 0.89)

0.29

CI: confidence interval
GP: general practitioner
NR: not reported

Figuras y tablas -
Table 10. Quality of the decision made (GPs)
Table 11. Quality of the decision made (patients)

Author

Outcome

Measurement time point

Intervention

Control

Effect estimate

P value

Notes

Légaré (2012)

Quality of decision made (patients) (0 to 10 Likert scale) a

After consultation

Baseline: 8.2 ± 1.1

Follow‐up: 8.2 ± 1.3

Baseline: 8.2 ± 1.4

Follow‐up: 8.4 ± 1.0

Adjusted mean difference

0.2 (‐0.6 to 0.2)

NR

Légaré (2011)

Quality of the decision made (patients) (0 to 10 Likert scale) a

After consultation

Baseline: 8.2 ± 2.1

Follow‐up: 8.7 ± 1.9

Baseline: 8.4 ± 1.9

Follow‐up: 8.6 ± 1.9

Difference at follow‐up (95% CI)

0.1 (‐0.88 to 0.94)

0.57

aLikert scale where 0 = very low quality and 10 = very high quality.

CI: confidence interval
NR: not reported

Figuras y tablas -
Table 11. Quality of the decision made (patients)
Comparison 1. Shared decision making versus usual care (control)

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Antibiotics prescribed, dispensed or decision to use (short‐term, index consultation to ≤ 6 weeks) Show forest plot

8

10172

Risk Ratio (Random, 95% CI)

0.61 [0.55, 0.68]

2 Antibiotics prescribed or dispensed (longer‐term, ≥ 12 months) Show forest plot

3

481588

Risk Ratio (Random, 95% CI)

0.74 [0.49, 1.11]

3 Antibiotic prescriptions (index consultation) (adjusted odds ratio) Show forest plot

3

3244

Odds Ratio (Random, 95% CI)

0.44 [0.26, 0.75]

4 Antibiotic prescriptions (index consultation) (adjusted risk ratio) Show forest plot

2

4623

Risk Ratio (Random, 95% CI)

0.64 [0.49, 0.84]

5 Antibiotic prescriptions (index consultation or population rate per unit of time) (adjusted risk difference) Show forest plot

4

481807

Mean Difference (Random, 95% CI)

‐18.44 [‐27.24, ‐9.65]

6 Number or rate of re‐consultations (risk ratio) Show forest plot

4

1861

Risk Ratio (Random, 95% CI)

0.87 [0.74, 1.03]

7 Patient satisfaction with the consultation Show forest plot

2

1052

Odds Ratio (Random, 95% CI)

0.86 [0.57, 1.30]

Figuras y tablas -
Comparison 1. Shared decision making versus usual care (control)