Scolaris Content Display Scolaris Content Display

Ventilación invasiva versus no invasiva para la insuficiencia respiratoria aguda en las enfermedades neuromusculares y los trastornos de la pared torácica

Contraer todo Desplegar todo

Resumen

Antecedentes

La insuficiencia respiratoria aguda es una complicación común y potencialmente mortal de las enfermedades neuromusculares de inicio agudo, y puede exacerbar la hipoventilación crónica en los pacientes con enfermedades neuromusculares o trastornos de la pared torácica. El tratamiento estándar incluye suplementos de oxígeno, fisioterapia, tos asistida y, de ser necesario, antibióticos y ventilación con presión positiva intermitente. La ventilación mecánica no invasiva (VNI) vía dispositivos nasales, bucales o de rostro completo se han convertido en la práctica habitual en muchos centros.

Objetivos

El objetivo primario de esta revisión fue comparar la eficacia de la ventilación no invasiva versus ventilación invasiva en cuanto a la mejoría de la supervivencia a corto plazo en la insuficiencia respiratoria aguda en pacientes con enfermedades neuromusculares y trastornos de la pared torácica. Los objetivos secundarios fueron comparar los efectos de la VNI con los de la ventilación mecánica invasiva en cuanto a la mejoría en el gas en sangre arterial después de 24 horas y las mediciones de la función pulmonar después de un mes, la incidencia de barotrauma y neumonía asociada con el respirador, la duración de la ventilación mecánica, la duración de la estancia en la unidad de cuidados intensivos y la duración de la estancia hospitalaria.

Métodos de búsqueda

Se hicieron búsquedas en las siguientes bases de datos el 11 de septiembre 2017: registro especializado del Grupo Cochrane Neuromuscular (Cochrane Neuromuscular Specialised Register), CENTRAL, MEDLINE y Embase. También se buscó en actas de congresos y en registros de ensayos clínicos.

Criterios de selección

Se planificó incluir ensayos aleatorios o cuasialeatorios con o sin cegamiento. Se planificó incluir ensayos realizados en niños o adultos con enfermedades neuromusculares de inicio agudo o enfermedades neuromusculares crónicas o trastornos de la pared torácica que se presentaron a la consulta con insuficiencia respiratoria aguda y en los que se compararan los beneficios y los riesgos de la ventilación invasiva versus VNI.

Obtención y análisis de los datos

Dos autores de la revisión examinaron las búsquedas y seleccionaron los estudios para la evaluación de forma independiente. Se planificó seguir la metodología Cochrane estándar para la recopilación y el análisis de datos.

Resultados principales

No se identificó ningún ensayo elegible para su inclusión en la revisión.

Conclusiones de los autores

La insuficiencia respiratoria aguda es una complicación potencialmente mortal de la enfermedad neuromuscular de inicio agudo y de la enfermedad neuromuscular crónica y los trastornos de la pared torácica. No se encontró ningún ensayo aleatorio sobre el cual elaborar prácticas basadas en evidencia para el uso de ventilación mecánica no invasiva versus invasiva. Para los investigadores, es necesario diseñar y realizar nuevos ensayos aleatorios para comparar la VNI con la ventilación invasiva en la insuficiencia respiratoria neuromuscular aguda. Dichos ensayos deben prever las variaciones en las respuestas al tratamiento según la condición de la enfermedad (inicio agudo versus exacerbación aguda en las enfermedades neuromusculares crónicas) y según la presencia o la ausencia de disfunción bulbar.

PICO

Population
Intervention
Comparison
Outcome

El uso y la enseñanza del modelo PICO están muy extendidos en el ámbito de la atención sanitaria basada en la evidencia para formular preguntas y estrategias de búsqueda y para caracterizar estudios o metanálisis clínicos. PICO son las siglas en inglés de cuatro posibles componentes de una pregunta de investigación: paciente, población o problema; intervención; comparación; desenlace (outcome).

Para saber más sobre el uso del modelo PICO, puede consultar el Manual Cochrane.

Resumen en términos sencillos

Ventilación invasiva versus no invasiva para la insuficiencia respiratoria aguda en las enfermedades neuromusculares y los trastornos de la pared torácica

¿Cuál es el objetivo de esta revisión?

El objetivo de esta revisión Cochrane fue considerar cómo se comparaban los efectos de la ventilación no invasiva (VNI) versus ventilación invasiva en el tratamiento de la insuficiencia respiratoria en pacientes con enfermedades que afectan los nervios, los músculos o la pared torácica. La revisión se propuso comparar los dos métodos en cuanto a los efectos sobre la supervivencia a corto plazo, los efectos secundarios y la duración de la estancia hospitalaria.

¿Qué se estudió en la revisión?

Cuando un paciente presenta dificultad grave para respirar, puede necesitar asistencia de una máquina (respirador) que puede mover el aire dentro y fuera de los pulmones. La ventilación invasiva y no invasiva difieren en cómo se administra el aire al paciente. En la ventilación invasiva, el aire se administra vía un tubo que se inserta en la tráquea a través de la boca o a veces de la nariz. En la VNI, el aire se administra a través de una máscara sellada que puede colocarse por encima de la boca, la nariz o el rostro entero.

La ventilación invasiva es el tratamiento estándar utilizado para los pacientes con enfermedades neuromusculares o trastornos de la pared torácica que están sufriendo de insuficiencia respiratoria aguda. Sin embargo, la VNI puede ofrecer algunas ventajas como poder hablar y tragar, y puede tener menos riesgos.

Mensajes clave

Los autores de la revisión recopilaron y evaluaron todos los estudios relevantes para responder a esta pregunta aunque no identificaron ensayos que reunieran los estándares necesarios para estar incluidos en la revisión.

Hasta el presente, no existe evidencia de estudios aleatorios a favor ni en contra del uso sistemático de VNI en lugar de la ventilación invasiva en pacientes con insuficiencia respiratoria aguda causada por enfermedades neuromusculares o un trastorno de la pared torácica.

Sin embargo, alguna evidencia de los estudios observacionales indica que la VNI debe investigarse en todos los pacientes excepto los que presentan disfunción bulbar.

¿Qué grado de actualización tiene esta revisión?

La evidencia está actualizada hasta el 11 de septiembre de 2017.

Authors' conclusions

Implications for practice

There is no evidence from randomised trials to support the routine use of non‐invasive ventilation (NIV) instead of invasive ventilation in patients with acute neuromuscular respiratory failure. However, some evidence from observational studies suggests that NIV should be trialled in all patients except those with bulbar dysfunction.

Implications for research

The benefits and risks of NIV should be compared with those of invasive ventilation in well‐designed randomised controlled trials. In addition, future trials will need to compare different types of patient/ventilator interfaces, i.e. nasal versus full‐face mask versus mouthpiece.

Future trials will need to explore the interaction between patients' responses to these treatments and whether acute neuromuscular respiratory failure occurs in patients with acute onset neuromuscular diseases or in patients with acute exacerbation of neuromuscular or chest wall disorders related to chronic hypoventilation. They also should explore any interaction between patients' responses to NIV or invasive mechanical ventilation and the presence at baseline of bulbar dysfunction.

Background

Description of the condition

Acute respiratory failure is the most common life‐threatening complication of neuromuscular diseases and chest wall disorders (Carr 2014; Serrano 2010). A recent population‐based study in Northen Ireland found that acute neuromuscular respiratory failure had an incidence rate of about 2.81 (2.12 to 3.66) cases per million person‐years, representing about 1.5% of all non‐surgical admissions to the intensive care unit (ICU), and a mortality rate of about 0.26 (0.08 to 0.60) deaths per million person‐years (Serrano 2010). These epidemiological data are thought likely to be comparable in other European and North American countries.

Acute respiratory failure may occur in people with acute onset neuromuscular diseases such as Guillain‐Barré syndrome and myasthenic crisis, or as an exacerbation of chronic hypoventilation in people with neuromuscular diseases or chest wall disorders such as amyotrophic lateral sclerosis or Duchenne muscular dystrophy. The main mechanisms include: 1) weakness or paralysis of the diaphragm and accessory respiratory muscles resulting in acute alveolar hypoventilation; 2) oropharyngeal weakness with upper airway obstruction; 3) ineffective cough resulting in accumulation of bronchial secretions with pulmonary atelectasis (collapse of segments of the lung due to the interruption of airflow by sputum in the bronchia), hypoxaemia and infection, and 4) bulbar dysfunction with impaired swallowing and aspiration pneumonia (Wijdicks 2017). The decrease in alveolar ventilation and in bronchial secretion clearance reduce the clearance of carbon dioxide (CO2) causing hypercarbia, acidosis and usually moderate hypoxaemia. Patients often present with tachypnoea (fast breathing), tachycardia (fast heart rate), and sometimes with sweating, acute hypertension and altered mental status. There may be a subacute history of headache and daytime somnolence (sleepiness).

Description of the intervention

Treatment of both acute and acute on chronic respiratory muscle failure usually requires referral of the patient to a facility where mechanical ventilation can be implemented, such as an ICU. Management of the patient usually consists of physiotherapy, antibacterial drugs whenever there is a coexisting infection, and cough assistance to improve clearance of bronchial secretions. Patients whose condition is refractory to this initial management, require to be assisted with mechanical ventilation (Goligher 2009).

Assisted mechanical ventilation can be delivered invasively through an orotracheal tube or a tracheostomy, or non‐invasively using a broad variety of patient/ventilator interfaces such as nasal, buccal or full‐face masks.

In acute respiratory failure, mechanical ventilation almost always relies on positive pressure ventilation. The ventilator is set to detect the rapid decrease in airway pressure that occurs at the early phase of inspiration, and then it pushes the gas (usually enriched in oxygen) into the upper airway and the lung. The delivery of gas by the ventilator is regulated either by fixing the volume of gas to be injected (volume control mode) or by fixing a pressure or flow to be achieved in the airway within a predetermined time (pressure control mode). Then, invasive mechanical ventilation commonly uses the volume control mode with tidal volume and respiratory rate titrated to normalise arterial CO2 tension, and titration of the inspired fraction of oxygen to achieve an arterial oxygen saturation of more than 90%. Non‐invasive ventilation commonly uses the pressure control mode.

Over the last decade, non‐invasive mechanical ventilation (NIV) has become routine practice worldwide in the management of acute respiratory failure of various origins (Esteban 2008).

How the intervention might work

Invasive or non‐invasive positive pressure ventilation is expected to compensate respiratory muscle weakness and to allow appropriate recruitment of lung alveoli to restore a normal minute ventilation. In addition, by maintaining a positive pressure, mechanical ventilation prevents the upper airway from collapsing. Subsequently, positive pressure ventilation improves the clearance of CO2 from arterial blood and reverses lungs atelectasis and normalises ventilation/perfusion mismatch.

Theoretically, as compared to NIV, on the one hand, invasive ventilation protects the airways from aspiration pneumonia and may ease the clearance of bronchial secretions. Owing to the necessary leaks associated with non‐invasive interfaces, invasive ventilation also may offer a better control of minute ventilation and of the impermeability of the upper airway. On the other hand, invasive mechanical ventilation may increase the risk of hospital‐acquired pneumonia, of barotrauma, of laryngeal and tracheal stenosis and of weaning failure and prolonged ventilator dependency.

Systematic reviews have shown reduced morbidity and mortality with NIV, as compared to invasive ventilation, in patients with acute cardiogenic pulmonary oedema (Vital 2013), and in patients with acute exacerbation of chronic obstructive pulmonary disease (COPD) with acute hypercarbic respiratory failure (Quon 2008). Likewise, NIV can be used in weaning critically ill patients from invasive ventilation (Burns 2009). NIV has also been proven to be superior to invasive mechanical ventilation in the management of acute respiratory failure in immunosuppressed patients (Hilbert 2001), In contrast, in patients with acute hypoxaemic respiratory failure invasive mechanical ventilation remains the standard treatment (Keenan 2004).

Why it is important to do this review

A Cochrane systematic review suggested favourable benefit to risk ratio of nocturnal mechanical ventilation in patients with chronic hypoventilation related to neuromuscular or chest wall disorders (Annane 2014). There is little information on the benefit to risk ratio of NIV versus invasive ventilation in patients with these conditions who present with acute respiratory failure. Data are scarce regarding the effects of NIV in acute respiratory failure among people with neuromuscular diseases or chest wall disorders. The favourable benefit to risk ratio of NIV versus invasive ventilation demonstrated in people with cardiogenic oedema or acute exacerbation of COPD cannot be extrapolated to neuromuscular patients who often present with cough weakness, bulbar dysfunction and swallowing problems, or facial paresis, which might reduce the efficacy and tolerance of NIV. For example, in patients with amyotrophic lateral sclerosis, bulbar impairment as assessed by the Norris bulbar score was an independent predictor of the inefficacy of NIV (Servera 2015). Recent guidelines have suggested that a trial of NIV should be systematically tested in acute neuromuscular respiratory failure (Davidson 2016). Nevertheless, the same guidelines highlighted that in these patients triggering may be inefficient, bulbar dysfunction and communication difficulties may alter NIV efficacy, and sudden unpredictable deterioration is a common complication of NIV. The guidelines panel also pointed out as the main reason for using NIV as the first‐line treatment is the high risk for extubation failure following invasive mechanical ventilation in these patients. However, in a retrospective cohort of 85 patients admitted to ICU for acute neuromuscular respiratory failure, as compared to invasively ventilated patients, NIV‐treated patients had a shorter length of stay (P = 0.02), but similar functional outcomes such as long‐term ventilatory dependency (Serrano 2010). In another retrospective cohort study of 55 patients admitted to ICU for acute neuromuscular respiratory failure, the need for invasive mechanical ventilation in the acute setting was not associated with an increase risk of long‐term dependency to mechanical ventilation (Carr 2014). Therefore, we intended to systematically search the literature to summarise existing data on NIV versus invasive mechanical ventilation for acute neuromuscular respiratory failure.

Objectives

The primary objective of this review was to compare the efficacy of non‐invasive mechanical ventilation (NIV) to that of invasive ventilation in improving short‐term survival in neuromuscular disease and chest wall disorders.

The secondary objectives were to compare the effects of NIV with those of invasive mechanical ventilation on improvement in arterial blood gas after 24 hours and in lung function measurements after one month, incidence of barotrauma and ventilator‐associated pneumonia, duration of mechanical ventilation, length of stay in the intensive care unit (ICU) and length of hospital stay.

Methods

Criteria for considering studies for this review

Types of studies

Randomised controlled trials (RCTs) or quasi‐RCTs, with or without blinding.

Types of participants

Children or adults with neuromuscular disease or chest wall disorders with acute respiratory failure. We planned to consider studies of acute respiratory failure in heterogeneous critically ill populations whenever separate data were available for participants with neuromuscular diseases or chest wall disorders.

Acute respiratory failure was defined as a condition characterised by an abrupt loss in lung function resulting in inadequate gas exchange and acute fall in arterial oxygen tension (below 8 kPa [60mmHg]), called hypoxia with normal or low arterial CO2 tension in type 1 respiratory failure, or with increased arterial CO2 tension (> 6.5 kPA [50mmHg]) in type 2 respiratory failure (Leavers 2017).

Types of interventions

All forms of non‐invasive ventilation (using a nasal or facial mask, or mouth piece) compared with invasive ventilation (via endotracheal intubation or tracheostomy).

Types of outcome measures

Primary outcomes

The primary outcome was short‐term (i.e. one‐month) survival after initiation of assisted ventilation.

Secondary outcomes

  • Improvement in arterial blood gas after 24 hours from initiation of treatment, as demonstrated by increase in partial pressure of oxygen in arterial blood (PaO2) or decrease in partial pressure of carbon dioxide in arterial blood (PaCO2) or increase in PaO2/FiO2, (PaO2/fraction of inspired oxygen) in that order of preference.

  • Improvement in lung function measurements after one month, as demonstrated by increase in forced vital capacity or improvement in ventilation‐perfusion mismatch, in that order of preference.

  • Incidence of barotrauma: mechanical ventilation can lead to barotrauma of the lungs. The resultant alveolar rupture can lead to: pneumothorax, pulmonary interstitial emphysema (PIE) and pneumomediastinum.

  • Duration of mechanical ventilation, length of stay in the ICU and length of hospital stay.

  • Incidence of ventilator‐associated pneumonia.

Search methods for identification of studies

Electronic searches

We searched the following databases for RCTs and quasi‐RCTs.

  • Cochrane Neuromuscular Specialised Register (11 September 2017) Appendix 1

  • Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Register of Studies (CRS Web) (11 September 2017) Appendix 1

  • MEDLINE (1966 to 11 September 2017) Appendix 2

  • Embase (1980 to 11 September 2017) Appendix 3

Searching other resources

We searched proceedings of international scientific meetings, i.e. the American Thoracic Society, European Respiratory Society, Chest (1992 to May 2017) and the references list of identified articles. We also searched the US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (Appendix 5) and World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP; apps.who.int/trialsearch/) (Appendix 6) on 24 November 2017. There was no language restriction.

We planned to check bibliographies of trials identified and contact the authors seeking published and unpublished studies.

Data collection and analysis

Selection of studies

Two review authors (FL and DA) independently read the titles and abstracts retrieved by the search to identify trials that met inclusion criteria. The same two review authors retrieved and reviewed independently the full text of potentially relevant articles. Two review authors (FL and DA) decided which trials fit the inclusion criteria. The nine review authors would have resolved any discrepancy by discussion, but there was no disagreement.

This review has a published protocol (Luo 2010). Appendix 7 contains methods for use if the review identified eligible studies.

Results

Description of studies

Results of the search

Database searches retrieved 2123 potentially relevant references of which 1248 remained after removal of duplicates. We assessed 14 full‐text reports for eligibility but none met our inclusion criteria (Figure 1).


Study flow diagram.

Study flow diagram.

Included studies

No study met the predefined eligibility criteria.

Excluded studies

After screening of titles and abstracts, we selected 14 potentially eligible studies for further assessment. Through the full‐text screening, we excluded these 14 studies for the following reasons.

See Characteristics of excluded studies for details.

Risk of bias in included studies

No studies were eligible for inclusion in the review.

Effects of interventions

No studies were eligible for inclusion in the review.

Discussion

We found no randomised trials that compared the benefits and risks of invasive ventilation with those of non‐invasive ventilation (NIV).

Acute respiratory failure is a frequent and life‐threatening complication in neuromuscular disease or chest wall disorders. In acute respiratory failure, invasive mechanical ventilation is the standard treatment when initial management with oxygen supplementation, physiotherapy, cough assistance, or antibacterial drugs are insufficient to stabilise the patient, although this may have potentially life‐changing consequences for the patient with neuromuscular disease who may become ventilator‐dependent via a tracheostomy.

Over the last decade, NIV has been increasingly used to manage both acute and chronic respiratory failure in a broad variety of conditions. In patients with amyotrophic lateral sclerosis (ALS), long‐term NIV may provide survival benefit and may improve patients' well‐being and quality of life, particularly in those without bulbar impairment (Radunovic 2017). Likewise, in patients with chronic hypoventilation related to neuromuscular or chest wall disorders, long‐term nocturnal mechanical ventilation may improve long‐term survival (Annane 2014). In patients with acute respiratory failure, reduced morbidity and mortality with NIV as compared to invasive ventilation, has been suggested for acute respiratory failure in immunosuppressed patients (Hilbert 2001), acute cardiogenic pulmonary oedema (Vital 2013), acute exacerbation of chronic obstructive pulmonary disease (COPD), and acute hypercarbic respiratory failure (Quon 2008). However, these findings cannot be extrapolated to patients with neuromuscular diseases who also have facial weakness, bulbar disorders, and poor cough, which may substantially reduce the efficacy of NIV.

Most recent guidelines recommend NIV as the first‐line therapeutic approach for the management of acute hypercapnic respiratory failure, whether it is related to neuromuscular disorders or not (Davidson 2016). On the one hand, NIV, by avoiding endotracheal intubation, may reduce the person's exposure time to mechanical ventilation and to ICU, prevent lung infections, barotrauma, tracheal stenosis, and the need for tracheostomy. On the other hand, NIV efficacy may be dramatically reduced by the presence of bulbar dysfunction and by excessive bronchial secretions (Senevirame 2008). NIV may also be associated with sudden deterioration in respiratory function and vital signs that require immediate tracheal intubation, which can be challenging (Garpestad 2007).

We performed a systematic search of the main electronic databases for publications, with no time or language restrictions, and we searched for communications in proceedings of major scientific meetings. Since registry of trials on publicly available databases has been mandatory for close to 15 years and we identified no relevant trial by systematically searching registries, it is unlikely that we have missed any relevant unpublished trials.

Study flow diagram.
Figuras y tablas -
Figure 1

Study flow diagram.