Scolaris Content Display Scolaris Content Display

Anfetaminas para el trastorno de déficit de atención e hiperactividad (TDAH) en adultos

Contraer todo Desplegar todo

Resumen

Antecedentes

El trastorno de déficit de atención e hiperactividad (TDAH) es un trastorno de inicio en la niñez caracterizado por falta de atención, hiperactividad e impulsividad. El TDAH puede persistir en la edad adulta y afectar la funcionalidad social y ocupacional de los individuos, así como la calidad de vida y la salud. El TDAH se asocia con frecuencia con otros trastornos mentales como los trastornos por abuso de sustancias, de ansiedad y afectivos. Las anfetaminas se utilizan para el tratamiento del TDAH en adultos, pero todavía existen dudas con respecto a su eficacia y seguridad.

Objetivos

Examinar la eficacia y la seguridad de las anfetaminas en pacientes adultos con TDAH.

Métodos de búsqueda

En agosto de 2017, se realizaron búsquedas en CENTRAL, MEDLINE, Embase, PsycINFO, otras diez bases de datos y dos registros de ensayos, y se buscaron las citas de los estudios incluidos. También se estableció contacto con los autores correspondientes de todos los estudios incluidos, otros expertos en el tema y la compañía farmacéutica Shire, y se buscó en las listas de referencias de los estudios recuperados y las revisiones de otros estudios publicados, inéditos o en curso. Para cada estudio incluido se realizó una búsqueda de citas en la Web of Science para identificar estudios posteriores que pudieran haberlos citado.

Criterios de selección

Se buscaron los ensayos controlados aleatorios que compararan la eficacia de las anfetaminas (cualquier dosis) para el TDAH en adultos a partir de los 18 años versus placebo o una intervención activa.

Obtención y análisis de los datos

Dos autores de la revisión extrajeron los datos de cada estudio incluido. Se utilizó la diferencia de medias estandarizada (DME) y el cociente de riesgos (CR) para evaluar los resultados continuos y dicotómicos, respectivamente. Se realizó un análisis estratificado para determinar la influencia de las variables moderadoras. Se evaluó el riesgo de sesgo en los ensayos y se realizó un gráfico en embudo para investigar la posibilidad de sesgo de publicación. Se calificó la calidad de la evidencia con el enfoque GRADE, y se obtuvieron calificaciones altas, moderadas, bajas o muy bajas sobre la base de la evaluación del riesgo de sesgo dentro del ensayo del sesgo, la direccionalidad de la evidencia, la heterogeneidad de los datos, la precisión de las estimaciones del efecto y el riesgo de sesgo de publicación.

Resultados principales

Se incluyeron 19 estudios que investigaron tres tipos de anfetaminas: dexanfetamina (10,2 mg/día a 21,8 mg/día), lisdexamfetamina (30 mg/día a 70 mg/día) y sales mixtas de anfetamina (SMA; 12,5 mg/día a 80 mg/día). Estos estudios reclutaron a 2521 participantes; la mayoría fueron de edad madura (35,3 años), hombres caucásicos (57,2%), con un tipo combinado de TDAH (78,8%). Dieciocho estudios se realizaron en los Estados Unidos, y un estudio se realizó en Canadá y los Estados Unidos. Diez estudios se realizaron en sitios múltiples. Todos los estudios fueron controlados con placebo y tres incluyeron un comparador activo: guanfacina, modafinilo y paroxetina. La mayoría de los estudios tuvo un seguimiento a corto plazo y una duración media del estudio de 5,3 semanas.

No se encontraron estudios con bajo riesgo de sesgo en todos los dominios de la herramienta Cochrane de "riesgo de sesgo", no sólo porque las anfetaminas tienen efectos subjetivos potentes que pueden revelar el tratamiento asignado, sino también porque se observó sesgo de desgaste y porque no fue posible descartar la posibilidad de un efecto de arrastre en los estudios que utilizaron un diseño cruzado.

Dieciséis estudios fueron financiados por la industria farmacéutica, un estudio fue financiado por una dependencia pública y dos no informaron las fuentes de financiamiento.

Anfetaminas versus placebo

Gravedad de los síntomas del TDAH: se encontró evidencia de baja a muy baja calidad que indica que las anfetaminas redujeron la gravedad de los síntomas del TDAH evaluados por los médicos (DME‐0,90; intervalo de confianza [IC] del 95%: ‐1,04 a ‐0,75; 13 estudios, 2028 participantes) y los pacientes (DME ‐0,51; IC del 95%: ‐0,75 a ‐0,28; seis estudios, 120 participantes).

Retención: en general, se encontró evidencia de baja calidad que indica que las anfetaminas no mejoraron la retención en el tratamiento (cociente de riesgos [CR] 1,06; IC del 95%: 0,99 a 1,13; 17 estudios, 2323 participantes).

Eventos adversos: se encontró que las anfetaminas se asociaron con una mayor proporción de pacientes que se retiraron por eventos adversos (CR 2,69; IC del 95%: 1,63 a 4,45; 17 estudios, 2409 participantes).

Tipo de anfetamina: se encontraron diferencias entre las anfetaminas en la gravedad de los síntomas del TDAH evaluada por los médicos. La lisdexamfetamina (DME ‐1,06; IC del 95%: ‐1,26 a ‐0,85; siete estudios, 896 participantes; evidencia de baja calidad) y las SMA (DME ‐0,80; IC del 95%: ‐0,93 a ‐0,66; cinco estudios, 1083 participantes; evidencia de baja calidad) redujeron la gravedad de los síntomas del TDAH. Por otro lado, no se encontró evidencia que indique que la dexanfetamina redujo la gravedad de los síntomas del TDAH (DME ‐0,24; IC del 95% ‐0,80 a 0,32; un estudio, 49 participantes; evidencia de muy baja calidad). Además, todas las anfetaminas fueron eficaces en la reducción de la gravedad de los síntomas del TDAH según la evaluación de los pacientes (dexanfetamina: DME ‐0,77; IC del 95%: ‐1,14 a ‐0,40; dos estudios, 35 participantes; evidencia de baja calidad; lisdexamfetamina: DME ‐0,33; IC del 95%: ‐0,65 a ‐0,01; tres estudios, 67 participantes; evidencia de baja calidad; SMA: DME ‐0,45; IC del 95%: ‐1,02 a 0,12; un estudio, 18 participantes; evidencia de muy baja calidad).

Dosis al final del estudio: las distintas dosis de anfetaminas no parecieron asociarse con diferencias en la eficacia.

Tipo de formulación de liberación del fármaco: se investigaron formulaciones de liberación inmediata y sostenida del fármaco, pero no se encontraron diferencias entre ellas en los resultados.

Anfetaminas versus otros fármacos

No se encontró evidencia de que las anfetaminas mejoraran la gravedad de los síntomas del TDAH en comparación con otras intervenciones farmacológicas.

Conclusiones de los autores

Las anfetaminas mejoraron la gravedad de los síntomas del TDAH, según la evaluación de los médicos o los pacientes, a corto plazo, pero no mejoraron la retención en el tratamiento. Las anfetaminas se asociaron con un mayor desgaste debido a los eventos adversos. La corta duración de los estudios y los criterios de inclusión restrictivos limitan la validez externa de estos resultados. Además, ninguno de los estudios incluidos presentó un riesgo de sesgo general bajo. En general, la evidencia generada por esta revisión es de baja o muy baja calidad.

PICO

Population
Intervention
Comparison
Outcome

El uso y la enseñanza del modelo PICO están muy extendidos en el ámbito de la atención sanitaria basada en la evidencia para formular preguntas y estrategias de búsqueda y para caracterizar estudios o metanálisis clínicos. PICO son las siglas en inglés de cuatro posibles componentes de una pregunta de investigación: paciente, población o problema; intervención; comparación; desenlace (outcome).

Para saber más sobre el uso del modelo PICO, puede consultar el Manual Cochrane.

Resumen en términos sencillos

Anfetaminas para el trastorno de déficit de atención e hiperactividad (TDAH) en adultos

Antecedentes

El trastorno de déficit de atención e hiperactividad (TDAH) es un trastorno psiquiátrico que se inicia en la niñez y puede persistir en la edad adulta en hasta el 50% de los pacientes. Desde el punto de vista clínico, el TDAH se caracteriza por hiperactividad, inestabilidad del estado de ánimo, irritabilidad, dificultades para mantener la atención, falta de organización y comportamientos impulsivos. Es frecuente que aparezcan otros trastornos simultáneos, especialmente trastornos del estado de ánimo y abuso de sustancias. Se cree que las anfetaminas (un fármaco estimulante) mejoran los síntomas del TDAH, pero hay inquietudes en cuanto a la seguridad durante el uso regular en pacientes con TDAH.

Pregunta de la revisión

Se examinó si el tratamiento con anfetaminas mejora los síntomas del TDAH en adultos.

Características de los estudios

Los autores de la revisión encontraron 19 estudios con 2521 pacientes. La mayoría de los pacientes eran hombres (57,2%), de edad madura (media de edad 35,3 años) y caucásicos (84,5%). Estos estudios compararon las anfetaminas con un placebo (de aspecto similar a la anfetamina, pero sin principio activo) y tres estudios también compararon las anfetaminas con otros fármacos como la guanfacina, el modafinilo y la paroxetina. En esta revisión, se evaluaron los efectos de tres clases diferentes de anfetaminas: dexanfetamina (10,2 a 21,8 mg/día), lisdexamfetamina (30 a 70 mg/día) y sales mixtas de anfetamina (SMA) (12,5 a 80 mg/día). La duración del tratamiento varió de una a 20 semanas. Dieciocho estudios se realizaron en los Estados Unidos y un estudio en Canadá y los Estados Unidos. Diez estudios se realizaron en sitios múltiples. El financiamiento se informó en todos los estudios, excepto dos. Dieciséis estudios fueron financiados por el fabricante y uno fue financiado por dependencias gubernamentales.

Todas las anfetaminas redujeron la gravedad de los síntomas del TDAH evaluada por los pacientes. La lisdexamfetamina y las SMA también redujeron la gravedad de los síntomas del TDAH evaluados por los médicos, pero no la dexanfetamina. En general, no fue más probable que los pacientes permanecieran en el tratamiento con las anfetaminas y se asociaron con un mayor riesgo de interrupción precoz del tratamiento como resultado de los eventos adversos. No se encontró evidencia de que las dosis mayores fueran más efectivas que las dosis menores. No se encontraron diferencias en la efectividad entre las anfetaminas que actúan por períodos más prolongados versus las que actúan durante períodos más breves. Por lo tanto, al parecer el tratamiento a corto plazo con anfetaminas reduce los síntomas del TDAH, pero se necesitan estudios que evalúen los efectos de las anfetaminas durante períodos más prolongados. No se encontraron diferencias en la efectividad entre las anfetaminas y la guanfacina, el modafinilo o la paroxetina.

Calidad de la evidencia

La calidad de la evidencia fue baja a muy baja para todos los resultados por varias razones: fue posible que los pacientes conocieran el tratamiento que recibían; el número de estudios y pacientes incluidos fue bajo, lo que dio lugar a resultados poco precisos en muchos resultados; los estudios tenían problemas en el diseño; y, en algunos casos, los resultados variaron entre los ensayos.

Conclusiones de los autores

disponible en

Implicaciones para la práctica

Las anfetaminas parecen mejorar la gravedad de los síntomas del trastorno de déficit de atención e hiperactividad (TDAH) en adultos a corto plazo. No obstante, en comparación con placebo, las anfetaminas no aumentan la retención general en el tratamiento y se asocian con un riesgo mayor de abandonos como resultado de los eventos adversos. Además, podría haber fracaso del cegamiento en los estudios incluidos, lo que da lugar a una sobrestimación de la eficacia de las anfetaminas. Por este motivo, se consideró que la evidencia sobre la eficacia de las anfetaminas para el TDAH en adultos, generada mediante esta revisión, era de calidad baja o muy baja.

La evidencia de esta revisión no proporciona una base sólida en que apoyar el uso de dosis mayores de anfetaminas o formas farmacéuticas de liberación sostenida para lograr una mayor eficacia. Sin embargo, se encontraron diferencias entre los tipos de anfetaminas utilizadas: la lisdexamfetamina fue eficaz para reducir la gravedad de los síntomas del TDAH independientemente del evaluador, pero ninguna evidencia mostró un efecto de la dexanfetamina ni las SMA sobre la gravedad de los síntomas del TDAH, respectivamente, según la evaluación de los médicos o los participantes. Este hecho podría aportar evidencia indirecta, de baja calidad, a favor de lisdexamfetamina por sobre dexanfetamina y SMA.

Implicaciones para la investigación

La validez externa de los estudios que han investigado la eficacia de las anfetaminas para el TDAH en los adultos podría ser mayor. Lo anterior se podría lograr si se incluyen pacientes con trastornos mentales concomitantes como el trastorno por abuso de sustancias o el trastorno depresivo mayor. Además, se necesitan estudios con períodos de seguimiento más prolongados para demostrar la eficacia a largo plazo de las anfetaminas.

La confiabilidad de los hallazgos aumentaría si se utilizaran resultados objetivos que no se puedan afectar por el fracaso del cegamiento, como el número de accidentes o problemas en el trabajo o el domicilio. No obstante, se debe reconocer que el uso de estos tipos de resultados hará que los estudios sean menos factibles porque se necesitarán muestras grandes para demostrar las diferencias entre las intervenciones estudiadas.

Debido a que otros fármacos, como la atomoxetina o el metilfenidato, también han demostrado reducir los síntomas del TDAH en los adultos, sería de gran interés comparar la eficacia de las anfetaminas con estas intervenciones.

Además, los cambios en los perfiles de comorbilidad con los criterios DSM‐5 actuales hacen que sea necesario revalidar gran parte del trabajo examinado.

Summary of findings

Open in table viewer
Summary of findings for the main comparison. Amphetamines versus placebo for attention deficit hyperactivity disorder (ADHD) in adults

Amphetamines versus placebo for attention deficit hyperactivity disorder (ADHD) in adults

Patient or population: adult patients with attention deficit hyperactivity disorder (ADHD)
Settings: outpatients
Intervention: amphetamines
Comparison: placebo

Outcomes

Illustrative comparative risks* (95% CI)

Relative effect
(95% CI)

Number of participants
(studies)

Quality of the evidence
(GRADE)

Comments

Assumed risk

Corresponding risk

Placebo

Amphetamines

Dexamphetamine

ADHD symptom severity: clinician rated
Assessed with ADHD‐RS‐IV
Follow‐up: post intervention
(mean 20 weeks)

Mean clinician‐rated ADHD symptom severity score in the intervention groups was 0.24 standard deviations lower (0.80 lower to 0.32 higher)

49
(1 study)

⊕⊝⊝⊝
Very lowa,b,c

An SMD of 0.24 can be considered a small effect size.

ADHD symptom severity: patient rated
Assessed with DSM‐IV ADHD Behavior Checklist for Adults
Follow‐up: post intervention
(mean 2 weeks)

Mean patient‐rated ADHD symptom severity score in the intervention groups was 0.77 standard deviations lower (1.14 lower to 0.4 lower)

35
(2 studies)

⊕⊕⊝⊝
Lowa,c,d

An SMD of 0.77 can be considered a medium effect size.

Lisdexamfetamine

ADHD symptom severity: clinician rated
Assessed with ADHD‐RS‐IV and CAARS
Follow‐up: post intervention
(1‐10 weeks)

Mean clinician‐rated ADHD symptom severity score in the intervention groups was 1.06 standard deviations lower (1.26 lower to 0.85 lower)

896
(7 studies)

⊕⊕⊝⊝
Lowc,e,f,g

An SMD of 1.06 can be considered a large effect size.

ADHD symptom severity: patient rated
Assessed with CAARS
Follow‐up: post intervention
(1‐4 weeks)

Mean patient‐rated ADHD symptom severity score in the intervention groups was 0.33 standard deviations lower (0.65 lower to 0.01 lower)

67
(3 studies)

⊕⊕⊝⊝
Lowc,d,h

An SMD of 0.33 can be considered a medium effect size.

Mixed amphetamine salts

ADHD symptom severity: clinician rated
Assessed with ADHD‐RS‐IV and AISRS
Follow‐up: post intervention
(3‐13 weeks)

Mean clinician‐rated ADHD symptom severity score in the intervention groups was 0.80 standard deviations lower (0.93 lower to 0.66 lower)

1083
(5 studies)

⊕⊕⊝⊝
Lowc,e

An SMD of 0.8 can be considered a small effect size.

ADHD symptom severity: patient rated
Assessed with CAARS
Follow‐up: post intervention

(mean 1 week)

Mean patient‐rated ADHD symptom severity score in the intervention groups was 0.45 standard deviations lower (1.02 lower to 0.12 higher)

18
(1 study)

⊕⊝⊝⊝
Very lowb,c,h

An SMD of 0.45 can be considered a medium effect size.

All amphetamines

Retention in treatment

Assessed with the proportion of randomised participants that completed the study
Follow‐up: post intervention
(1‐20 weeks)

Study population

RR 1.06
(0.99 to 1.13)

2323
(17 studies)

⊕⊕⊝⊝
Lowa,i

708 per 1000

750 per 1000
(701 to 800)

Moderate

800 per 1000

848 per 1000
(792 to 904)

*The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).
ADHD: attention deficit hyperactivity disorder; ADHD‐RS‐IV: Attention Deficit Hyperactivity Disorder Rating Scale, Fourth Version; AISRS: Adult Attention Deficity Hyperactivity Disorder Investigator Rating Scale; CAARS: Conners' Adult Attention Deficit Hyperactivity Disorder Rating Scales;CI: confidence interval; DSM‐IV:Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition;SMD: standardised mean difference.

GRADE Working Group grades of evidence.
High quality: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate quality: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low quality: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low quality: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aThe certainty of the evidence was downgraded by one level owing to unclear risk of detection and performance bias because it is unclear whether blinding can be achieved in placebo‐controlled studies given the powerful behavioural effects of amphetamines.
bThe certainty of the evidence was downgraded by two levels owing to imprecision because the 95% CI is wide, indicating that the intervention effect for this outcome can range from a small, worsening effect to a large benefit.
cThe statistical power to detect publication bias for this comparison in this review is low.
dThe certainty of the evidence was downgraded by one level owing to imprecision because the 95% CI is rather wide, indicating that the intervention effect for this outcome can range from a moderate to a large benefit.
eThe certainty of the evidence was downgraded by two levels owing to unclear risk of detection and performance bias (it is unclear whether blinding can be achieved in placebo‐controlled studies given the powerful behavioural effects of amphetamines), high risk of attrition bias (large proportion of participants discontinued treatment or differences between study groups in discontinuation rates), and high risk of other bias (such as the possibility of carry‐over effect in cross‐over studies without a washout phase).
fThe certainty of the evidence was downgraded by one level owing to moderate statistical heterogeneity.
gThe certainty of the evidence was upgraded by one level because a large and precise effect size was observed.
hThe certainty of the evidence was downgraded by one level owing to unclear risk of detection and performance bias (it is unclear whether blinding can be achieved in placebo‐controlled studies given the powerful behavioural effects of amphetamines) and high risk of other bias (such as the possibility of carry‐over effect in cross‐over studies without a washout phase).
iThe certainty of the evidence was downgraded by one level owing to inconsistency (this comparison includes three different types of amphetamines at a wide range of doses, and the analysis showed moderate heterogeneity).

Antecedentes

disponible en

Descripción de la afección

El trastorno de déficit de atención e hiperactividad (TDAH) es un trastorno del desarrollo nervioso que afecta al 7% de los niños y adolescentes en todo el mundo (Thomas 2015). Según informes, el TDAH continúa hasta la edad adulta en el 15% al 50% de los niños con este diagnóstico (Faraone 2006; Lara 2009). Los factores asociados con la persistencia del trastorno hasta la edad adulta son la presencia de comorbilidad, la gravedad del TDAH y su tratamiento (Caye 2016). Según estimaciones la prevalencia del TDAH en los adultos es del 2,5% al 5% (Simon 2009; Willcutt 2012).

El TDAH de la niñez se caracteriza por falta de atención, hiperactividad e impulsividad. La falta de atención a menudo se presenta como distractibilidad, dificultad para mantener la atención en las tareas o las actividades, dificultad para organizar las tareas o las actividades y tendencia al olvido. La hiperactividad y la impulsividad se manifiestan generalmente como la incapacidad para permanecer quieto o para realizar actividades tranquilas, y por inquietud, habla excesiva o problemas para esperar turnos (Thapar 2016). Las características clínicas del TDAH en adultos son más sutiles que en los niños; la hiperactividad y la impulsividad a menudo se manifiestan como agitación y locuacidad (Kessler 2010; Kooij 2009). Además, habitualmente en los adultos con TDAH se describen síntomas de desregulación emocional, como la irritabilidad, la labilidad y la reactividad emocionales (Corbisiero 2013; Retz 2012). Por lo tanto, los síntomas del TDAH varían a lo largo de la vida, y generalmente se observan mejorías en la hiperactividad y la impulsividad (Kessler 2010). Sin embargo, se cree que la falta de atención se mantiene sin cambios, y las funciones ejecutivas presentan modificaciones significativas (Riccio 2005). Lo anterior impide realizar actividades complejas debido a la falta de planificación de las actividades, el uso inadecuado del tiempo, una gran propensión a la distracción y la falta de atención (Riccio 2005). El conjunto de síntomas del TDAH incluye la expresión clínica de la disfunción neuropsicológica en varias funciones ejecutivas, como la memoria de trabajo y la inhibición de impulsos (Schoechlin 2005) y en la recompensa y la motivación (Castellanos 2006; Sonuga‐Barke 2008).

Los adultos con TDAH muestran un riesgo mayor de desarrollar trastornos psiquiátricos concomitantes como ansiedad, trastornos del estado de ánimo y de abuso de sustancias (Kessler 2006). Además, en esta población también se ha observado una alta prevalencia del trastorno de personalidad antisocial (Biederman 2006; Young 2005). Es particularmente preocupante la prevalencia del abuso de sustancias entre los adultos con THDA, que según se ha informado es dos veces mayor que el de la población general (Biederman 2006; Levin 1998). De manera similar, se ha encontrado una asociación inversa en los pacientes con trastornos por abuso de sustancias, en quienes la prevalencia calculada de TDAH es del 23% (Van Emmerik‐van Oortmerssen 2012). Los adultos con THDA tienden a tener más problemas sociales que afectan su trabajo y su vida familiar (Biederman 1993). Además, tienen un peor desempeño en la conducción y es más frecuente que se relacionen con accidentes automovilísticos (Barkley 2002). Recientemente, se ha asociado el TDAH con mayor mortalidad (Dalsgaard 2015).

El TDAH se diagnostica generalmente con los criterios del Manual Diagnóstico y Estadístico de Trastornos Mentales (DSM) o la Clasificación Internacional de Enfermedades (CIE). Los criterios diagnósticos difieren entre el DSM y la CIE, y estos criterios han variado en diferentes versiones del DSM. Por ejemplo, para ser considerado TDAH, el DSM‐IV y el DSM‐IV‐TR exigen que los pacientes presenten seis de nueve síntomas de falta de atención o hiperactividad/impulsividad, que estos síntomas hayan comenzado antes de los siete años de edad y que afecten claramente la funcionalidad social, académica u ocupacional en dos o más ámbitos. En cambio, para el diagnóstico del TDAH en los adultos la última versión del DSM (DSM‐5) exige sólo cinco de nueve síntomas de falta de atención o hiperactividad/impulsividad que hayan comenzado antes de los 12 años y que interfieran con la funcionalidad social, académica u ocupacional en dos o más ámbitos. Además, y por primera vez, el DSM‐5 permite que se realice un diagnóstico de TDAH en los pacientes con trastorno del espectro autista (TEA). Para un diagnóstico de TDAH según los criterios de la CIE‐10, se necesita la presencia de seis síntomas de falta de atención, tres síntomas de hiperactividad y un síntoma de impulsividad antes de los seis años y que deterioren la funcionalidad social, académica u ocupacional en dos o más ámbitos. La presencia de un TEA concomitante es incompatible con el diagnóstico de TDAH según los criterios diagnósticos de CIE‐10.

Descripción de la intervención

Las anfetaminas son fármacos estructuralmente relacionados con las catecolaminas que aumentan las concentraciones de dopamina (DA) y norepinefrina (NE) en la sinapsis. En los sujetos sanos, estas acciones catecolaminérgicas dan lugar a efectos psicoestimulantes (Hardman 2001). Debido a su actividad estimulante en el sistema nervioso central, las anfetaminas se han estudiado para el tratamiento de varios trastornos que incluyen la narcolepsia (Nishino 2007), la obesidad (Ioannides‐Demos 2005), la dependencia de las anfetaminas (Shearer 2002), la dependencia de la cocaína (Castells 2016) y el TDAH (Wilens 2003).

El uso de las anfetaminas para el tratamiento de los pacientes adultos con TDAH ha aumentado durante la última década y superó recientemente el uso del metilfenidato en los EE.UU. (Safer 2016). Se dispone de diferentes tipos de anfetaminas para el tratamiento del TDAH, como lisdexamfetamina, dexanfetamina (o dextroanfetamina) y las sales mixtas de anfetamina (SMA), que contienen d‐anfetamina y l‐anfetamina en una proporción de 3:1. Las anfetaminas se metabolizan en el hígado, y la vida media es de diez a 15 horas para las SMA (diez a 12 horas para d‐anfetamina y 12 a 15 horas para l‐anfetamina) y cerca de 12 horas para dexanfetamina (Markowitz 2017). La lisdexamfetamina es un profármaco con una vida media de cerca de 0,6 horas que se metaboliza a dexanfetamina (Markowitz 2017). Todos los derivados de la anfetamina se administran por vía oral. La lisdexamfetamina se administra una vez al día, y las SMA y la dextroanfetamina se pueden administrar una o dos veces al día según la formulación (liberación inmediata versus liberación extendida) (Markowitz 2017). Las dosis recomendadas varían de 5 mg/día a 40 mg/día para las SMA (FDA 2015a), de 30 mg/día a 70 mg/día para lisdexamfetamina (FDA 2015b) y de 5 mg/día a 40 mg/día para dexanfetamina (FDA 2007).

De qué manera podría funcionar la intervención

Desde el punto de vista neurobiológico, el TDAH se caracteriza por un hipofuncionamiento de los circuitos frontales‐estriados‐cerebelares, lo que da lugar a una deficiencia de las funciones ejecutivas que incluyen la disminución de la atención y la reducción en la capacidad de planificar actividades e inhibir acciones inapropiadas. En estos circuitos se ha observado una disfunción de la neurotransmisión dopaminérgica. Las anfetaminas aumentan la concentración de dopamina (DA) y de norepinefrina (NE) en la sinapsis. El mecanismo preciso de acción no se comprende bien, pero al parecer las anfetaminas actúan sobre el transportador de dopamina (TDA) y probablemente dan lugar a la inversión de la dirección del transporte del TDA, por lo que provocan un flujo de dopamina de la neurona presináptica hacia la sinapsis. Se ha propuesto que las anfetaminas ingresan a la neurona presináptica a través del TDA y provocan la exocitosis de las vesículas que contienen DA. Además de aumentar la liberación de DA, las anfetaminas inhiben el metabolismo de las catecolaminas a través de la catecol‐O‐metiltransferasa (COMT) (para una revisión del mecanismo de acción de las anfetaminas, ver Carboni 2004; Fleckenstein 2007; Heal 2013; y Sulzer 2005). Por lo tanto, al promover la liberación de dopamina de la neurona presináptica e inhibir la COMT, las anfetaminas aumentan la dopamina en la sinapsis, lo que da lugar a una mejoría en las funciones ejecutivas y en los síntomas del TDAH (para una revisión de las bases neurobiológicas del TDAH y del mecanismo de acción de los psicoestimulantes, ver Arnsten 2006; Grace 2002; Heal 2013; y Swanson 2007).

Por qué es importante realizar esta revisión

En las últimas décadas, ha aumentado el número de medicamentos que contienen anfetaminas y el número de ensayos clínicos que evalúan la eficacia de estos fármacos en los adultos con TDAH (Cunill 2016; Heal 2013). Además, también ha aumentado la prescripción de anfetaminas para los pacientes adultos con TDAH (Safer 2016). Asimismo, después de la publicación de la primera versión de esta revisión en 2011 (Castells 2011a), se aprobó la lisdexamfetamina para el tratamiento de los adultos con TDAH en varios países europeos (Ermer 2016; MHRA 2015). A pesar de este aumento en el número de ensayos clínicos y las prescripciones de anfetaminas, ninguna revisión sistemática nueva se ha centrado en la eficacia de las anfetaminas en los adultos.

Varios factores parecen modificar la eficacia de los fármacos utilizados para el tratamiento del TDAH. Por ejemplo, la eficacia de otros estimulantes parece ser inferior en los pacientes con TDAH y trastornos por abuso de sustancias concomitantes (Cunill 2015; Koesters 2008), lo que implica que los estimulantes pueden ser menos útiles en estos pacientes y, por lo tanto, se resalta la importancia de adaptar el tratamiento del TDAH a las características del paciente. Además, la eficacia del metilfenidato es inferior en dosis más bajas (Castells 2011b; Faraone 2004), así como en las formulaciones del fármaco de acción prolongada (Peterson 2007). Por este motivo, se programa realizar análisis de subgrupos de estos factores. Además, debido a que el financiamiento de la industria farmacéutica se ha asociado con resultados positivos de los ensayos (Bekelman 2003; Riera 2017), el tipo de financiamiento (es decir, con y sin financiamiento de la industria farmacéutica) también justifica un análisis de subgrupos.

Las anfetaminas se han considerado la causa de 20 muertes en pacientes que recibieron estos fármacos para el tratamiento del TDAH en Canadá, y se retiraron temporalmente del mercado en ese país (Kondro 2005). Además, las anfetaminas pueden causar efectos de abstinencia (Phillips 2014) y pueden provocar abuso (Weyandt 2016). Por lo tanto, también se busca examinar los efectos adversos de las anfetaminas, con un énfasis especial en los resultados cardiovasculares y psiquiátricos.

Finalmente, el cambio en los criterios diagnósticos con la introducción del DSM‐5, que permite el diagnóstico de TDAH en individuos con trastornos del espectro autista, permitirá la investigación de la eficacia y la seguridad de las anfetaminas en los pacientes con esta comorbilidad.

Objetivos

disponible en

Examinar la eficacia y la seguridad de las anfetaminas en pacientes adultos con TDAH.

Métodos

disponible en

Criterios de inclusión de estudios para esta revisión

Tipos de estudios

Ensayos controlados con asignación aleatoria (ECA).

Tipos de participantes

Pacientes adultos (mayores de 18 años de edad) con TDAH, diagnosticado por cualquier criterio estandarizado (p.ej. DSM‐III, DSM‐III‐R, DSM‐IV, DSM‐IV‐TR, DSM‐5, CIE‐10). La presencia de trastornos concomitantes no fue un criterio de exclusión.

Tipos de intervenciones

Cualquier anfetamina (incluida la anfetamina, la dextroanfetamina, la lisdexamfetamina o las sales mixtas de anfetamina [SMA; Adderall]), administrada en cualquier dosis, en comparación con placebo o intervención/ones activa/s.

No se excluyeron los estudios con intervenciones adicionales si éstas se proporcionaron en ambos grupos de estudio.

Tipos de medida de resultado

Resultados primarios

  1. La gravedad de los síntomas del TDAH, evaluados por los médicos y los pacientes mediante un instrumento estandarizado (p.ej. la ADHD Rating Scale‐IV [ADHD‐RS‐IV]; DuPaul 1998), la Conners’ Adult TDAH Rating Scale (CAARS; Conners 1999)

Resultados secundarios

  1. Resultados de eficacia

    1. Impresión clínica de la gravedad al final del estudio, medida con la escala Clinical Global Impression (CGI) ‐ Severity (CGI‐S) (Guy 1976)

    2. Impresión clínica de mejoría al final del estudio, evaluada mediante la escala CGI‐Improvement (CGI‐I) (Guy 1976)

    3. Proporción de pacientes que lograron una reducción de al menos el 30% en la gravedad de los síntomas del TDAH

    4. Proporción de participantes que lograron una puntuación CGI‐I de 1 o 2

    5. Proporción de pacientes que lograron una reducción de al menos el 30% en la gravedad de los síntomas del TDAH y una puntuación en la CGI‐I de 1 o 2

    6. Funcionamiento global: funcionalidad social, ocupacional y psicológica de los adultos con TDAH al final del estudio evaluado con un instrumento estandarizado

    7. Síntomas depresivos: gravedad de los síntomas depresivos al finalizar el estudio evaluada con un instrumento estandarizado

    8. Ansiedad: gravedad de los síntomas de ansiedad al finalizar el estudio evaluada con un instrumento estandarizado

    9. Retención: proporción de participantes asignados al azar que finalizaron el estudio

  2. Eventos adversos.

    1. Proporción de pacientes que se retiraron debido a cualquier evento adverso cardiovascular

    2. Proporción de pacientes que se retiraron debido al abuso de fármacos

    3. Proporción de pacientes que se retiraron debido a cualquier evento adverso psiquiátrico

    4. Proporción de pacientes que se retiraron debido a cualquier evento adverso

Métodos de búsqueda para la identificación de los estudios

Búsquedas electrónicas

We searched the following databases and trial registers in July 2016 and again in August 2017.

  1. Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 7) in the Cochrane Library, which contains the Cochrane Developmental, Psychosocial and Learning Problems Specialised Register (searched 21 August 2017).

  2. MEDLINE Ovid (1946 to August week 2 2017).

  3. MEDLINE In‐Process and Other Non‐indexed Citations Ovid (searched 21 August 2017).

  4. MEDLINE Epub Ahead of Print Ovid (searched 21 August 2017).

  5. Embase Ovid (1974 to 2017 week 34).

  6. PsycINFO Ovid (1967 to August week 2 2017).

  7. CINAHL Plus EBSCOhost (Cumulative Index to Nursing and Allied Health Literature; 1937 to 23 August 2017).

  8. Science Citation Index Web of Science (SCI; 1970 to 22 August 2017).

  9. Social Science Citation Index Web of Science (SSCI; 1970 to 22 August 2017).

  10. Conference Proceedings Citation Index ‐ Science Web of Science (CPCI‐S; 1990 to 22 August 2017).

  11. Conference Proceedings Citation Index ‐ Social Science and Humanities Web of Science (CPCI‐SS&H; 1990 to 22 August 2017).

  12. Cochrane Database of Systematic Reviews (CDSR; 2017, Issue 8), part of the Cochrane Library (searched 21 August 2017).

  13. Database of Abstracts of Reviews of Effects (DARE; 2015, Issue 2), part of the Cochrane Library (final issue searched 29 July 2016).

  14. Worldcat (www.worldcat.org; searched 23 August 2017).

  15. Clinicaltrials.gov (clinicaltrials.gov; searched 23 August 2017).

  16. World Health Organization International Clinical Trials Registry Platform (WHO ICTRP; apps.who.int/trialsearch; searched 23 August 2017).

We did not apply any language or date restrictions.

We have listed the search strategies for this update in Appendix 1, along with previous search strategies in Appendix 2.

Búsqueda de otros recursos

We contacted the corresponding authors of all included studies, experts in the field, and the pharmaceutical company, Shire, and we inspected the reference lists of retrieved studies and relevant reviews to identify any other published, unpublished, or ongoing studies. In addition, for each included study, we performed a citation search in Web of Science to identify any later studies that may have cited it.

Obtención y análisis de los datos

Selección de los estudios

Having removed duplicates, two review authors (XC and RC) independently assessed the titles and abstracts of all remaining records yielded by the search strategy for eligibility, discarding those that were clearly irrelevant. Next, we acquired the full‐text reports of those records deemed potentially eligible and assessed them against our inclusion criteria (see Criteria for considering studies for this review). When we identified unpublished trials, we contacted the study co‐ordinators to request the data. We resolved disagreements by discussion, until reaching a consensus, or in consultation with a third review author (LB). We recorded our selection process in a PRISMA diagram (Moher 2009).

Extracción y manejo de los datos

Two review authors (XC and RC) independently inspected the full‐text reports of included studies and extracted data onto a piloted data extraction sheet (Appendix 3). We resolved disagreements by discussion, until reaching a consensus, or in consultation with a third review author (LB).

Regarding our primary outcomes (severity of ADHD symptoms), we collected both change scores (the difference between ADHD symptom severity score at study end compared to baseline) and endpoint scores (ADHD symptom severity score at study end) but gave preference to change scores over endpoint scores. For all secondary outcomes (efficacy outcomes and adverse events), we collected endpoint scores.

We emailed study authors to request any missing data or information, when necessary. We also contacted the authors of all cross‐over trials to obtain first period data on ADHD symptoms. We made a second approach if no answer was obtained by one month after the first email (see Dealing with missing data).

Two review authors (XC and RC) entered data into Review Manager 5 (RevMan 5) (Review Manager 2014).

Evaluación del riesgo de sesgo de los estudios incluidos

In accordance with the Cochrane 'Risk of bias' tool (Higgins 2017a), as well as the criteria set out in Appendix 4, two review authors (XC and RC) independently assessed the risk of bias in each included study as high, low, or unclear, for each of the following domains: sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective outcome reporting, and other bias. Review authors sought to resolve any differences by discussion, with MC adjudicating in cases for which this was not possible.

Medidas del efecto del tratamiento

Continuous outcome data

We calculated the standardised mean difference (SMD) and 95% confidence intervals (CIs) because included studies used different scales to assess the severity of ADHD symptoms. We used Hedges’ method for calculating SMD with individual study weights calculated as the inverse of the variance.

For both clinician‐ and patient‐rated severity of ADHD symptoms, we entered data into RevMan using the generic inverse variance to combine data from parallel and cross‐over studies in the manner recommended by Elbourne 2002 (see Unit of analysis issues section for additional details).

Dichotomous outcome data

We calculated the risk ratio (RR) and presented it with 95% CIs.

Cuestiones relativas a la unidad de análisis

Cross‐over trials

To combine parallel‐group studies with cross‐over studies, we calculated the correlation coefficient between active and control periods and used it to calculate effect sizes (Elbourne 2002). We used data from the first study period, when available, when we could not apply these recommendations.

We could calculate the correlation coefficient of the outcome score between active and control periods from only two studies (Taylor 2000; Taylor 2001). We applied the correlation coefficient to the other cross‐over studies using the most conservative correlation coefficient (r = 0.44) in the main analysis (Taylor 2001); we used the least conservative one (r = 0.61) in a sensitivity analysis (Taylor 2000).

Multiple treatment groups

When several independent treatment groups were available (e.g. amphetamine + psychotherapy versus placebo + psychotherapy; amphetamine + fake psychotherapy versus placebo + fake psychotherapy), we included them as independent studies. In studies with multiple and correlated interventions (e.g. amphetamine 10 mg versus placebo; amphetamine 20 mg versus placebo), we combined the intervention groups into a single group and included them in the meta‐analysis as a single comparison. For binary data, we summed sample sizes and numbers of participants with the event across groups. We combined continuous data using the formulae described in Section 7.7.3.8, "Combining groups", of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011a).

Manejo de los datos faltantes

We used the number of randomised participants as the denominator for dichotomous variables. For continuous data, we entered into Review Manager 2014 the sample size used in calculations of the mean and the standard deviation. We did not use any imputations to deal with missing data.

We emailed study authors to request missing data or information, when necessary. We also contacted Shire after the corresponding authors directed us to this pharmaceutical company to obtain the information requested (Castells 2009b [pers comm]). See Characteristics of included studies for data requested and subsequently provided.

Evaluación de la heterogeneidad

We assessed clinical heterogeneity by comparing differences in study populations, interventions, and outcomes, and we evaluated methodological heterogeneity by comparing study designs.

We investigated statistical heterogeneity using tau², Chi² test, and the I² statistic, which determines the proportion of variability due to heterogeneity (I² from 0 to 40% = not important statistical heterogeneity; I² from 30% to 60% = moderate heterogeneity; I² from 50% to 90% = substantial heterogeneity; and I² from 75% to 100% = considerable heterogeneity (Deeks 2017)).

Evaluación de los sesgos de notificación

We drew funnel plots to investigate any relationship between effect size and study precision (closely related to sample size) when we identified a sufficient number of studies (al least 10 studies) (Egger 1997).

Síntesis de los datos

We used RevMan 5 to perform the analyses (Review Manager 2014).

We calculated weighted averages and 95% CIs using the inverse variance method for continuous outcomes and the Mantel‐Haenszel method for dichotomous outcomes. We pooled data using a random‐effects model because we noted marked between‐study heterogeneity as regards study design (studies with cross‐over and parallel designs were included) and length of follow‐up (from two to 20 weeks).

We examined the efficacy of amphetamines for reducing the severity of ADHD symptoms in adults by means of continuous outcome variables (using change scores, e.g. change in ADHD symptom severity score from baseline to study completion; and endpoint scores, e.g. ADHD symptom severity score at study completion) and binary ones (e.g. proportion of patients achieving a reduction of at least 30% in the severity of ADHD symptoms). The primary efficacy outcome (severity of ADHD symptoms) combined change scores and endpoint scores, but we prioritised change scores when both types of scores were available in the same study. We preferred change scores because they are more precise than endpoint scores, as long as they were adjusted for baseline severity. We analysed studies reporting response rates separately.

Summarising the quality of the evidence

Using GRADEpro (GRADEPro GDT 2015), we constructed a 'Summary of findings’ table for the comparison of amphetamines versus placebo for ADHD in adults, for the following outcomes assessed post intervention: 'severity of ADHD symptoms' (primary outcome) assessed by clinicians and patients for each amphetamine; and retention in treatment (secondary outcome). Two review authors (XC and RC) assessed the quality of the evidence for each of these outcomes using the GRADE approach, resolving disagreements by discussion until reaching a consensus. GRADE offers a structured process for appraising the quality of evidence and developing recommendations based on the extent to which one can be confident that the estimates of effect are correct (Guyatt 2011a). The assessment may result in high‐, moderate‐, low‐ or very low‐quality ratings based on evaluation of five categories: within‐trial risk of bias, directness of evidence, heterogeneity of data, precision of effect estimates, and risk of publication bias (Balshem 2011; Guyatt 2011b; Guyatt 2011c; Guyatt 2011d; Guyatt 2011e; Guyatt 2011f).

Análisis de subgrupos e investigación de la heterogeneidad

Irrespective of whether we found statistical heterogeneity, we conducted the following subgroup analyses when we had sufficient studies (i.e. at least one study in each subgroup).

  1. Comorbidities: the presence of a comorbidity (drug use disorder, major depressive disorder) versus no comorbidity.

  2. Type of amphetamine (amphetamine, dextroamphetamine, lisdexamfetamine, or MAS).

  3. Dose at study completion (equal to and above the median dose versus below the median dose). We performed this subgroup analysis separately for each type of amphetamine because no pharmacological equivalence was available for the three types of amphetamine that have been studied in adults with ADHD (dextroamphetamine, lisdexamfetamine, and MAS (which consists of a fixed‐dose mixture of racaemic amphetamine aspartate monohydrate, racaemic amphetamine sulphate, dextroamphetamine saccharide, and dextroamphetamine sulphate)).

  4. Type of drug‐release formulation (immediate‐release versus long‐acting release).

We conducted subgroup analyses for the following outcomes only: severity of ADHD symptoms rated by clinicians and patients; retention in treatment; and proportion of participants withdrawn owing to any adverse events (because the number of studies measuring these outcomes was large enough to carry out these analyses). We calculated the pooled effect size (RR or SMD) for each subgroup. We investigated whether there were between‐subgroup differences by means of the Chi² test, using a random‐effects model.

We did not conduct our planned subgroup analysis for study funding (with versus without pharmaceutical industry funding) (Castells 2009a), as only was study was not funded by the pharmaceutical industry. See Differences between protocol and review.

Análisis de sensibilidad

We performed sensitivity analyses in which we restricted the meta‐analysis of each outcome to those studies that had low risk of bias on that outcome. We had intended to restrict the analysis to studies that had low risk of bias in all domains (Castells 2009a), but this was not possible as no studies fulfilled this criterion. Instead, we used our assessments of incomplete outcome data and other potential sources of bias, whose scores showed between‐study variability, and conducted sensitivity analyses that included only studies scoring low risk of bias on these specific domains.

We conducted three post hoc sensitivity analyses. First, we borrowed the correlation coefficient from Taylor 2000 to calculate the effect size of six cross‐over studies (Dupaul 2012; Kay 2009; Martin 2014a/Martin 2014b; Spencer 2001; Wigal 2010) (see Unit of analysis issues). Second, we calculated the pooled risk difference for the outcomes of 'proportion of participants withdrawn owing to cardiovascular adverse events' and 'proportion of participants withdrawn owing to any adverse event', to include studies that had no events for these outcomes. Third, we excluded from the analysis one cross‐over study (Spencer 2001), which had a carry‐over effect, to determine wether the carry‐over effect may have biased the results of this review.

Results

Description of studies

See Characteristics of included studies, Characteristics of excluded studies, and Characteristics of ongoing studies.

Results of the search

Our searches for this update yielded 3414 records, from which we identified and discarded 1391 duplicates. We screened titles and abstracts of the remaining 2023 records and retrieved 39 full‐text reports for further examination. Of these, we excluded eight reports that did not meet our inclusion criteria (Criteria for considering studies for this review), and we identified eight secondary publications of previously included studies. We included 12 new studies (from 18 reports) and identified five ongoing studies, which, when combined with studies included in the previous version of the review (Castells 2011a), gives a total of 19 included studies (from 33 reports) and seven ongoing studies (from seven reports). See Figure 1.


Flow diagram.

Flow diagram.

Included studies

This review includes 19 studies (Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Dupaul 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a/Martin 2014b; Spencer 2001; Spencer 2008; Taylor 2000; Taylor 2001; Waxmonsky 2014; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010).

Study design

Of the 19 studies included in this review, six used a cross‐over design. All studies compared amphetamine versus placebo, and three studies also compared amphetamine versus an active intervention: guanfacine (Taylor 2001), modafinil (Taylor 2000), or paroxetine (Weiss 2006). One study investigated two types of amphetamines (lisdexamfetamine and MAS); thus we have included two drug versus placebo comparisons in the review (Martin 2014a/Martin 2014b).

Setting

Eighteen studies were conducted in the USA (Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Dupaul 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a/Martin 2014b; Spencer 2001; Spencer 2008; Taylor 2000; Taylor 2001; Waxmonsky 2014; Weisler 2006; Weisler 2017; Wigal 2010). One study was conducted in both Canada and the USA (Weiss 2006).

Ten studies were multi‐centre; that is, participants were enrolled and were followed up at more than one study site (Adler 2008; Adler 2013; Brams 2012; Frick 2017; Levin 2015; Spencer 2008; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010).

Participants  

The included studies randomised 2521 participants, mostly males (57.2%). Most participants were middle‐aged Caucasians (mean age, 35.3 years) with a combined type of ADHD (78.8%). (For a detailed description of participant characteristics, see Table 1.) Sample sizes ranged from 17 participants in Taylor 2001 to 420 participants in Adler 2008.

Open in table viewer
Table 1. Participants' baseline characteristics

Characteristic

Descriptive statistics

N studies (N patients)

Gender: male

N = 1435 (57.2%)

19 (2507)

Age

Mean = 35.3 (range = 20.2 to 41.2) years

19 (2507)

Race: Caucasian

N = 2006 (84.5%)

15 (2373)

Combined ADHD

N = 1341 (78.8%)

11 (1701)

Predominantly inattentive ADHD

N = 344 (20.2%)

Predominantly hyperactive/impulsive ADHD

N = 28 (1.6%)

Comorbid SUD as inclusion criterion

N = 158 (6.3%)

19 (2507)

Comorbid depressive disorders as inclusion criteria

N = 0

19 (2507)

Comorbid anxiety disorders as inclusion criteria

N = 0

19 (2507)

Treated previously with stimulants

N = 306 (41.1%)

8 (744)

ADHD: attention deficit hyperactivity disorder.
N: number.
SUD: substance use disorder.

Interventions 

These studies investigated three types of amphetamines: dextroamphetamine in three studies (Taylor 2000; Taylor 2001; Weiss 2006); lisdexamfetamine in nine studies (Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Dupaul 2012; Kollins 2014; Martin 2014a; Waxmonsky 2014; Wigal 2010); and MAS in eight studies (Frick 2017; Kay 2009; Levin 2015; Martin 2014b; Spencer 2001; Spencer 2008; Weisler 2006; Weisler 2017).

Doses studied ranged from 10.2 mg/d in Taylor 2001 to 21.8 mg/d in Taylor 2000 for dextroamphetamine; from 30 mg/d in Adler 2008 and Dupaul 2012 to 70 mg/d in Adler 2008 and Dupaul 2012 for lisdexamfetamine; and from 12.5 mg/d in Weisler 2017 to 80 mg/d in Levin 2015 for MAS.

Duration

Duration of study interventions ranged from one week in Dupaul 2012 to 20 weeks in Weiss 2006, with a mean of 5.3 weeks (37.2 days). Only three studies were longer than eight weeks in duration (Adler 2013; Levin 2015; Weiss 2006).

Sponsorship

All but two studies reported their funding sources (Taylor 2000; Taylor 2001). With the exception of one study ‐ Levin 2015 ‐ all studies were funded by the pharmaceutical industry.

Excluded studies

In total, we excluded 17 studies (eight studies in this update and nine studies in the previous review) for the following reasons: 12 (70.6%) studies were not RCTs; three (17.6%) studies were not conducted in adults with ADHD (two studies were performed in children and one in individuals who had ADHD symptoms who did not qualify for the ADHD disorder), one (5.9%) study was not controlled with placebo or an active control, and one (5.9%) study did not investigate amphetamines. See Characteristics of excluded studies tables and Figure 1.

Ongoing studies

Seven clinical trials were still ongoing when we completed this update (NCT00202605; NCT00514202; NCT00928148; NCT01863459; NCT02635035; NCT02803229; NCT03153488); two of these ‐ NCT00514202 and NCT00202605 ‐ were already identified in the previous version (Castells 2011a).

Four of these studies were completed (NCT00202605; NCT00514202; NCT00928148; NCT01863459), two are recruiting participants (NCT02635035; NCT02803229), and one is not yet recruiting (NCT03153488). Five studies investigated MAS (NCT00202605; NCT00514202; NCT00928148; NCT02803229; NCT03153488), and two studies investigated lisdexamfetamine (NCT01863459; NCT02635035). Four studies have a cross‐over design (NCT00202605; NCT00928148; NCT01863459; NCT02635035), and three studies have a parallel design (NCT00514202; NCT02803229; NCT03153488). Three studies included patients with ADHD and comorbid disorders (NCT00514202; NCT01863459; NCT02803229). See Characteristics of ongoing studies.

Risk of bias in included studies

We have provided a comprehensive description of the risk of bias for each study in the 'Risk of bias' tables beneath the Characteristics of included studies tables. We have summarised this information in Figure 2.


Risk of bias summary: review authors' judgements about each risk of bias item for each included study.Note: scores for blinding of participants, personnel, and outcome assessors refer to amphetamines vs placebo only comparisons; scores on all remaining domains refer to amphetamines vs placebo, guanfacine, modafinil, or paroxetine.

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Note: scores for blinding of participants, personnel, and outcome assessors refer to amphetamines vs placebo only comparisons; scores on all remaining domains refer to amphetamines vs placebo, guanfacine, modafinil, or paroxetine.

Allocation

Sequence generation

Four studies reported on how the random sequence was generated, and so we considered their risk of bias to be low (Adler 2013; Kay 2009; Levin 2015; Weisler 2017). The 16 remaining studies did not report on how the random sequence was generated, and so we judged them to be at unclear risk of bias (Adler 2008; Biederman 2012; Brams 2012; Dupaul 2012; Frick 2017; Kollins 2014; Martin 2014a; Martin 2014b; Spencer 2001; Spencer 2008; Taylor 2000; Taylor 2001; Waxmonsky 2014; Weisler 2006; Weiss 2006; Wigal 2010).

Allocation concealment

Three studies reported on their method of allocation concealment, and so we considered their risk of bias to be low (Adler 2013; Dupaul 2012; Weisler 2017). The 17 remaining studies did not report on their method of allocation concealment, and so we judged them to be at unclear risk of bias (Adler 2008; Biederman 2012; Brams 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a; Martin 2014b; Spencer 2001; Spencer 2008; Taylor 2000; Taylor 2001; Waxmonsky 2014; Weisler 2006; Weiss 2006; Wigal 2010).

Blinding

Blinding of participants and personnel (performance bias)

Blinding of participants and personnel was intended in all included studies (Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Dupaul 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a/Martin 2014b; Spencer 2001; Spencer 2008; Taylor 2000; Taylor 2001; Waxmonsky 2014; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010). Nevertheless, we deemed all studies to be unclear risk of performance bias, given that amphetamines have powerful subjective effects that may reveal the assigned treatment (Childs 2009; Johanson 1980; Makris 2004; Makris 2007; Wachtel 1992).

Blinding of outcome assessment (detection bias)

Blinding of outcome assessment was intended in all included studies (Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Dupaul 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a/Martin 2014b; Spencer 2001; Spencer 2008; Taylor 2000; Taylor 2001; Waxmonsky 2014; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010). Nevertheless, we deemed all studies to be unclear risk of detection bias, given that amphetamines have powerful subjective effects that may reveal the assigned treatment (Childs 2009; Johanson 1980; Makris 2004; Makris 2007; Wachtel 1992).

Incomplete outcome data

Study outcomes can be influenced by attrition because reasons for dropping out from the study may differ between active intervention and placebo groups. This selective attrition makes intervention groups that were similar at baseline different at the end of the study. This appears to be the case in studies investigating the efficacy of amphetamines for adults with ADHD. As discussed later, the proportion of participants dropping out owing to AEs was higher amongst those receiving amphetamines than placebo, suggesting that attrition was somehow related to the experimental intervention. This selective attrition can lead to bias. This is particularly true for studies with a higher dropout rate (Adler 2013), and for those with statistically significant differences in the number of dropouts between study groups (Brams 2012; Frick 2017; Spencer 2008); we rated these studies at high risk of attrition bias. In such an instance, no statistical method of dealing with missing data appears to guarantee unbiased results. Conversely, this type of bias seems unlikely amongst those studies for which attrition was low (Adler 2008; Taylor 2000; Taylor 2001); we considered these studies to be at low risk of attrition bias. For the remaining 12 studies, we judged the risk of attrition bias to be unclear because attrition was moderate but imputation methods for missing data were applied, or attrition was low but missing data were not imputed (Biederman 2012; Dupaul 2012; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a/Martin 2014b; Spencer 2001; Waxmonsky 2014; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010).

Selective reporting

For 13 studies, the protocol was available and outcomes stated in the protocol were reported in the article (Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a/Martin 2014b; Spencer 2008; Waxmonsky 2014; Weisler 2017; Wigal 2010). We considered these studies to be at low risk of reporting bias. For the six remaining studies, the study protocol was not available and thus we considered them to be at unclear risk of reporting bias (Dupaul 2012; Spencer 2001; Taylor 2000; Taylor 2001; Weisler 2006; Weiss 2006).

Other potential sources of bias

We considered seven studies to be at high risk of other bias (Dupaul 2012; Kay 2009; Martin 2014a; Martin 2014b; Spencer 2001; Waxmonsky 2014; Wigal 2010), mainly because they had a cross‐over design with no washout phase, and thus the possibility of a carry‐over effect could not be ruled out. Indeed, in one of these studies the carry‐over effect was evident (Spencer 2001). The carry‐over effect can yield an underestimation of the effect of the intervention and can bias the result towards the null for both effectiveness and AE outcomes. For one study ‐ Frick 2017 ‐ we judged the risk of other bias to be unclear because there was a long period of time between performance of the study and publication of the main results and, in addition, secondary results were published before the main results were published. For the 12 remaining studies, groups were balanced at baseline and no other potential source of bias was found; thus we considered them to be at low risk of other bias (Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Kollins 2014; Levin 2015; Spencer 2008; Taylor 2000; Taylor 2001; Weisler 2006; Weisler 2017; Weiss 2006).

Summary

We did not rate any study as having low risk of bias overall because we considered all of them to be at unclear or high risk of bias in at least one domain of the Cochrane 'Risk of bias' tool. For all studies, we considered the risk of performance and detection bias to be unclear because it is likely that participants or clinicians would have detected the medication, given the powerful behavioural effects of amphetamines. This bias is unlikely to occur if amphetamines are compared with other psychostimulants such as modafinil or methylphenidate. Furthermore, attrition bias is likely in several studies, and the possibility of a carry‐over effect could not be ruled out in studies using a cross‐over design.

Effects of interventions

See: Summary of findings for the main comparison Amphetamines versus placebo for attention deficit hyperactivity disorder (ADHD) in adults

Amphetamines versus placebo

We were able to perform meta‐analyses for most outcomes, given the high availability of data: 'ADHD symptom severity: clinician' (68.4%), 'Retention in treatment' (84.2%), and 'Proportion of participants withdrawn owing to any adverse event' (84.2%). We present the results for each outcome below, along with results for the outcomes of 'severity of ADHD symptoms' assessed by clinicians and patients for each amphetamine, and we present results for 'retention to treatment' in summary of findings Table for the main comparison.

Primary outcomes: severity of ADHD symptoms

We found evidence to suggest that amphetamines are more efficacious than placebo in reducing the severity of ADHD symptoms whether assessed by clinicians (standardised mean difference (SMD) −0.90, 95% confidence interval (CI) −1.04 to −0.75; 13 studies, 2028 participants; Analysis 1.1; Figure 3; Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Frick 2017; Kollins 2014; Levin 2015; Spencer 2001; Spencer 2008; Waxmonsky 2014; Weisler 2017; Weiss 2006; Wigal 2010) or by patients (SMD −0.51, 95% CI −0.75 to −0.28; six studies, 120 participants; Analysis 1.2; Dupaul 2012; Kollins 2014; Martin 2014a; Martin 2014b; Taylor 2000; Taylor 2001). Statistical heterogeneity for severity of ADHD symptoms was moderate when rated by clinicians (I² = 47%) and was low (I² = 13%) when rated by patients. We drew a funnel plot for clinician‐rated efficacy and detected no asymmetry (Figure 4).


Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.1 Severity of ADHD symptoms: clinician rated.

Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.1 Severity of ADHD symptoms: clinician rated.


Funnel plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.1 Severity of ADHD symptoms: clinician rated.

Funnel plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.1 Severity of ADHD symptoms: clinician rated.

Secondary outcomes
Efficacy outcomes

We found evidence that amphetamines are more efficacious than placebo in reducing the severity of ADHD symptoms, irrespective of the efficacy definition used.

  1. Clinical impression of severity at study end (SMD −1.09, 95% CI −1.57 to −0.61; two studies, 78 participants; Analysis 1.3; Spencer 2001; Waxmonsky 2014).

  2. Clinical impression of improvement at study end (one study, 263 participants; Analysis 1.4; Weisler 2017).

  3. Proportion of participants achieving a reduction of at least 30% in the severity of ADHD symptoms (risk ratio (RR) 1.52, 95% CI 1.19 to 1.95; two studies, 381 participants; Analysis 1.5; Levin 2015; Weisler 2006).

  4. Proportion of participants achieving a CGI‐I score of 1 or 2 (RR 2.47, 95% CI 2.10 to 2.90; eight studies, 1707 participants; Analysis 1.6; Adler 2008; Adler 2013; Frick 2017; Levin 2015; Spencer 2008; Waxmonsky 2014; Weisler 2006; Weiss 2006).

  5. Proportion of participants achieving a reduction of at least 30% in the severity of ADHD symptoms and a CGI‐I score of 1 or 2 in another study (one study, 61 participants; Analysis 1.7; Biederman 2012).

We found no statistical heterogeneity for any of these outcomes.

We conducted a meta‐analysis of two studies with 110 participants (Biederman 2012; Weiss 2006), which revealed no differences between the groups given amphetamines and those given placebo in global functioning (SMD 0.54, 95% CI −0.34 to 1.42; Analysis 1.8), depressive symptoms (SMD 0.16, 95% CI −0.22 to 0.53; Analysis 1.9), or anxiety symptoms (SMD 0.13, 95% CI −0.24 to 0.51; Analysis 1.10). Nevertheless, few studies provided data on these outcomes in a way that was suitable for meta‐analysis.

In another meta‐analysis of 17 studies with 2323 participants (Adler 2008; Adler 2013; Biederman 2012; Dupaul 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a; Martin 2014b; Spencer 2001; Spencer 2008; Waxmonsky 2014; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010), we found no evidence to suggest that amphetamines improve retention in treatment (RR 1.06, 95% CI 0.99 to 1.13; low‐quality evidence; Analysis 1.11; Figure 5). This latter analysis showed moderate statistical heterogeneity (I² = 40%), but we detected no asymmetry in the funnel plot (not shown).


Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.11 Retention in treatment.

Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.11 Retention in treatment.

Adverse events

A meta‐analysis of three studies with 699 participants showed that a higher proportion of participants in the amphetamine group than in the placebo group dropped out owing to cardiovascular adverse events. However, this difference was not statistically significant (RR 2.18, 95% CI 0.39 to 12.04; Analysis 1.12; Adler 2008; Dupaul 2012; Weisler 2006).

We conducted a meta‐analysis of 17 studies with 2409 participants and found that the proportion of participants who dropped out owing to any adverse event was higher in the amphetamine group than in the placebo group (RR 2.69, 95% CI 1.63 to 4.42; Analysis 1.13; Figure 6) (Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Dupaul 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a; Martin 2014b; Spencer 2008; Waxmonsky 2014; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010). However, it must be noted that the proportion of participants who were withdrawn owing to any adverse event was low, even in the amphetamines arm (7.6%).


Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.13 Proportion of participants withdrawn owing to any adverse event.

Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.13 Proportion of participants withdrawn owing to any adverse event.

We found no statistical heterogeneity for any adverse events.

No study reported data on the remaining two outcomes: 'proportion of participants withdrawn owing to medication abuse' and 'proportion of participants withdrawn owing to any psychiatric adverse event'.

Subgroup analyses

Comorbidity

We found no evidence to suggest that comorbidity influenced the effects of amphetamines on:

  1. severity of ADHD symptoms assessed by clinicians (SMD −0.90, 95% CI −1.04 to −0.75; 13 studies, 2028 participants; Analysis 2.1; Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Frick 2017; Kollins 2014; Levin 2015; Spencer 2001; Spencer 2008; Waxmonsky 2014; Weisler 2017; Weiss 2006; Wigal 2010);

  2. severity of ADHD symptoms assessed by participants (SMD −0.51, 95% CI −0.75 to −0.28; six studies, 120 participants; Analysis 2.2; Dupaul 2012; Kollins 2014; Martin 2014a; Martin 2014b; Taylor 2000; Taylor 2001);

  3. retention in treatment (RR 1.06, 95% CI 0.99 to 1.13; 17 studies, 2323 participants; Analysis 2.3; Adler 2008; Adler 2013; Biederman 2012; Dupaul 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a; Martin 2014b; Spencer 2001; Spencer 2008; Waxmonsky 2014; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010); or

  4. proportion of participants withdrawn owing to any adverse event (RR 2.69, 95% CI 1.63 to 4.42; 17 studies, 2409 participants; Analysis 2.4; Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Dupaul 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a; Martin 2014b; Spencer 2008; Waxmonsky 2014; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010).

Types of amphetamines

Included studies assessed the effects of three amphetamines: dexamphetamine, lisdexamfetamine, and MAS. We found differences between these three types of amphetamines in the reduction in severity of ADHD symptoms assessed by clinicians (Analysis 3.1): both lisdexamfetamine and MAS were more efficacious than placebo in reducing the severity of ADHD symptoms (lisdexamfetamine: SMD −1.06, 95% CI −1.26 to −0.85; seven studies, 896 participants; Figure 3; Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Kollins 2014; Waxmonsky 2014; Wigal 2010; MAS: SMD −0.80, 95% CI −0.93 to −0.66; five studies, 1083 participants; Figure 3; Frick 2017; Levin 2015; Spencer 2001; Spencer 2008; Weisler 2006), but not dexamphetamine (SMD −0.24, 95% CI −0.80 to 0.32; one study, 49 participants; Figure 3; Weiss 2006).

We also found evidence to suggest that both dexamphetamine and lisdexamfetamine are more efficacious than placebo in reducing the severity of ADHD symptoms as assessed by participants (dexamphetamine: SMD −0.77, 95% CI −1.14 to −0.40; two studies, 35 participants; Taylor 2000; Taylor 2001; lisdexamfetamine: SMD −0.33, 95% CI −0.65 to −0.01; three studies, 67 participants; Dupaul 2012; Kollins 2014; Martin 2014a), but not MAS (SMD −0.45, 95% CI −1.02 to 0.12; one study, 18 participants; Martin 2014b). See Analysis 3.2.

We found no between‐group differences in retention in treatment (RR 1.06, 95% CI 0.99 to 1.13; 17 studies, 2323 participants; Analysis 3.3; Adler 2008; Adler 2013; Biederman 2012; Dupaul 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a; Martin 2014b; Spencer 2001; Spencer 2008; Waxmonsky 2014; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010), or in the proportion of participants withdrawn owing to adverse events (RR 2.69, 95% CI 1.63 to 4.42; 17 studies, 2409 participants; Analysis 3.4; Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Dupaul 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a; Martin 2014b; Spencer 2008; Waxmonsky 2014; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010).

Dose at study completion

The amphetamine maintenance dose was available for all but two studies (Biederman 2012; Weiss 2006). We studied the influence of dose by splitting available comparisons into two groups (lower versus higher doses). The cutoff for delimiting low and high doses was 16 mg/d for dexamphetamine, 53.4 mg/d for lisdexamfetamine, and 50 mg/d for MAS. Four studies compared three doses of amphetamines versus placebo (Adler 2008; Dupaul 2012; Frick 2017; Weisler 2006), thus providing three amphetamine versus placebo comparisons. We combined two of these three comparisons into the same subgroup, thereby leaving two amphetamine (higher and lower doses) versus placebo comparisons (see Unit of analysis issues for the explanation on methods used to combine multiple and correlated interventions). Two studies ‐ Levin 2015 and Weisler 2017 ‐ compared two amphetamine doses versus placebo, which we combined into the same subgroup because both were above or below the median dose (Levin 2015; Weisler 2017).

We found no evidence that dose influenced the effects of:

  1. dexamphetamine on severity of ADHD symptoms as assessed by participants (SMD −0.77, 95% CI −1.14 to −0.40; two studies, 35 participants; Analysis 4.1; Taylor 2000; Taylor 2001);

  2. lisdexamfetamine on severity of ADHD symptoms as assessed by clinicians (SMD −1.02, 95% CI −1.22 to −0.82; six studies, 885 participants; Analysis 5.1; Adler 2008; Adler 2013; Brams 2012; Kollins 2014; Waxmonsky 2014; Wigal 2010), or as assessed by participants (SMD −0.35, 95% CI −0.61 to −0.10; three studies, 67 participants; Analysis 5.2; Dupaul 2012; Kollins 2014; Martin 2014a); retention in treatment (RR 1.00, 95% CI 0.93 to 1.08; five studies, 712 participants; Analysis 5.3; Adler 2008; Adler 2013; Dupaul 2012; Kollins 2014; Martin 2014a); or the proportion of participants withdrawn owing to any adverse event (RR 2.72, 95% CI 1.09 to 6.75; six studies, 828 participants; Analysis 5.4; Adler 2008; Adler 2013; Brams 2012; Dupaul 2012; Kollins 2014; Martin 2014a); and

  3. MAS on severity of ADHD symptoms as assessed by clinicians (SMD −0.81, 95% CI −0.94 to −0.69; five studies, 1083 participants; Analysis 6.1; Frick 2017; Levin 2015; Spencer 2001; Spencer 2008; Weisler 2017); retention in treatment (RR 1.16, 95% CI 1.05 to 1.28; eight studies, 1569 participants; Analysis 6.2; Frick 2017; Kay 2009; Levin 2015; Martin 2014b; Spencer 2001; Spencer 2008; Weisler 2006; Weisler 2017); or the proportion of participants withdrawn owing to any adverse event (RR 3.73, 95% CI 2.16 to 6.44; seven studies, 1539 participants; Analysis 6.3; Frick 2017; Kay 2009; Levin 2015; Martin 2014b; Spencer 2008; Weisler 2006; Weisler 2017).

Type of drug‐release formulation

We found no evidence to suggest that the type of drug‐release formulation influences the effects of amphetamines on:

  1. severity of ADHD symptoms as assessed by clinicians (SMD −0.90, 95% CI −1.04 to −0.75; 13 studies, 2028 participants; Analysis 7.1; Adler 2008; Adler 2013; Biederman 2012; Brams 2012; Frick 2017; Kollins 2014; Levin 2015; Spencer 2001; Spencer 2008; Waxmonsky 2014; Weisler 2006; Weiss 2006; Wigal 2010);

  2. severity of ADHD symptoms as assessed by participants (SMD −0.51, 95% CI −0.75 to −0.27; six studies, 120 participants; Analysis 7.2; Dupaul 2012; Kollins 2014; Martin 2014a; Martin 2014b; Taylor 2000; Taylor 2001); or

  3. retention in treatment (RR 1.06, 95% CI 0.99 to 1.13; 17 studies, 2323 participants; Analysis 7.3; Adler 2008; Adler 2013; Biederman 2012; Dupaul 2012; Frick 2017; Kay 2009; Kollins 2014; Levin 2015; Martin 2014a; Martin 2014b; Spencer 2001; Spencer 2008; Waxmonsky 2014; Weisler 2006; Weisler 2017; Weiss 2006; Wigal 2010).

Study funding

Twelve studies were funded by the pharmaceutical industry; only one was a non‐commercial study. We decided post hoc not to conduct a subgroup analysis of study funding given the difference in the number of studies included within each subgroup, which could compromise the validity of these analyses.

Sensitivity analyses

We performed sensitivity analyses by limiting analyses to those studies scoring low risk of bias on two specific domains of the Cochrane 'Risk of bias' tool, namely, incomplete outcome data and other potential sources of bias. Findings from these analyses were similar to those of the primary analyses (incomplete outcome data: Analysis 8.1; Analysis 8.2; other potential sources of bias: Analysis 9.1; Analysis 9.2; Analysis 9.3).

We ran another sensitivity analysis by changing the statistical model from a random‐effects model, which we used to pool data in the main analysis, to a fixed‐effect model. We observed similar results for efficacy outcomes (Analysis 10.1; Analysis 10.2; Analysis 10.3; Analysis 1.4; Analysis 1.5; Analysis 10.6; Analysis 10.7; Analysis 10.8; Analysis 10.9; Analysis 10.10), with the exception of retention in treatment, which was higher for amphetamines than for placebo (Analysis 10.11: RR 1.10, 95% CI 1.04 to 1.16; 17 studies, 2323 participants). We observed similar results for adverse events when using the fixed‐effect model (Analysis 10.12; Analysis 10.13).

We also conducted three post hoc sensitivity analyses.

  1. We repeated the analysis of the severity of ADHD symptoms as rated by clinicians and participants after calculating the effect size of four studies (Dupaul 2012; Martin 2014a/Martin 2014b; Spencer 2001; Wigal 2010) using the least conservative correlation coefficient (see Unit of analysis issues). Results of these analyses (clinician rated: SMD −0.90, 95% CI −1.05 to −0.76; 13 studies, 2028 participants; Analysis 11.1; participant rated: SMD −0.47, 95% CI −0.69 to −0.25; six studies, 120 participants; Analysis 11.2) were comparable with results of the original analyses (clinician rated: SMD −0.90, 95% CI −1.04 to −0.75; 13 studies, 2028 participants; Analysis 1.1; patient rated: SMD −0.51, 95% CI −0.75 to −0.28; six studies, 120 participants; Analysis 1.2).

  2. In the second analysis, we re‐analysed the outcomes of 'proportion of participants withdrawn owing to any cardiovascular adverse event' and 'proportion of participants withdrawn owing to any adverse event', calculating the risk difference (RD) (Analysis 12.1: RD 0.02, 95% CI −0.00 to 0.04; three studies, 699 participants; Analysis 12.2: RD 0.04, 95% CI 0.01 to 0.06; 17 studies, 2409 participants, respectively). This yielded similar findings to the previous analyses (Analysis 1.12: RR 2.18, 95% CI 0.39 to 12.04; three studies, 699 participants; Analysis 1.13: RR 2.69, 95% CI 1.64 to 4.42; 17 studies, 2409 participants, respectively).

  3. In the third analysis, we removed one study (Spencer 2001), which was showing a carry‐over effect from the analysis on severity of ADHD symptoms (Analysis 13.1: SMD −0.90, 95% CI −1.05 to −0.74; 12 studies, 1998 participants), and obtained similar results to the primary analysis (Analysis 1.1: SMD −0.90, 95% CI −1.04 to −0.75; 13 studies, 2028 participants), suggesting that inclusion of this study did not bias the results of this review.

Amphetamines versus guanfacine

Only one study (17 participants) compared the efficacy of amphetamines versus guanfacine (Taylor 2001).

Primary outcomes: severity of ADHD symptoms

Taylor 2001 found no evidence to suggest that amphetamines are superior to guanfacine in reducing the severity of ADHD symptoms as rated by participants (Analysis 14.1).

Secondary outcomes

Taylor 2001 did not provide data on any of our secondary outcomes.

Amphetamines versus modafinil

Only one study (22 participants) compared the efficacy of amphetamines versus modafinil (Taylor 2000).

Primary outcomes: severity of ADHD symptoms

Taylor 2000 found no evidence to suggest that amphetamines are superior to modafinil in reducing the severity of ADHD symptoms as rated by participants (Analysis 15.1).

Secondary outcomes

Taylor 2000 did not provide data on any of our secondary outcomes.

Amphetamines versus paroxetine

Only one study (98 participants) compared the efficacy of amphetamines versus paroxetine (Weiss 2006).

Primary outcomes: severity of ADHD symptoms

Weiss 2006 found no evidence to suggest that amphetamines are superior to paroxetine in reducing the severity of ADHD symptoms as rated by clinicians (Analysis 16.1).

Secondary outcomes
Efficacy outcomes

Weiss 2006 found evidence indicating that amphetamines are more efficacious than paroxetine in increasing the proportion of participants achieving a CGI‐I score of 1 or 2 (Analysis 16.2), but are not more efficacious than paroxetine in improving global functioning (Analysis 16.3), reducing symptoms of depression (Analysis 16.4) or anxiety (Analysis 16.5), or improving retention in treatment (Analysis 16.6).

Adverse events

Weiss 2006 found no evidence that amphetamines are more efficacious than paroxetine in reducing the proportion of participants withdrawn owing to any adverse event (Analysis 16.7).

Discusión

disponible en

Resumen de los resultados principales

Las anfetaminas mostraron resultados contradictorios en el tratamiento de los adultos con trastorno por déficit de atención e hiperactividad (TDAH). Se encontró evidencia de baja a muy baja calidad que indicaba que las anfetaminas fueron más eficaces que el placebo en la reducción de la gravedad de los síntomas del TDAH, independientemente del evaluador, y evidencia de baja calidad de que no mejoraron la retención en el tratamiento. Además, las anfetaminas se asociaron con mayor riesgo de abandonos por los eventos adversos. Las anfetaminas no fueron efectivas en la mejoría de los síntomas depresivos y de ansiedad ni en la funcionalidad global.

Esta revisión encontró que las anfetaminas redujeron la gravedad de los síntomas del TDAH en adultos a corto plazo. Este hallazgo fue consistente en todos los análisis que se realizaron y que utilizaron definiciones de eficacia y modelos estadísticos diferentes. Además, en la mayoría de los análisis, el tamaño del efecto de las anfetaminas para la mejoría de los síntomas del TDAH fue moderado a alto según los límites convencionales (Cohen 1988).

Los estudios incluidos fueron de poca duración, con un promedio de sólo 5,3 semanas. Esto es notable por tres razones. Primero, el TDAH es un trastorno crónico y habitualmente el tratamiento farmacológico se administra durante períodos prolongados. En segundo lugar, debido a que la gravedad tiende a disminuir con la edad (Biederman 2000; Faraone 2006; Hill 1996), no se puede descartar la posibilidad de que la eficacia de las anfetaminas en los adultos con TDAH sea menor luego del tratamiento crónico y se debería estudiar en ensayos clínicos con un período de seguimiento más prolongado. Tercero, algunos informes indican que la eficacia de los fármacos utilizados para el tratamiento del TDAH tiende a disminuir progresivamente con el transcurso del tiempo (Cunill 2016; MTA 2004; Riera 2017). Por lo tanto, debido a que la mayoría de los estudios incluidos fueron de poca duración, es posible que el tamaño del efecto de las anfetaminas sea más pequeño a largo plazo.

Las anfetaminas como un grupo no mejoraron la retención en el tratamiento. La retención se puede considerar un resultado de riesgo‐beneficio porque refleja la evaluación combinada de eficacia y seguridad (Castells 2013; Cunill 2013; Schhneider 2006; Stroup 2003). Este resultado no se puede considerar positivo, ya que siempre es aconsejable que las intervenciones muestren una tasa de interrupción inferior que el placebo, lo que indica que la eficacia de la medicación supera los efectos secundarios.

Se encontró variabilidad entre los estudios con respecto a la gravedad de los síntomas del TDAH según la evaluación de los médicos. Lo anterior dio lugar a una heterogeneidad estadística moderada. Se investigó la fuente de esta heterogeneidad mediante cuatro análisis de subgrupos (comorbilidades, tipos de anfetaminas, dosis al finalizar el estudio y tipo de forma farmacéutica de liberación del fármaco). Aunque se encontró un efecto del tipo de anfetamina sobre la gravedad de los síntomas del TDAH (lisdexamfetamina y SMA mostraron un tamaño más grande del efecto que la dexanfetamina), este factor no explicó por completo la variabilidad entre los estudios, ya que la heterogeneidad estadística entre los subgrupos siguió siendo evidente. También se encontró heterogeneidad estadística moderada para la "retención en el tratamiento", pero ningún análisis de subgrupos pudo controlar esta heterogeneidad, que es probable que se pueda explicar por otras covariables o una combinación de ellas.

Como se mencionó anteriormente, se encontró que el tipo de anfetamina influyó en la eficacia en el TDAH evaluada por el médico: aunque la lisdexamfetamina y las SMA redujeron la gravedad de los síntomas del TDAH en comparación con placebo, no sucedió lo mismo con la dexanfetamina. El tipo de anfetamina no influyó en la eficacia del TDAH evaluada por el paciente, en la retención en el tratamiento ni en los eventos adversos. Este resultado, junto con el hecho de que la dextroanfetamina se ha estudiado con poca frecuencia, aporta evidencia indirecta y de baja calidad que favorece la lisdexamfetamina y las SMA por sobre la dextroanfetamina.

Los estudios han investigado una amplia variedad de dosis, y dosis más altas y más bajas de anfetamina han mostrado resultados similares. Este hallazgo es consistente con el de los ensayos clínicos que investigaron la eficacia de las dosis múltiples de anfetaminas y no encontraron diferencias entre los brazos de tratamiento (Adler 2008; Weisler 2006). También se ha investigado el metilfenidato en una amplia variedad de dosis, y los resultados con respecto a los efectos dosis‐respuesta han sido contradictorios: algunos estudios indicaron una relación positiva (Castells 2011b; Faraone 2004; Medori 2008), y otros no encontraron una asociación con la dosis (Koesters 2008; Spencer 2007).

Las anfetaminas tienen una vida media corta y se deben administrar dos o tres veces al día. Para facilitar el cumplimiento con el tratamiento se han desarrollado formulaciones de liberación sostenida. Esta revisión sistemática indicó que las anfetaminas administradas en las formas farmacéuticas de liberación inmediata y lenta tuvieron una eficacia y una tolerancia similares. Este dato es relevante, ya que se ha visto que las formas farmacéuticas de acción prolongada son menos eficaces que las de acción corta (Peterson 2007).

Pocos estudios incluyeron a participantes con trastornos mentales concomitantes, lo que contrasta con la alta prevalencia de otras afecciones psiquiátricas diagnosticadas en los pacientes con TDAH (Kessler 2006). La presencia de trastornos mentales concomitantes no modificó la eficacia, la retención en el tratamiento ni los eventos adversos. Este resultado es consistente con los de un estudio reciente que no encontró comorbilidad que modificara los efectos del tratamiento farmacológico en adultos con TDAH (Cunill 2016).

No se evaluaron los efectos del patrocinio de estudios sobre la eficacia, la retención en el tratamiento o los eventos adversos, porque con la excepción de un estudio, todos fueron patrocinados por la industria farmacéutica. Otros estudios han revelado que los estudios con un patrocinador comercial informan resultados más favorables que los informados por estudios independientes (Lundh 2017; Riera 2017).

El fracaso para identificar la repercusión de las anfetaminas sobre los síntomas depresivos y de ansiedad podría ser una consecuencia de los criterios de inclusión estrictos de la mayoría de los estudios incluidos, que excluyeron a los pacientes con trastorno depresivo mayor o trastorno bipolar. Por lo tanto, las puntuaciones iniciales de depresión y ansiedad fueron bajas, lo que brinda pocas posibilidades de mejoría. Otra posible interpretación es que los efectos de las anfetaminas sobre los síntomas del TDAH son independientes de los síntomas del estado de ánimo y la ansiedad. El número de estudios incluidos en estos análisis fue escaso, lo que limita las posibilidades de establecer conclusiones.

Las anfetaminas se han comparado solamente con tres fármacos (guanfacina, modafinilo y paroxetina) en tres ensayos clínicos pequeños. Por lo tanto, no es sorprendente que no se hayan encontrado diferencias en la mayoría de los resultados.

Compleción y aplicabilidad general de las pruebas

La aplicabilidad y la completitud general de la evidencia relacionadas con la eficacia y la seguridad de las anfetaminas se ven limitadas por dos factores. Primero, la falta de datos sobre los pacientes con TDAH con trastornos mentales concomitantes como el abuso de sustancias o trastorno depresivo mayor. Lo anterior es particularmente notable debido a la alta prevalencia de trastornos psiquiátricos concomitantes en pacientes con THDA (Biederman 2006; Levin 1998; Van Emmerik‐van Oortmerssen 2012; Young 2005), que se espera aumente aún más con el uso del DSM‐5, ya que permite un diagnóstico de TDAH en los pacientes con trastornos del espectro autista. En segundo lugar, la duración corta de los estudios, que contrasta con la evolución crónica y el tratamiento a largo plazo del trastorno. Sin embargo, también se deben reconocer las fortalezas. Esta revisión incluye una búsqueda sistemática y exhaustiva que permitió identificar todos los ensayos de anfetamina realizados en adultos con TDAH. Además, fue posible obtener una cantidad significativa de los datos de interés faltantes de los autores de varios estudios incluidos en esta revisión.

Calidad de la evidencia

No se encontraron estudios libres de sesgo. La mayoría de los artículos no informó cómo se generó la secuencia ni cómo se ocultó. Por lo tanto, no fue posible establecer diferencias entre los problemas de informe y el sesgo del estudio. Sin embargo, incluso en el caso de que estos procesos se hayan realizado correctamente, ningún estudio se habría calificado como libre de sesgo porque las anfetaminas tienen efectos conductuales intensos y los pacientes y los evaluadores pueden haber detectado la medicación administrada en el estudio. Esta detección puede haber causado un fracaso del cegamiento, que quizás haya exagerado la eficacia de la intervención (Schultz 1995); este tipo de sesgo tiene menores probabilidades de ocurrir cuando las anfetaminas se comparan con otros psicoestimulantes como el modafinilo (Taylor 2000). Sin embargo, ningún estudio evaluó si el cegamiento había fracasado y el hecho de que todos los estudios se consideraran con riesgo incierto de sesgo en este dominio se basó en la opinión de los autores de la revisión, que a la vez, se basó en la gran cantidad de evidencia de que las anfetaminas provocan efectos conductuales y hemodinámicos intensos que no permiten ocultar la intervención en estudio (Childs 2009; Johanson 1980; Makris 2004; Makris 2007; Wachtel 1992). El uso de un nocebo (es decir, un placebo activo que produce efectos secundarios notorios que pueden convencer al paciente de que se está tratando con el fármaco activo) se ha propuesto como una medida para reducir la posibilidad de falta de cegamiento (Storebø 2015); sin embargo, este tipo de comparador acarrea problemas éticos, ya que entra en conflicto con el principio de "lo primero es no hacer daño". Una mejor opción a los nocebos sería el uso de resultados objetivos (p.ej. accidentes, problemas legales o laborales), que tienen un menor riesgo de sesgo de realización y de detección que los resultados subjetivos (p.ej. gravedad de los síntomas del TDAH). El uso de resultados objetivos, clínicamente significativos, como los accidentes o los problemas legales o laborales, también mejoraría la validez externa de los resultados de los ensayos clínicos que incluyen pacientes con TDAH. Una pregunta importante es la validez de las variables de resultado utilizadas para determinar la eficacia de las anfetaminas para los síntomas del TDAH. La interpretación clínica de una reducción del 30% de la gravedad de los síntomas del TDAH o de un cambio en el número de unidades de la escala de calificación del TDAH no es sencilla. Por lo tanto, sería útil utilizar los resultados con mayor interpretabilidad clínica para mejorar la comprensión del efecto de una intervención para este trastorno; a modo de ejemplo, se podría monitorizar la proporción de pacientes que logran una "remisión sintomática" (es decir, la proporción de pacientes que no logran cumplir todos los criterios diagnósticos del TDAH) (Biederman 2000; Keck 1998).

Por otro lado, la indireccionalidad puede haber afectado la calidad de la evidencia en esta revisión. La indireccionalidad se puede generar al combinar diferentes fármacos (p.ej. diferentes anfetaminas), diferentes dosis del mismo fármaco o estudios con diferencias importantes en el seguimiento que obstaculizan la posibilidad de hacer recomendaciones precisas. La falta de certeza con respecto a la indireccionalidad de algunas estimaciones, la imprecisión de algunos cálculos, la existencia de heterogeneidad estadística y la posibilidad de fracaso del cegamiento hacen que no se pueda considerar que los resultados aportan evidencia de calidad alta o moderada. Por lo tanto, es probable que investigaciones nuevas puedan cambiar los hallazgos principales de esta revisión.

Se realizaron dos análisis de sensibilidad post hoc que excluyeron los estudios con riesgo de sesgo incierto o alto en dos dominios específicos de la herramienta Cochrane de "riesgo de sesgo": "datos incompletos de resultado" y "otros sesgos". Estos análisis tuvieron resultados similares a los del análisis primario, lo que indica que estos hallazgos son sólidos a pesar de las dos posibles fuentes de sesgo.

Sesgos potenciales en el proceso de revisión

Se realizó una búsqueda exhaustiva en varias bases de datos bibliográficas y registros de ensayos, sin restricciones de idioma. También se estableció contacto con la industria farmacéutica y los autores correspondientes de las publicaciones incluidas para preguntar sobre estudios adicionales que se podían haber omitido. Sin embargo, no se revisaron los sitios de la FDA ni de EMA, y por lo que no se puede descartar la posibilidad de que el proceso de revisión esté sesgado. No obstante, no se encontró evidencia de sesgo de informe, como indicó un gráfico en embudo simétrico, aunque se debe destacar que la sensibilidad y la precisión de esta prueba son bajas.

Se pudieron obtener datos relevantes de casi todos los estudios. Se pudieron obtener las puntuaciones de cambio o finales o las tasas de respuesta de las escalas evaluadas por el médico o el paciente, que consideraron la gravedad de los síntomas del TDAH de un modo adecuado para el metanálisis, directamente del informe del estudio o a partir de los autores de los estudios. Además, se pudieron obtener datos sobre la interrupción del tratamiento por todas las causas en 17 de 19 estudios.

Con respecto a los métodos utilizados, algunos estudios aplicaron un enfoque de intención de tratar (ITT) modificado, donde solamente se incluyeron en el análisis de eficacia los participantes que proporcionaron al menos un resultado posterior a la asignación al azar (Adler 2008; Adler 2013; Brams 2012; Spencer 2008; Weisler 2006; Weisler 2017). La no inclusión de todos los participantes asignados al azar puede causar sesgo de desgaste. Con objetivo de disminuir esta fuente de sesgo, se utilizó un enfoque de intención de tratar para calcular el cociente de riesgos (CR) de estos estudios. Al actuar de esa forma se obtienen resultados de eficacia más conservadores porque se supone que todos los pacientes que abandonaron el estudio no lograron el resultado. Como la mayoría de los estudios tuvieron un seguimiento a corto plazo y el TDAH es un trastorno crónico cuya gravedad no cambia después de períodos cortos, parece aceptable suponer que los pacientes que abandonaron el estudio fueron los que no respondieron al tratamiento. Aunque este no fuera el caso, se espera que este hecho tenga una influencia mínima en los resultados porque la proporción de participantes excluidos del análisis de eficacia de los estudios que utilizaron un enfoque de intención de tratar modificado fue baja (de manera consistente menos del 3% de la muestra aleatoria).

Se recomienda precaución al interpretar los resultados de las comparaciones entre subgrupos. Debido a que estas comparaciones son indirectas se necesitan comparaciones directas para confirmar sus hallazgos.

Acuerdos y desacuerdos con otros estudios o revisiones

La calidad de la evidencia de esta revisión se consideró baja a muy baja (Otasowie 2014; Punja 2016; Storebø 2015), que equivale a la calidad de la evidencia informada por otras revisiones Cochrane sobre este tema. Los factores que limitan la validez y la calidad de la evidencia de las revisiones sistemáticas del tratamiento farmacológico para el TDAH son recurrentes e incluyen sesgo de desgaste, la posibilidad de fracaso del cegamiento, resultados poco precisos y heterogeneidad estadística (Castells 2011b; Castells 2013; Cunill 2016; Otasowie 2014; Peterson 2007; Punja 2016). La mejoría de la calidad de los estudios que investigan la eficacia y la seguridad del tratamiento farmacológico para el TDAH se ha convertido en una prioridad para aumentar la confiabilidad de los resultados de los estudios.

Flow diagram.
Figuras y tablas -
Figure 1

Flow diagram.

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.Note: scores for blinding of participants, personnel, and outcome assessors refer to amphetamines vs placebo only comparisons; scores on all remaining domains refer to amphetamines vs placebo, guanfacine, modafinil, or paroxetine.
Figuras y tablas -
Figure 2

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Note: scores for blinding of participants, personnel, and outcome assessors refer to amphetamines vs placebo only comparisons; scores on all remaining domains refer to amphetamines vs placebo, guanfacine, modafinil, or paroxetine.

Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.1 Severity of ADHD symptoms: clinician rated.
Figuras y tablas -
Figure 3

Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.1 Severity of ADHD symptoms: clinician rated.

Funnel plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.1 Severity of ADHD symptoms: clinician rated.
Figuras y tablas -
Figure 4

Funnel plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.1 Severity of ADHD symptoms: clinician rated.

Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.11 Retention in treatment.
Figuras y tablas -
Figure 5

Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.11 Retention in treatment.

Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.13 Proportion of participants withdrawn owing to any adverse event.
Figuras y tablas -
Figure 6

Forest plot of comparison: 1 Amphetamines vs placebo for ADHD in adults, outcome: 1.13 Proportion of participants withdrawn owing to any adverse event.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 1 ADHD symptom severity: clinician‐rated.
Figuras y tablas -
Analysis 1.1

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 1 ADHD symptom severity: clinician‐rated.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 2 ADHD symptom severity: patient‐rated.
Figuras y tablas -
Analysis 1.2

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 2 ADHD symptom severity: patient‐rated.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 3 Clinical impression of severity at study end.
Figuras y tablas -
Analysis 1.3

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 3 Clinical impression of severity at study end.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 4 Clinical impression of improvement at study end.
Figuras y tablas -
Analysis 1.4

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 4 Clinical impression of improvement at study end.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 5 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms.
Figuras y tablas -
Analysis 1.5

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 5 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 6 Proportion of participants achieving a CGI‐Improvement score of 1 or 2.
Figuras y tablas -
Analysis 1.6

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 6 Proportion of participants achieving a CGI‐Improvement score of 1 or 2.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 7 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms and a CGI‐Improvement score of 1 or 2.
Figuras y tablas -
Analysis 1.7

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 7 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms and a CGI‐Improvement score of 1 or 2.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 8 Global functioning.
Figuras y tablas -
Analysis 1.8

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 8 Global functioning.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 9 Depressive symptoms.
Figuras y tablas -
Analysis 1.9

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 9 Depressive symptoms.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 10 Anxiety symptoms.
Figuras y tablas -
Analysis 1.10

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 10 Anxiety symptoms.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 11 Retention in treatment.
Figuras y tablas -
Analysis 1.11

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 11 Retention in treatment.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 12 Proportion of participants withdrawn owing to any cardiovascular adverse event.
Figuras y tablas -
Analysis 1.12

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 12 Proportion of participants withdrawn owing to any cardiovascular adverse event.

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 13 Proportion of participants withdrawn owing to any adverse event.
Figuras y tablas -
Analysis 1.13

Comparison 1 Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 13 Proportion of participants withdrawn owing to any adverse event.

Comparison 2 Subgroup analysis 1: comorbidity, Outcome 1 ADHD symptom severity: clinician‐rated.
Figuras y tablas -
Analysis 2.1

Comparison 2 Subgroup analysis 1: comorbidity, Outcome 1 ADHD symptom severity: clinician‐rated.

Comparison 2 Subgroup analysis 1: comorbidity, Outcome 2 ADHD symptom severity: patient‐rated.
Figuras y tablas -
Analysis 2.2

Comparison 2 Subgroup analysis 1: comorbidity, Outcome 2 ADHD symptom severity: patient‐rated.

Comparison 2 Subgroup analysis 1: comorbidity, Outcome 3 Retention in treatment.
Figuras y tablas -
Analysis 2.3

Comparison 2 Subgroup analysis 1: comorbidity, Outcome 3 Retention in treatment.

Comparison 2 Subgroup analysis 1: comorbidity, Outcome 4 Proportion of patients withdrawn owing to any adverse event.
Figuras y tablas -
Analysis 2.4

Comparison 2 Subgroup analysis 1: comorbidity, Outcome 4 Proportion of patients withdrawn owing to any adverse event.

Comparison 3 Subgroup analysis 2: type of amphetamine, Outcome 1 ADHD symptom severity: clinician‐rated.
Figuras y tablas -
Analysis 3.1

Comparison 3 Subgroup analysis 2: type of amphetamine, Outcome 1 ADHD symptom severity: clinician‐rated.

Comparison 3 Subgroup analysis 2: type of amphetamine, Outcome 2 ADHD symptom severity: patient‐rated.
Figuras y tablas -
Analysis 3.2

Comparison 3 Subgroup analysis 2: type of amphetamine, Outcome 2 ADHD symptom severity: patient‐rated.

Comparison 3 Subgroup analysis 2: type of amphetamine, Outcome 3 Retention in treatment.
Figuras y tablas -
Analysis 3.3

Comparison 3 Subgroup analysis 2: type of amphetamine, Outcome 3 Retention in treatment.

Comparison 3 Subgroup analysis 2: type of amphetamine, Outcome 4 Proportion of participants withdrawn owing to any adverse event.
Figuras y tablas -
Analysis 3.4

Comparison 3 Subgroup analysis 2: type of amphetamine, Outcome 4 Proportion of participants withdrawn owing to any adverse event.

Comparison 4 Subgroup analysis 3: dose of dexamphetamine, Outcome 1 ADHD symptom severity: patient rated.
Figuras y tablas -
Analysis 4.1

Comparison 4 Subgroup analysis 3: dose of dexamphetamine, Outcome 1 ADHD symptom severity: patient rated.

Comparison 5 Subgroup analysis 3: dose of lisdexamfetamine, Outcome 1 ADHD symptom severity: clinician rated.
Figuras y tablas -
Analysis 5.1

Comparison 5 Subgroup analysis 3: dose of lisdexamfetamine, Outcome 1 ADHD symptom severity: clinician rated.

Comparison 5 Subgroup analysis 3: dose of lisdexamfetamine, Outcome 2 ADHD symptom severity: patient rated.
Figuras y tablas -
Analysis 5.2

Comparison 5 Subgroup analysis 3: dose of lisdexamfetamine, Outcome 2 ADHD symptom severity: patient rated.

Comparison 5 Subgroup analysis 3: dose of lisdexamfetamine, Outcome 3 Retention in treatment.
Figuras y tablas -
Analysis 5.3

Comparison 5 Subgroup analysis 3: dose of lisdexamfetamine, Outcome 3 Retention in treatment.

Comparison 5 Subgroup analysis 3: dose of lisdexamfetamine, Outcome 4 Proportion of participants withdrawn owing to any adverse event.
Figuras y tablas -
Analysis 5.4

Comparison 5 Subgroup analysis 3: dose of lisdexamfetamine, Outcome 4 Proportion of participants withdrawn owing to any adverse event.

Comparison 6 Subgroup analysis 3: dose of mixed amphetamine salts, Outcome 1 ADHD symptom severity: clinician rated.
Figuras y tablas -
Analysis 6.1

Comparison 6 Subgroup analysis 3: dose of mixed amphetamine salts, Outcome 1 ADHD symptom severity: clinician rated.

Comparison 6 Subgroup analysis 3: dose of mixed amphetamine salts, Outcome 2 Retention in treatment.
Figuras y tablas -
Analysis 6.2

Comparison 6 Subgroup analysis 3: dose of mixed amphetamine salts, Outcome 2 Retention in treatment.

Comparison 6 Subgroup analysis 3: dose of mixed amphetamine salts, Outcome 3 Proportion of participants withdrawn owing to any adverse event.
Figuras y tablas -
Analysis 6.3

Comparison 6 Subgroup analysis 3: dose of mixed amphetamine salts, Outcome 3 Proportion of participants withdrawn owing to any adverse event.

Comparison 7 Subgroup analysis 4: type of drug‐release formulation, Outcome 1 ADHD symptom severity: clinician rated.
Figuras y tablas -
Analysis 7.1

Comparison 7 Subgroup analysis 4: type of drug‐release formulation, Outcome 1 ADHD symptom severity: clinician rated.

Comparison 7 Subgroup analysis 4: type of drug‐release formulation, Outcome 2 ADHD symptom severity: patient rated.
Figuras y tablas -
Analysis 7.2

Comparison 7 Subgroup analysis 4: type of drug‐release formulation, Outcome 2 ADHD symptom severity: patient rated.

Comparison 7 Subgroup analysis 4: type of drug‐release formulation, Outcome 3 Retention in treatment.
Figuras y tablas -
Analysis 7.3

Comparison 7 Subgroup analysis 4: type of drug‐release formulation, Outcome 3 Retention in treatment.

Comparison 8 Sensitivity analysis: incomplete subjective outcome data, Outcome 1 ADHD symptom severity: clinician rated.
Figuras y tablas -
Analysis 8.1

Comparison 8 Sensitivity analysis: incomplete subjective outcome data, Outcome 1 ADHD symptom severity: clinician rated.

Comparison 8 Sensitivity analysis: incomplete subjective outcome data, Outcome 2 ADHD symptom severity: patient rated.
Figuras y tablas -
Analysis 8.2

Comparison 8 Sensitivity analysis: incomplete subjective outcome data, Outcome 2 ADHD symptom severity: patient rated.

Comparison 9 Sensitivity analysis: other potential sources of bias, Outcome 1 ADHD symptom severity: clinician rated.
Figuras y tablas -
Analysis 9.1

Comparison 9 Sensitivity analysis: other potential sources of bias, Outcome 1 ADHD symptom severity: clinician rated.

Comparison 9 Sensitivity analysis: other potential sources of bias, Outcome 2 ADHD symptom severity: patient rated.
Figuras y tablas -
Analysis 9.2

Comparison 9 Sensitivity analysis: other potential sources of bias, Outcome 2 ADHD symptom severity: patient rated.

Comparison 9 Sensitivity analysis: other potential sources of bias, Outcome 3 Retention in treatment.
Figuras y tablas -
Analysis 9.3

Comparison 9 Sensitivity analysis: other potential sources of bias, Outcome 3 Retention in treatment.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 1 ADHD symptom severity: clinician‐rated.
Figuras y tablas -
Analysis 10.1

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 1 ADHD symptom severity: clinician‐rated.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 2 ADHD symptom severity: patient‐rated.
Figuras y tablas -
Analysis 10.2

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 2 ADHD symptom severity: patient‐rated.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 3 Clinical impression of severity at study end.
Figuras y tablas -
Analysis 10.3

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 3 Clinical impression of severity at study end.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 4 Clinical impression of improvement at study end.
Figuras y tablas -
Analysis 10.4

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 4 Clinical impression of improvement at study end.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 5 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms.
Figuras y tablas -
Analysis 10.5

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 5 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 6 Proportion of participants achieving a CGI‐Improvement score of 1 or 2.
Figuras y tablas -
Analysis 10.6

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 6 Proportion of participants achieving a CGI‐Improvement score of 1 or 2.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 7 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms and a CGI‐Improvement score of 1 or 2.
Figuras y tablas -
Analysis 10.7

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 7 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms and a CGI‐Improvement score of 1 or 2.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 8 Global functioning.
Figuras y tablas -
Analysis 10.8

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 8 Global functioning.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 9 Depressive symptoms.
Figuras y tablas -
Analysis 10.9

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 9 Depressive symptoms.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 10 Anxiety symptoms.
Figuras y tablas -
Analysis 10.10

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 10 Anxiety symptoms.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 11 Retention in treatment.
Figuras y tablas -
Analysis 10.11

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 11 Retention in treatment.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 12 Proportion of participants withdrawn owing to any cardiovascular adverse event.
Figuras y tablas -
Analysis 10.12

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 12 Proportion of participants withdrawn owing to any cardiovascular adverse event.

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 13 Proportion of participants withdrawn owing to any adverse event.
Figuras y tablas -
Analysis 10.13

Comparison 10 Sensitivity analysis: fixed‐effect model, Outcome 13 Proportion of participants withdrawn owing to any adverse event.

Comparison 11 Post hoc sensitivity analysis 1: calculation of effect sizes using correlation coefficient from Taylor 2000, Outcome 1 ADHD symptom severity: clinician rated.
Figuras y tablas -
Analysis 11.1

Comparison 11 Post hoc sensitivity analysis 1: calculation of effect sizes using correlation coefficient from Taylor 2000, Outcome 1 ADHD symptom severity: clinician rated.

Comparison 11 Post hoc sensitivity analysis 1: calculation of effect sizes using correlation coefficient from Taylor 2000, Outcome 2 ADHD symptom severity: patient rated.
Figuras y tablas -
Analysis 11.2

Comparison 11 Post hoc sensitivity analysis 1: calculation of effect sizes using correlation coefficient from Taylor 2000, Outcome 2 ADHD symptom severity: patient rated.

Comparison 12 Post hoc sensitivity analysis 2: pooled risk difference for proportion of participants withdrawn owing to cardiovascular adverse events and any adverse event, Outcome 1 Proportion of participants withdrawn owing to any cardiovascular adverse event.
Figuras y tablas -
Analysis 12.1

Comparison 12 Post hoc sensitivity analysis 2: pooled risk difference for proportion of participants withdrawn owing to cardiovascular adverse events and any adverse event, Outcome 1 Proportion of participants withdrawn owing to any cardiovascular adverse event.

Comparison 12 Post hoc sensitivity analysis 2: pooled risk difference for proportion of participants withdrawn owing to cardiovascular adverse events and any adverse event, Outcome 2 Proportion of participants withdrawn owing to any adverse event.
Figuras y tablas -
Analysis 12.2

Comparison 12 Post hoc sensitivity analysis 2: pooled risk difference for proportion of participants withdrawn owing to cardiovascular adverse events and any adverse event, Outcome 2 Proportion of participants withdrawn owing to any adverse event.

Comparison 13 Post hoc sensitivity analysis 3: exclusion of cross‐over study, Outcome 1 ADHD symptom severity: clinician rated.
Figuras y tablas -
Analysis 13.1

Comparison 13 Post hoc sensitivity analysis 3: exclusion of cross‐over study, Outcome 1 ADHD symptom severity: clinician rated.

Comparison 14 Amphetamines vs guanfacine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 1 ADHD symptom severity: patient rated.
Figuras y tablas -
Analysis 14.1

Comparison 14 Amphetamines vs guanfacine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 1 ADHD symptom severity: patient rated.

Comparison 15 Amphetamines vs modafinil for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 1 ADHD symptom severity: patient rated.
Figuras y tablas -
Analysis 15.1

Comparison 15 Amphetamines vs modafinil for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 1 ADHD symptom severity: patient rated.

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 1 ADHD symptom severity: clinician rated.
Figuras y tablas -
Analysis 16.1

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 1 ADHD symptom severity: clinician rated.

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 2 Proportion of participants achieving a CGI‐Improvement score of 1 or 2.
Figuras y tablas -
Analysis 16.2

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 2 Proportion of participants achieving a CGI‐Improvement score of 1 or 2.

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 3 Global functioning.
Figuras y tablas -
Analysis 16.3

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 3 Global functioning.

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 4 Depressive symptoms.
Figuras y tablas -
Analysis 16.4

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 4 Depressive symptoms.

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 5 Anxiety symptoms.
Figuras y tablas -
Analysis 16.5

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 5 Anxiety symptoms.

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 6 Retention in treatment.
Figuras y tablas -
Analysis 16.6

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 6 Retention in treatment.

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 7 Proportion of participants withdrawn owing to any adverse event.
Figuras y tablas -
Analysis 16.7

Comparison 16 Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults, Outcome 7 Proportion of participants withdrawn owing to any adverse event.

Summary of findings for the main comparison. Amphetamines versus placebo for attention deficit hyperactivity disorder (ADHD) in adults

Amphetamines versus placebo for attention deficit hyperactivity disorder (ADHD) in adults

Patient or population: adult patients with attention deficit hyperactivity disorder (ADHD)
Settings: outpatients
Intervention: amphetamines
Comparison: placebo

Outcomes

Illustrative comparative risks* (95% CI)

Relative effect
(95% CI)

Number of participants
(studies)

Quality of the evidence
(GRADE)

Comments

Assumed risk

Corresponding risk

Placebo

Amphetamines

Dexamphetamine

ADHD symptom severity: clinician rated
Assessed with ADHD‐RS‐IV
Follow‐up: post intervention
(mean 20 weeks)

Mean clinician‐rated ADHD symptom severity score in the intervention groups was 0.24 standard deviations lower (0.80 lower to 0.32 higher)

49
(1 study)

⊕⊝⊝⊝
Very lowa,b,c

An SMD of 0.24 can be considered a small effect size.

ADHD symptom severity: patient rated
Assessed with DSM‐IV ADHD Behavior Checklist for Adults
Follow‐up: post intervention
(mean 2 weeks)

Mean patient‐rated ADHD symptom severity score in the intervention groups was 0.77 standard deviations lower (1.14 lower to 0.4 lower)

35
(2 studies)

⊕⊕⊝⊝
Lowa,c,d

An SMD of 0.77 can be considered a medium effect size.

Lisdexamfetamine

ADHD symptom severity: clinician rated
Assessed with ADHD‐RS‐IV and CAARS
Follow‐up: post intervention
(1‐10 weeks)

Mean clinician‐rated ADHD symptom severity score in the intervention groups was 1.06 standard deviations lower (1.26 lower to 0.85 lower)

896
(7 studies)

⊕⊕⊝⊝
Lowc,e,f,g

An SMD of 1.06 can be considered a large effect size.

ADHD symptom severity: patient rated
Assessed with CAARS
Follow‐up: post intervention
(1‐4 weeks)

Mean patient‐rated ADHD symptom severity score in the intervention groups was 0.33 standard deviations lower (0.65 lower to 0.01 lower)

67
(3 studies)

⊕⊕⊝⊝
Lowc,d,h

An SMD of 0.33 can be considered a medium effect size.

Mixed amphetamine salts

ADHD symptom severity: clinician rated
Assessed with ADHD‐RS‐IV and AISRS
Follow‐up: post intervention
(3‐13 weeks)

Mean clinician‐rated ADHD symptom severity score in the intervention groups was 0.80 standard deviations lower (0.93 lower to 0.66 lower)

1083
(5 studies)

⊕⊕⊝⊝
Lowc,e

An SMD of 0.8 can be considered a small effect size.

ADHD symptom severity: patient rated
Assessed with CAARS
Follow‐up: post intervention

(mean 1 week)

Mean patient‐rated ADHD symptom severity score in the intervention groups was 0.45 standard deviations lower (1.02 lower to 0.12 higher)

18
(1 study)

⊕⊝⊝⊝
Very lowb,c,h

An SMD of 0.45 can be considered a medium effect size.

All amphetamines

Retention in treatment

Assessed with the proportion of randomised participants that completed the study
Follow‐up: post intervention
(1‐20 weeks)

Study population

RR 1.06
(0.99 to 1.13)

2323
(17 studies)

⊕⊕⊝⊝
Lowa,i

708 per 1000

750 per 1000
(701 to 800)

Moderate

800 per 1000

848 per 1000
(792 to 904)

*The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).
ADHD: attention deficit hyperactivity disorder; ADHD‐RS‐IV: Attention Deficit Hyperactivity Disorder Rating Scale, Fourth Version; AISRS: Adult Attention Deficity Hyperactivity Disorder Investigator Rating Scale; CAARS: Conners' Adult Attention Deficit Hyperactivity Disorder Rating Scales;CI: confidence interval; DSM‐IV:Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition;SMD: standardised mean difference.

GRADE Working Group grades of evidence.
High quality: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate quality: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low quality: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low quality: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aThe certainty of the evidence was downgraded by one level owing to unclear risk of detection and performance bias because it is unclear whether blinding can be achieved in placebo‐controlled studies given the powerful behavioural effects of amphetamines.
bThe certainty of the evidence was downgraded by two levels owing to imprecision because the 95% CI is wide, indicating that the intervention effect for this outcome can range from a small, worsening effect to a large benefit.
cThe statistical power to detect publication bias for this comparison in this review is low.
dThe certainty of the evidence was downgraded by one level owing to imprecision because the 95% CI is rather wide, indicating that the intervention effect for this outcome can range from a moderate to a large benefit.
eThe certainty of the evidence was downgraded by two levels owing to unclear risk of detection and performance bias (it is unclear whether blinding can be achieved in placebo‐controlled studies given the powerful behavioural effects of amphetamines), high risk of attrition bias (large proportion of participants discontinued treatment or differences between study groups in discontinuation rates), and high risk of other bias (such as the possibility of carry‐over effect in cross‐over studies without a washout phase).
fThe certainty of the evidence was downgraded by one level owing to moderate statistical heterogeneity.
gThe certainty of the evidence was upgraded by one level because a large and precise effect size was observed.
hThe certainty of the evidence was downgraded by one level owing to unclear risk of detection and performance bias (it is unclear whether blinding can be achieved in placebo‐controlled studies given the powerful behavioural effects of amphetamines) and high risk of other bias (such as the possibility of carry‐over effect in cross‐over studies without a washout phase).
iThe certainty of the evidence was downgraded by one level owing to inconsistency (this comparison includes three different types of amphetamines at a wide range of doses, and the analysis showed moderate heterogeneity).

Figuras y tablas -
Summary of findings for the main comparison. Amphetamines versus placebo for attention deficit hyperactivity disorder (ADHD) in adults
Table 1. Participants' baseline characteristics

Characteristic

Descriptive statistics

N studies (N patients)

Gender: male

N = 1435 (57.2%)

19 (2507)

Age

Mean = 35.3 (range = 20.2 to 41.2) years

19 (2507)

Race: Caucasian

N = 2006 (84.5%)

15 (2373)

Combined ADHD

N = 1341 (78.8%)

11 (1701)

Predominantly inattentive ADHD

N = 344 (20.2%)

Predominantly hyperactive/impulsive ADHD

N = 28 (1.6%)

Comorbid SUD as inclusion criterion

N = 158 (6.3%)

19 (2507)

Comorbid depressive disorders as inclusion criteria

N = 0

19 (2507)

Comorbid anxiety disorders as inclusion criteria

N = 0

19 (2507)

Treated previously with stimulants

N = 306 (41.1%)

8 (744)

ADHD: attention deficit hyperactivity disorder.
N: number.
SUD: substance use disorder.

Figuras y tablas -
Table 1. Participants' baseline characteristics
Comparison 1. Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician‐rated Show forest plot

13

Std. Mean Difference (Random, 95% CI)

‐0.90 [‐1.04, ‐0.75]

2 ADHD symptom severity: patient‐rated Show forest plot

6

Std. Mean Difference (Random, 95% CI)

‐0.51 [‐0.75, ‐0.28]

3 Clinical impression of severity at study end Show forest plot

2

78

Std. Mean Difference (IV, Random, 95% CI)

‐1.09 [‐1.57, ‐0.61]

4 Clinical impression of improvement at study end Show forest plot

1

263

Std. Mean Difference (IV, Random, 95% CI)

‐0.75 [‐1.01, ‐0.48]

5 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms Show forest plot

2

381

Risk Ratio (M‐H, Random, 95% CI)

1.52 [1.19, 1.95]

6 Proportion of participants achieving a CGI‐Improvement score of 1 or 2 Show forest plot

8

1707

Risk Ratio (M‐H, Random, 95% CI)

2.47 [2.10, 2.90]

7 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms and a CGI‐Improvement score of 1 or 2 Show forest plot

1

61

Risk Ratio (M‐H, Random, 95% CI)

2.54 [1.34, 4.82]

8 Global functioning Show forest plot

2

110

Std. Mean Difference (IV, Random, 95% CI)

0.54 [‐0.34, 1.42]

9 Depressive symptoms Show forest plot

2

110

Std. Mean Difference (IV, Random, 95% CI)

0.16 [‐0.22, 0.53]

10 Anxiety symptoms Show forest plot

2

110

Std. Mean Difference (IV, Random, 95% CI)

0.13 [‐0.24, 0.51]

11 Retention in treatment Show forest plot

17

2323

Risk Ratio (M‐H, Random, 95% CI)

1.06 [0.99, 1.13]

11.1 Dexamphetamine

1

49

Risk Ratio (M‐H, Random, 95% CI)

0.79 [0.54, 1.17]

11.2 Lisdexamfetamine

8

873

Risk Ratio (M‐H, Random, 95% CI)

1.01 [0.94, 1.08]

11.3 Mixed amphetamine salts

8

1401

Risk Ratio (M‐H, Random, 95% CI)

1.14 [1.02, 1.28]

12 Proportion of participants withdrawn owing to any cardiovascular adverse event Show forest plot

3

699

Risk Ratio (M‐H, Random, 95% CI)

2.18 [0.39, 12.04]

13 Proportion of participants withdrawn owing to any adverse event Show forest plot

17

2409

Risk Ratio (M‐H, Random, 95% CI)

2.69 [1.64, 4.42]

13.1 Dexamphetamine

1

49

Risk Ratio (M‐H, Random, 95% CI)

1.70 [0.31, 9.27]

13.2 Lisdexamfetamine

9

989

Risk Ratio (M‐H, Random, 95% CI)

1.79 [0.72, 4.42]

13.3 Mixed amphetamine salts

7

1371

Risk Ratio (M‐H, Random, 95% CI)

3.50 [1.86, 6.59]

Figuras y tablas -
Comparison 1. Amphetamines vs placebo for adult attention deficit hyperactivity disorder (ADHD) in adults
Comparison 2. Subgroup analysis 1: comorbidity

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician‐rated Show forest plot

13

Std. Mean Difference (Random, 95% CI)

‐0.90 [‐1.04, ‐0.75]

1.1 With comorbidity

2

Std. Mean Difference (Random, 95% CI)

‐0.76 [‐1.11, ‐0.41]

1.2 Without comorbidity

11

Std. Mean Difference (Random, 95% CI)

‐0.91 [‐1.07, ‐0.76]

2 ADHD symptom severity: patient‐rated Show forest plot

6

Std. Mean Difference (Random, 95% CI)

‐0.51 [‐0.75, ‐0.28]

2.1 With comorbidity

1

Std. Mean Difference (Random, 95% CI)

‐0.66 [‐1.44, 0.12]

2.2 Without comorbidity

5

Std. Mean Difference (Random, 95% CI)

‐0.50 [‐0.77, ‐0.23]

3 Retention in treatment Show forest plot

17

2323

Risk Ratio (M‐H, Random, 95% CI)

1.06 [0.99, 1.13]

3.1 With comorbidity

2

158

Risk Ratio (M‐H, Random, 95% CI)

1.01 [0.77, 1.33]

3.2 Without comorbidity

15

2165

Risk Ratio (M‐H, Random, 95% CI)

1.07 [0.99, 1.15]

4 Proportion of patients withdrawn owing to any adverse event Show forest plot

17

2409

Risk Ratio (M‐H, Random, 95% CI)

2.69 [1.64, 4.42]

4.1 With comorbidity

2

158

Risk Ratio (M‐H, Random, 95% CI)

2.67 [0.12, 60.93]

4.2 Without comorbidity

15

2251

Risk Ratio (M‐H, Random, 95% CI)

2.69 [1.63, 4.45]

Figuras y tablas -
Comparison 2. Subgroup analysis 1: comorbidity
Comparison 3. Subgroup analysis 2: type of amphetamine

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician‐rated Show forest plot

13

Std. Mean Difference (Random, 95% CI)

‐0.90 [‐1.04, ‐0.75]

1.1 Dexamphetamine

1

Std. Mean Difference (Random, 95% CI)

‐0.24 [‐0.80, 0.32]

1.2 Lisdexamfetamine

7

Std. Mean Difference (Random, 95% CI)

‐1.06 [‐1.26, ‐0.85]

1.3 Mixed amphetamine salts

5

Std. Mean Difference (Random, 95% CI)

‐0.80 [‐0.93, ‐0.66]

2 ADHD symptom severity: patient‐rated Show forest plot

6

Std. Mean Difference (Random, 95% CI)

‐0.51 [‐0.75, ‐0.28]

2.1 Dexamphetamine

2

Std. Mean Difference (Random, 95% CI)

‐0.77 [‐1.14, ‐0.40]

2.2 Lisdexamfetamine

3

Std. Mean Difference (Random, 95% CI)

‐0.33 [‐0.65, ‐0.01]

2.3 Mixed amphetamine salts

1

Std. Mean Difference (Random, 95% CI)

‐0.45 [‐1.02, 0.12]

3 Retention in treatment Show forest plot

17

2323

Risk Ratio (M‐H, Random, 95% CI)

1.06 [0.99, 1.13]

3.1 Dexamphetamine

1

49

Risk Ratio (M‐H, Random, 95% CI)

0.79 [0.54, 1.17]

3.2 Lisdexamfetamine

8

873

Risk Ratio (M‐H, Random, 95% CI)

1.01 [0.94, 1.08]

3.3 Mixed amphetamine salts

8

1401

Risk Ratio (M‐H, Random, 95% CI)

1.14 [1.02, 1.28]

4 Proportion of participants withdrawn owing to any adverse event Show forest plot

17

2409

Risk Ratio (M‐H, Random, 95% CI)

2.69 [1.64, 4.42]

4.1 Dexamphetamine

1

49

Risk Ratio (M‐H, Random, 95% CI)

1.70 [0.31, 9.27]

4.2 Lisdexamfetamine

9

989

Risk Ratio (M‐H, Random, 95% CI)

1.79 [0.72, 4.42]

4.3 Mixed amphetamine salts

7

1371

Risk Ratio (M‐H, Random, 95% CI)

3.50 [1.86, 6.59]

Figuras y tablas -
Comparison 3. Subgroup analysis 2: type of amphetamine
Comparison 4. Subgroup analysis 3: dose of dexamphetamine

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: patient rated Show forest plot

2

Std. Mean Difference (Random, 95% CI)

‐0.77 [‐1.14, ‐0.40]

1.1 Lower dose

1

Std. Mean Difference (Random, 95% CI)

‐0.55 [‐1.10, ‐0.00]

1.2 Higher dose

1

Std. Mean Difference (Random, 95% CI)

‐0.93 [‐1.40, ‐0.46]

Figuras y tablas -
Comparison 4. Subgroup analysis 3: dose of dexamphetamine
Comparison 5. Subgroup analysis 3: dose of lisdexamfetamine

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician rated Show forest plot

6

Std. Mean Difference (Random, 95% CI)

‐1.02 [‐1.22, ‐0.82]

1.1 Lower dose

2

Std. Mean Difference (Random, 95% CI)

‐0.98 [‐1.41, ‐0.55]

1.2 Higher dose

5

Std. Mean Difference (Random, 95% CI)

‐1.04 [‐1.31, ‐0.78]

2 ADHD symptom severity: patient rated Show forest plot

3

Std. Mean Difference (Random, 95% CI)

‐0.35 [‐0.61, ‐0.10]

2.1 Lower dose

1

Std. Mean Difference (Random, 95% CI)

‐0.33 [‐0.78, 0.12]

2.2 Higher dose

3

Std. Mean Difference (Random, 95% CI)

‐0.36 [‐0.67, ‐0.05]

3 Retention in treatment Show forest plot

5

712

Risk Ratio (M‐H, Random, 95% CI)

1.00 [0.93, 1.08]

3.1 Lower dose

2

322

Risk Ratio (M‐H, Random, 95% CI)

1.01 [0.89, 1.14]

3.2 Higher dose

4

390

Risk Ratio (M‐H, Random, 95% CI)

1.01 [0.89, 1.14]

4 Proportion of participants withdrawn owing to any adverse event Show forest plot

6

828

Risk Ratio (M‐H, Random, 95% CI)

2.72 [1.09, 6.75]

4.1 Lower dose

3

335

Risk Ratio (M‐H, Random, 95% CI)

2.98 [0.56, 15.72]

4.2 Higher dose

4

493

Risk Ratio (M‐H, Random, 95% CI)

2.61 [0.88, 7.75]

Figuras y tablas -
Comparison 5. Subgroup analysis 3: dose of lisdexamfetamine
Comparison 6. Subgroup analysis 3: dose of mixed amphetamine salts

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician rated Show forest plot

5

Std. Mean Difference (Random, 95% CI)

‐0.81 [‐0.94, ‐0.69]

1.1 Lower dose

3

Std. Mean Difference (Random, 95% CI)

‐0.78 [‐0.94, ‐0.63]

1.2 Higher dose

3

Std. Mean Difference (Random, 95% CI)

‐0.86 [‐1.06, ‐0.66]

2 Retention in treatment Show forest plot

8

1569

Risk Ratio (M‐H, Random, 95% CI)

1.16 [1.05, 1.28]

2.1 Lower dose (50 mg/d)

5

962

Risk Ratio (M‐H, Random, 95% CI)

1.13 [0.96, 1.32]

2.2 Higher dose (50 mg/d)

5

607

Risk Ratio (M‐H, Random, 95% CI)

1.21 [1.09, 1.35]

3 Proportion of participants withdrawn owing to any adverse event Show forest plot

7

1539

Risk Ratio (M‐H, Random, 95% CI)

3.73 [2.16, 6.44]

3.1 Lower dose

5

962

Risk Ratio (M‐H, Random, 95% CI)

3.59 [1.84, 7.00]

3.2 Higher dose

4

577

Risk Ratio (M‐H, Random, 95% CI)

4.03 [1.56, 10.42]

Figuras y tablas -
Comparison 6. Subgroup analysis 3: dose of mixed amphetamine salts
Comparison 7. Subgroup analysis 4: type of drug‐release formulation

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician rated Show forest plot

13

Std. Mean Difference (Random, 95% CI)

‐0.90 [‐1.04, ‐0.75]

1.1 Immediate‐release formulations

1

Std. Mean Difference (Random, 95% CI)

‐0.91 [‐1.38, ‐0.44]

1.2 Sustained‐release formulations

12

Std. Mean Difference (Random, 95% CI)

‐0.90 [‐1.05, ‐0.74]

2 ADHD symptom severity: patient rated Show forest plot

6

Std. Mean Difference (Random, 95% CI)

‐0.51 [‐0.75, ‐0.27]

2.1 Immediate‐release formulations

3

Std. Mean Difference (Random, 95% CI)

‐0.67 [‐0.98, ‐0.37]

2.2 Sustained‐release formulations

3

Std. Mean Difference (Random, 95% CI)

‐0.33 [‐0.65, ‐0.01]

3 Retention in treatment Show forest plot

17

2323

Risk Ratio (M‐H, Random, 95% CI)

1.06 [0.99, 1.13]

3.1 Immediate‐release formulations

2

41

Risk Ratio (M‐H, Random, 95% CI)

1.13 [0.91, 1.40]

3.2 Sustained‐release formulations

15

2282

Risk Ratio (M‐H, Random, 95% CI)

1.06 [0.98, 1.13]

Figuras y tablas -
Comparison 7. Subgroup analysis 4: type of drug‐release formulation
Comparison 8. Sensitivity analysis: incomplete subjective outcome data

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician rated Show forest plot

1

Std. Mean Difference (Random, 95% CI)

Totals not selected

2 ADHD symptom severity: patient rated Show forest plot

2

Std. Mean Difference (Random, 95% CI)

‐0.77 [‐1.14, ‐0.40]

Figuras y tablas -
Comparison 8. Sensitivity analysis: incomplete subjective outcome data
Comparison 9. Sensitivity analysis: other potential sources of bias

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician rated Show forest plot

9

Std. Mean Difference (Random, 95% CI)

‐0.84 [‐1.02, ‐0.66]

2 ADHD symptom severity: patient rated Show forest plot

3

Std. Mean Difference (Random, 95% CI)

‐0.75 [‐1.07, ‐0.43]

3 Retention in treatment Show forest plot

9

1661

Risk Ratio (M‐H, Random, 95% CI)

1.04 [0.96, 1.13]

Figuras y tablas -
Comparison 9. Sensitivity analysis: other potential sources of bias
Comparison 10. Sensitivity analysis: fixed‐effect model

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician‐rated Show forest plot

13

Std. Mean Difference (Fixed, 95% CI)

‐0.89 [‐0.98, ‐0.79]

1.1 Dexamphetamine

1

Std. Mean Difference (Fixed, 95% CI)

‐0.24 [‐0.80, 0.32]

1.2 Lisdexamfetamine

7

Std. Mean Difference (Fixed, 95% CI)

‐1.04 [‐1.19, ‐0.90]

1.3 Mixed amphetamine salts

5

Std. Mean Difference (Fixed, 95% CI)

‐0.80 [‐0.93, ‐0.66]

2 ADHD symptom severity: patient‐rated Show forest plot

6

Std. Mean Difference (Fixed, 95% CI)

‐0.51 [‐0.73, ‐0.29]

2.1 Dexamphetamine

2

Std. Mean Difference (Fixed, 95% CI)

‐0.77 [‐1.13, ‐0.41]

2.2 Lisdexamfetamine

3

Std. Mean Difference (Fixed, 95% CI)

‐0.33 [‐0.65, ‐0.01]

2.3 Mixed amphetamine salts

1

Std. Mean Difference (Fixed, 95% CI)

‐0.45 [‐1.02, 0.12]

3 Clinical impression of severity at study end Show forest plot

2

78

Std. Mean Difference (IV, Fixed, 95% CI)

‐1.09 [‐1.57, ‐0.61]

4 Clinical impression of improvement at study end Show forest plot

1

263

Std. Mean Difference (IV, Fixed, 95% CI)

‐0.75 [‐1.01, ‐0.48]

5 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms Show forest plot

2

381

Risk Ratio (M‐H, Fixed, 95% CI)

1.52 [1.18, 1.95]

6 Proportion of participants achieving a CGI‐Improvement score of 1 or 2 Show forest plot

8

1707

Risk Ratio (M‐H, Fixed, 95% CI)

2.52 [2.14, 2.97]

7 Proportion of participants achieving a reduction ≥ 30% in severity of ADHD symptoms and a CGI‐Improvement score of 1 or 2 Show forest plot

1

61

Risk Ratio (M‐H, Fixed, 95% CI)

2.54 [1.34, 4.82]

8 Global functioning Show forest plot

2

110

Std. Mean Difference (IV, Fixed, 95% CI)

0.56 [0.17, 0.95]

9 Depressive symptoms Show forest plot

2

110

Std. Mean Difference (IV, Fixed, 95% CI)

0.16 [‐0.22, 0.53]

10 Anxiety symptoms Show forest plot

2

110

Std. Mean Difference (IV, Fixed, 95% CI)

0.13 [‐0.24, 0.51]

11 Retention in treatment Show forest plot

17

2323

Risk Ratio (M‐H, Fixed, 95% CI)

1.10 [1.04, 1.16]

11.1 Dexamphetamine

1

49

Risk Ratio (M‐H, Fixed, 95% CI)

0.79 [0.54, 1.17]

11.2 Lisdexamfetamine

8

873

Risk Ratio (M‐H, Fixed, 95% CI)

1.03 [0.96, 1.11]

11.3 Mixed amphetamine salts

8

1401

Risk Ratio (M‐H, Fixed, 95% CI)

1.15 [1.07, 1.24]

12 Proportion of participants withdrawn owing to any cardiovascular adverse event Show forest plot

2

675

Risk Ratio (M‐H, Fixed, 95% CI)

2.51 [0.32, 19.54]

13 Proportion of participants withdrawn owing to any adverse event Show forest plot

17

2409

Risk Ratio (M‐H, Fixed, 95% CI)

2.99 [1.86, 4.83]

13.1 Dexamphetamine

1

49

Risk Ratio (M‐H, Fixed, 95% CI)

1.70 [0.31, 9.27]

13.2 Lisdexamfetamine

9

989

Risk Ratio (M‐H, Fixed, 95% CI)

1.77 [0.78, 4.02]

13.3 Mixed amphetamine salts

7

1371

Risk Ratio (M‐H, Fixed, 95% CI)

4.05 [2.14, 7.67]

Figuras y tablas -
Comparison 10. Sensitivity analysis: fixed‐effect model
Comparison 11. Post hoc sensitivity analysis 1: calculation of effect sizes using correlation coefficient from Taylor 2000

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician rated Show forest plot

13

Std. Mean Difference (Random, 95% CI)

‐0.90 [‐1.05, ‐0.76]

2 ADHD symptom severity: patient rated Show forest plot

6

Std. Mean Difference (Random, 95% CI)

‐0.47 [‐0.69, ‐0.25]

Figuras y tablas -
Comparison 11. Post hoc sensitivity analysis 1: calculation of effect sizes using correlation coefficient from Taylor 2000
Comparison 12. Post hoc sensitivity analysis 2: pooled risk difference for proportion of participants withdrawn owing to cardiovascular adverse events and any adverse event

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Proportion of participants withdrawn owing to any cardiovascular adverse event Show forest plot

3

699

Risk Difference (M‐H, Random, 95% CI)

0.02 [‐0.00, 0.04]

2 Proportion of participants withdrawn owing to any adverse event Show forest plot

17

2409

Risk Difference (M‐H, Random, 95% CI)

0.04 [0.01, 0.06]

2.1 Dexamphetamine

1

49

Risk Difference (M‐H, Random, 95% CI)

0.05 [‐0.12, 0.23]

2.2 Lisdexamfetamine

9

989

Risk Difference (M‐H, Random, 95% CI)

0.01 [‐0.02, 0.04]

2.3 Mixed amphetamine salts

7

1371

Risk Difference (M‐H, Random, 95% CI)

0.06 [0.02, 0.10]

Figuras y tablas -
Comparison 12. Post hoc sensitivity analysis 2: pooled risk difference for proportion of participants withdrawn owing to cardiovascular adverse events and any adverse event
Comparison 13. Post hoc sensitivity analysis 3: exclusion of cross‐over study

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician rated Show forest plot

12

Std. Mean Difference (Random, 95% CI)

‐0.90 [‐1.05, ‐0.74]

Figuras y tablas -
Comparison 13. Post hoc sensitivity analysis 3: exclusion of cross‐over study
Comparison 14. Amphetamines vs guanfacine for adult attention deficit hyperactivity disorder (ADHD) in adults

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: patient rated Show forest plot

1

Std. Mean Difference (Random, 95% CI)

Totals not selected

Figuras y tablas -
Comparison 14. Amphetamines vs guanfacine for adult attention deficit hyperactivity disorder (ADHD) in adults
Comparison 15. Amphetamines vs modafinil for adult attention deficit hyperactivity disorder (ADHD) in adults

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: patient rated Show forest plot

1

Std. Mean Difference (Random, 95% CI)

Totals not selected

Figuras y tablas -
Comparison 15. Amphetamines vs modafinil for adult attention deficit hyperactivity disorder (ADHD) in adults
Comparison 16. Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 ADHD symptom severity: clinician rated Show forest plot

1

Std. Mean Difference (IV, Random, 95% CI)

Totals not selected

2 Proportion of participants achieving a CGI‐Improvement score of 1 or 2 Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

3 Global functioning Show forest plot

1

Std. Mean Difference (IV, Random, 95% CI)

Totals not selected

4 Depressive symptoms Show forest plot

1

Std. Mean Difference (IV, Random, 95% CI)

Totals not selected

5 Anxiety symptoms Show forest plot

1

Std. Mean Difference (IV, Random, 95% CI)

Totals not selected

6 Retention in treatment Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

7 Proportion of participants withdrawn owing to any adverse event Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

Figuras y tablas -
Comparison 16. Amphetamines vs paroxetine for adult attention deficit hyperactivity disorder (ADHD) in adults