Scolaris Content Display Scolaris Content Display

Cirugía de descompresión subacromial para la enfermedad del manguito rotador

Contraer todo Desplegar todo

Antecedentes

La cirugía para la enfermedad del manguito rotador se utiliza por lo general después del fracaso de las intervenciones no quirúrgicas, aunque esta revisión Cochrane, publicada por primera vez en 2007, encontró que hubo un efecto clínico beneficioso poco claro después de la cirugía de descompresión subacromial.

Objetivos

Resumir la evidencia disponible de los efectos beneficiosos y perjudiciales de la cirugía de descompresión subacromial en comparación con placebo, ninguna intervención o intervenciones no quirúrgicas en pacientes con enfermedad del manguito rotador (con exclusión de los desgarros totales del manguito rotador).

Métodos de búsqueda

Se realizaron búsquedas en CENTRAL, MEDLINE, Embase, Clinicaltrials.gov y en el registro OMS ICRTP desde 2006 hasta el 22 de octubre de 2018, sin restricciones de idioma.

Criterios de selección

Se incluyeron ensayos controlados aleatorios (ECA) y cuasialeatorios en adultos con enfermedad del manguito rotador (con la exclusión de los desgarros totales), que compararon la cirugía de descompresión subacromial con placebo, ningún tratamiento u otras intervenciones no quirúrgicas. Como es menos proclive al sesgo, la comparación primaria fue la descompresión subacromial comparada con placebo. Otras comparaciones fueron la descompresión subacromial versus ejercicios o tratamiento no quirúrgico. Los resultados principales fueron las puntuaciones medias del dolor, la funcionalidad del hombro, la calidad de vida, la evaluación global del éxito por el participante, los eventos adversos y los eventos adversos graves. La variable de evaluación primaria para esta revisión fue un año. Para los eventos adversos graves también se incluyeron datos de los estudios de cohortes prospectivos diseñados para registrar los efectos perjudiciales que evaluaron la cirugía de descompresión subacromial o la artroscopia del hombro.

Obtención y análisis de los datos

Se utilizaron los procedimientos metodológicos estándar previstos por la Colaboración Cochrane.

Resultados principales

Se incluyeron ocho ensayos con un total de 1062 participantes con enfermedad del manguito rotador asignados al azar, todos con pinzamiento subacromial. Dos ensayos (506 participantes) compararon la descompresión subacromial artroscópica con artroscopia sola (cirugía placebo), y todos los grupos realizaron ejercicios posoperatorios. Dichos ensayos incluyeron un tercer grupo de tratamiento: ningún tratamiento (monitorización activa) en uno y ejercicios en el otro. Seis ensayos (556 participantes) compararon la descompresión subacromial artroscópica seguida de ejercicios con ejercicios solos. Dos de estos ensayos incluyeron un tercer brazo: láser simulado en uno y descompresión subacromial abierta en el otro.

El tamaño de los ensayos varió de 42 a 313 participantes. La media de edad de los participantes varió entre 42 y 65 años. Sólo dos ensayos informaron la duración media de los síntomas (18 a 22 meses en un ensayo y 30 a 31 meses en el otro), dos no informaron la duración y cuatro la informaron como variable categórica.

Ambos ensayos controlados con placebo tuvieron bajo riesgo de sesgo para la comparación cirugía versus cirugía placebo. Los otros ensayos tuvieron alto riesgo de sesgo en varios criterios, particularmente el riesgo de sesgo de realización o de detección debido a la falta de cegamiento de los participantes y el personal. La presentación de los resultados de los efectos beneficiosos en el Resumen se limitó a los ensayos controlados con placebo.

En comparación con placebo, evidencia de certeza alta indica que la descompresión subacromial no proporciona mejoría en el dolor, la funcionalidad del hombro o la calidad de vida relacionada con la salud hasta un año y probablemente ninguna mejoría en el éxito global (evidencia de certeza moderada, disminuida debido a la imprecisión).

Al año, el dolor medio (en una escala de cero a 10, puntuaciones mayores indican más dolor) fue 2,9 puntos mejor después de la cirugía placebo y 0,26 puntos (0,84 mejor a 0,33 peor) mejor después de la descompresión subacromial, (284 participantes), una diferencia absoluta del 3% (8% mejor a 3% peor) y una diferencia relativa del 4% (12% mejor a 5% peor). Al año, la funcionalidad media (en una escala de 0 a 100, una puntuación mayor indica un mejor resultado), fue 69 puntos mejor después de la cirugía placebo y 2,8 puntos mejor (1,4 peor a 6,9 mejor) después de la cirugía (274 participantes), una diferencia absoluta del 3% (7% mejor a 1% peor) y una diferencia relativa del 9% (22% mejor a 4% peor). La tasa de éxito global fue 97/148 (o 655 por 1000) después de placebo y 101/142 (o 708 por 1000) después de cirugía, lo que corresponde con un CR 1,08 (IC del 95%: 0,93 a 1,27). La calidad de vida relacionada con la salud fue 0,73 unidades peor (European Quality of Life EQ‐5D, ‐0,59 a 1; la puntuación mayor indica mejor calidad de vida) después de placebo y 0,03 unidades peor (0,011 unidades peor a 0,06 unidades mejor) después de la descompresión subacromial (285 participantes), una diferencia absoluta del 1,3% (5% peor a 2,5% mejor) y una diferencia relativa del 4% (15% peor a 7% mejor).

Los eventos adversos que incluyeron hombro congelado o complicaciones menores transitorias de la cirugía se informaron en aproximadamente el 3% de los participantes en los grupos de tratamiento de dos ensayos controlados aleatorios, pero debido a las tasas bajas de eventos no existe seguridad sobre si los riesgos difieren entre los grupos: 5/165 (37 por 1000) informaron de eventos adversos con la descompresión subacromial y 9/241 (34 por 1000) con placebo o tratamiento no quirúrgico, CR 0,91 (IC del 95%: 0,31 a 2,65) (evidencia de certeza moderada, disminuida debido a la imprecisión). Los ensayos no informaron de eventos adversos graves.

Sobre la base de evidencia de certeza moderada de dos ensayos observacionales del mismo registro de cirugía prospectivo, que también incluyó otros procedimientos artroscópicos del hombro (la certeza se disminuyó debido a falta de direccionalidad), la proporción de la incidencia de eventos adversos graves 30 días después de la cirugía fue del 0,5% (0,4% a 0,7%; datos obtenidos en 2006 a 2011), o del 0,6% (0,5% a 0,7%; datos obtenidos en 2011 a 2013). Se han observado eventos adversos graves como infección profunda, embolia pulmonar, lesión nerviosa y muerte en los participantes después de la cirugía del hombro.

Conclusiones de los autores

Los datos de esta revisión no apoyan el uso de la descompresión subacromial en el tratamiento de la enfermedad del manguito rotador que se manifiesta como pinzamiento doloroso del hombro. Evidencia de certeza alta indica que la descompresión subacromial no proporciona efectos beneficiosos clínicamente importantes sobre placebo en cuanto al dolor, la funcionalidad o la calidad de vida relacionada con la salud. La inclusión de los resultados de los ensayos abiertos (con alto riesgo de sesgo) no cambió las estimaciones de manera considerable. Debido a la imprecisión, la certeza de la evidencia se disminuyó a moderada para la evaluación global del éxito del tratamiento; es probable que no se hayan encontrado efectos beneficiosos clínicamente importantes sobre este resultado o en comparación con placebo, ejercicios o el tratamiento no quirúrgico.

Las tasas de eventos adversos fueron bajas, 3% o menos en los grupos de tratamiento de los ensayos, que es compatible con las tasas de eventos adversos informadas en los dos estudios observacionales. Aunque no se conocen las estimaciones precisas, el riesgo de eventos adversos graves probablemente es menor del 1%.

PICO

Population
Intervention
Comparison
Outcome

El uso y la enseñanza del modelo PICO están muy extendidos en el ámbito de la atención sanitaria basada en la evidencia para formular preguntas y estrategias de búsqueda y para caracterizar estudios o metanálisis clínicos. PICO son las siglas en inglés de cuatro posibles componentes de una pregunta de investigación: paciente, población o problema; intervención; comparación; desenlace (outcome).

Para saber más sobre el uso del modelo PICO, puede consultar el Manual Cochrane.

Cirugía para la enfermedad del manguito rotador

Antecedentes

El manguito rotador es un grupo de tendones que mantiene la articulación del hombro en su lugar y permite a las personas levantar el brazo y elevarlo hasta arriba de la cabeza. Algunos individuos pueden presentar dolor de hombro relacionado con el desgaste del manguito rotador. También puede haber inflamación de los tendones del hombro o la bolsa (otra parte del hombro que ayuda en el movimiento) y presión sobre los tendones ejercida por el hueso suprayacente al levantar el brazo hacia arriba (pinzamiento). A menudo el dolor empeora por dormir sobre el hombro afectado y al mover el hombro en ciertas direcciones.

La cirugía en el manguito rotador puede incluir la eliminación de parte del hueso para quitar la presión de los tendones del manguito rotador (acromioplastia), la eliminación de cualquier bolsa hinchada o inflamada (la bolsa pequeña de líquido que amortigua la articulación del hombro) y la retirada de cualquier tejido o hueso lesionado para ensanchar el espacio por donde pasan los tendones (descompresión subacromial). La mayoría de las cirugías del manguito rotador ahora se realizan mediante artroscopia (los instrumentos quirúrgicos se insertan a través de una incisión u orificio pequeño para realizar la cirugía).

Características de los estudios

Esta revisión Cochrane está actualizada hasta el 22 de octubre de 2018. Los ensayos se realizaron en hospitales de Dinamarca, Finlandia, Alemania, Noruega, Suecia y el Reino Unido. Se incluyeron ocho ensayos (1062 participantes), que compararon la cirugía con cirugía placebo (falsa) u otro tratamiento no quirúrgico, como el ejercicio en pacientes con pinzamiento de los tendones del manguito rotador del hombro.

La cantidad de participantes varió de 42 a 313; la media de edad de 42 a 65 años y la duración del seguimiento desde un año hasta 12 a 13 años. Cinco ensayos no lograron informar sobre las fuentes de financiamiento, tres recibieron financiamiento de fundaciones no comerciales y el autor de un ensayo recibió financiamiento de una empresa de instrumental.

Resultados clave

Dos ensayos (506 participantes) cumplieron con los criterios de inclusión para la comparación principal, cirugía versus placebo. La descompresión subacromial tuvo pocos efectos beneficiosos en los pacientes al año de seguimiento.

Dolor (puntuaciones menores significan menos dolor):

mejoría del 3% (3% peor a 8% mejor), o 0,26 puntos en una escala de cero a 10

• Los pacientes sometidos a cirugía placebo calificaron el dolor en 2,9 puntos

• Los pacientes sometidos a cirugía calificaron el dolor en 2,6 puntos

Funcionalidad (0 a 100; las puntuaciones mayores significan mejor funcionalidad):

mejoría del 3% (1% peor a 7% mejor) o 3 puntos en una escala de cero a 100

• Los pacientes sometidos a cirugía placebo calificaron la funcionalidad en 69 puntos

• Los pacientes sometidos a cirugía calificaron la funcionalidad en 72 puntos

Éxito del tratamiento (mucho mejor o ningún problema en absoluto):

5% más pacientes calificaron el tratamiento como un éxito (5% menos a 16% más) o cinco pacientes más de 100

• 66 de 100 pacientes consideraron que el tratamiento fue exitoso después del procedimiento placebo

• 71 de 100 pacientes consideraron que el tratamiento fue exitoso después de la cirugía

Calidad de vida relacionada con la salud (puntuaciones más altas significan mejor calidad de vida):

empeoramiento del 2% (8% peor a 4% mejor) o 0,02 puntos en una escala de ‐0,59 a 1

• Los pacientes sometidos a cirugía placebo calificaron la calidad de vida con 0,73 puntos

• Los pacientes sometidos a cirugía calificaron la calidad de vida con 0,71 puntos

Eventos adversos

1% menos pacientes (4% menos a 3% más) presentaron eventos adversos con la cirugía

• cuatro de 100 pacientes informaron eventos adversos después de placebo

• tres de 100 pacientes informaron eventos adversos después de la cirugía

Eventos adversos graves

No se informaron eventos adversos en los ensayos. En los estudios observacionales la tasa de eventos adversos graves estuvo entre el 0,5% y el 0,6%.

• cinco o seis de 1000 pacientes presentaron un evento adverso grave después de la cirugía

Certeza de la evidencia

En pacientes con pinzamiento doloroso del hombro, evidencia de certeza alta indica que la cirugía de descompresión subacromial no mejora el dolor, la funcionalidad ni la calidad de vida relacionada con la salud en comparación con la cirugía placebo, y evidencia de certeza moderada (disminuida debido a la imprecisión) no muestra mejoría en la cantidad de pacientes que informaron el éxito del tratamiento. No existe seguridad sobre si la cirugía se asocia con más eventos adversos en comparación con ninguna cirugía.

Después de la cirugía del hombro pueden ocurrir eventos adversos graves que incluyen infección profunda, embolia pulmonar, lesión nerviosa y muerte. Aunque no se conocen las estimaciones precisas, el riesgo de eventos adversos graves probablemente es menor del 1% (evidencia de certeza moderada, disminuida debido a la imprecisión).

Conclusiones de los autores

disponible en

Implicaciones para la práctica

La síntesis de los datos de esta revisión no apoya el uso de la cirugía de descompresión subacromial en el tratamiento de la enfermedad del manguito rotador sintomática que se presenta con características de pinzamiento y sin desgarros del manguito rotador de espesor total. La descompresión subacromial no proporciona efectos beneficiosos clínicamente importantes en comparación con la cirugía placebo en lo que se refiere al dolor, la funcionalidad o la calidad de vida, lo que es probable que también se aplique a la evaluación global del participante del éxito del tratamiento. Aunque los eventos adversos asociados con la descompresión subacromial probablemente son leves, se han observado eventos adversos graves como trombosis venosa profunda, neumonía, daño nervioso periférico y muerte después de la cirugía artroscópica del hombro.

Los participantes de los ensayos presentaron dolor moderado y un deterioro notorio en la funcionalidad durante hasta un año, pero los síntomas parecieron mejorar durante los dos primeros años de seguimiento. Por lo tanto, a los pacientes con enfermedad del manguito rotador se les debe informar que la cirugía probablemente no mejorará los síntomas en comparación con los ejercicios; es posible que presenten dolor del hombro y deterioro de la funcionalidad con o sin cirugía, y es probable que mejoren lentamente con el transcurso del tiempo, independientemente del tratamiento.

Implicaciones para la investigación

Es poco probable que los estudios de investigación adicionales cambien las conclusiones de esta revisión. Sin embargo, debido a que hay un ensayo controlado con placebo todavía en curso (Paavola 2018), y en dos años se completará el seguimiento a los cinco años, se planifica actualizar esta revisión una vez que los resultados estén disponibles.

Si en el futuro se identifica una subpoblación definida con claridad que se pueda beneficiar con la cirugía, se deberá examinar en un ensayo controlado con placebo bien realizado.

Es poco probable que los ensayos adicionales que comparen la descompresión quirúrgica con ejercicios o ningún tratamiento cambien las conclusiones de esta revisión. Por lo tanto, es poco probable que en las actualizaciones futuras de la revisión se incluyan resultados de ensayos nuevos o en curso que comparen la descompresión subacromial con el ejercicio o ningún tratamiento.

Summary of findings

Open in table viewer
Summary of findings for the main comparison. Subacromial decompression compared to placebo surgery

Subacromial decompression compared to placebo surgery for people with impingement syndrome without full‐thickness rotator cuff tears

Patient or population: people with impingement syndrome without full‐thickness rotator cuff tears
Setting: hospitals in Finland and UK
Intervention: subacromial decompression
Comparison: placebo surgery (diagnostic arthroscopy)

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

№ of participants
(studies)

Certainty of the evidence
(GRADE)

Comments

Risk with placebo surgery

Risk with subacromial decompression

Paina
(scale from 0‐10, 0 is no pain)
Follow‐up: 1 year

The mean pain was 2.9 pointsb

The mean pain was 0.26 points better
(0.84 better to 0.33 worse)

284
(2 RCTs)

⊕⊕⊕⊕
High

Absolute difference 3% better (8% better to 3% worse); relative difference 4% better (12% better to 5% worse)c

Functional outcome

(Constant score from 0‐100, 100 is best)
Follow‐up: 1 year

The mean functional outcome was 69b

MD 2.76 higher
(1.36 lower to 6.87 higher)

274
(2 RCTs)

⊕⊕⊕⊕
High

Absolute difference 3% better (7% better to 1% worse); relative difference 9% better (22% better to 4% worse)c

Global assessment of treatment success

655 per 1000

708 per 1000
(610 to 832)

RR 1.08
(0.93 to 1.27)

290
(2 RCTs)

⊕⊕⊕⊝
Moderated

Absolute difference 5% more reported success (5% fewer to 16% more); relative difference 8% more reported success (7% fewer to 27% more)

Health‐related quality of life
(scale from −0.59 to 1, 1 is perfect health)
Follow‐up: 1 year

The mean health‐related quality of life was 0.73b

MD 0.03 lower
(0.11 lower to 0.06 higher)

285
(2 RCTs)

⊕⊕⊕⊕
High

SMD 0.09 worse (0.39 worse to 0.21 better)

Absolute difference 2% worse (7% worse to 4% better); relative difference 5% worse (20% worse to 11% better)c

Adverse events

37 per 1000

34 per 1000
(11 to 98)

RR 0.91
(0.31 to 2.65)

406
(2 RCTs)d

⊕⊕⊕⊝
Moderatee

Absolute difference of 1% fewer events with surgery (4% fewer to 3% more); relative difference 9% fewer events with surgery (69% fewer to 165% more)

Serious adverse events

No events

No events

No estimate

331
(2 RCTs)

⊕⊕⊕⊝
Moderatef

Although precise estimates are unknown, serious adverse event rates in observational studies are reported as less than 1%g

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; MD: mean difference; RR: risk ratio; SMD: standardised mean difference

GRADE Working Group grades of evidence
High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aPain measured with numeric rating scale (NRS) or visual analogue scale (VAS).
bMedian value in placebo groups after one‐year follow‐up.
cRelative changes calculated relative to baseline in control group (i.e. absolute change (mean difference) divided by mean at baseline in the placebo group from Paavola 2018 (values were: 7.23 points on 0 to 10‐point VAS pain; 31.7 points on 0 to 100‐point Constant score) and Beard 2018 (0.55 points on EQ‐5D quality‐of‐life scale). Absolute change calculated as mean difference divided by scale of the instrument, expressed as percentage.

dPooled both placebo and non‐operative (exercise or no treatment) comparisons from randomised controlled trials in the analysis of adverse events
eDowngraded due to imprecision (due to low event rates, or 95% confidence intervals that included both benefits and harms) in the randomised trials.

fDowngraded due to indirectness as arthroscopic procedures other than subacromial decompression were included in the surgery registry observational data
gSerious adverse events as reported in observational studies, 7 per 1000 (95% CI 6 to 8 per 1000) include: deep infection; pulmonary embolism; uncontrolled bleeding; myocardial infection; acute renal failure; ventilation more than 48 hours; cerebral vascular incident; septic shock; cardiac arrest; wound dehiscence; deep venous thrombosis; pneumonia; bleeding requiring transfusion; nerve injury; death; organ space infection.

Open in table viewer
Summary of findings 2. Subacromial decompression compared to exercises

Subacromial decompression compared to exercises for people with impingement syndrome without full‐thickness rotator cuff tears

Patient or population: people with impingement syndrome without full‐thickness rotator cuff tears
Setting: hospitals or home
Intervention: subacromial decompression
Comparison: exercises

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

№ of participants
(studies)

Certainty of the evidence
(GRADE)

Comments

Risk with exercise

Risk with subacromial decompression

Paina
(scale from: 0‐10, 0 is no pain)
Follow‐up: 1 year

The mean pain was 3.7 pointsb

MD 1.01 better
(1.6 better to 0.42 better)

316
(3 RCTs)

⊕⊕⊝⊝
Lowc

Absolute difference 10% better (4% better to 16% better); relative difference 14% better (6% better to 22% better)d

Functional outcomee

(scale from 0‐100, 100 is best)
Follow‐up: 1 year

The mean functional outcome was 58b

MD 3.24 better
(8.08 worse to 14.55 better)

259
(3 RCTs)

⊕⊕⊝⊝
Lowc

Absolute difference 3% better (8% worse to 15% better); relative difference 9% better (23% worse to 41% better)d

Global assessment of treatment success

598 per 1000

723 per 1000
(574 to 902)

RR 1.21
(0.96 to 1.51)

158
(2 RCTs)

⊕⊕⊝⊝
Lowc

Absolute difference 13% more reported success (2% fewer to 30% more); relative difference 21% more reported success (4% fewer to 51% more)

Health‐related quality of life

(15D; scale from: 0‐1, 1 is perfect health)
Follow‐up: 1 year

The mean health‐related quality of life was 0.91b

MD 0.01 better
(0.01 worse to 0.03 better)

116
(1 RCT)

⊕⊕⊝⊝
Lowc

Absolute difference 1% better (1% worse to 3% better); relative difference 1% better (1% worse to 3% better)d

Adverse events

37 per 1000

34 per 1000
(11 to 98)

RR 0.91
(0.31 to 2.65)

406
(2 RCTs)f

⊕⊕⊕⊝
Moderateg

Absolute difference of 1% fewer events with surgery (4% fewer to 3% more); relative difference 9% fewer events with surgery (69% fewer to 165% more)

Serious adverse events

No events

No events

Not estimable

⊕⊕⊕⊝
Moderateh

Although precise estimates are unknown, serious adverse events rates in observational studies are reported as less than 1%i

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; MD: mean difference; RR: risk ratio

GRADE Working Group grades of evidence
High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aPain measured with numeric rating scale (NRS) or visual analogue scale (VAS).
bMedian value in exercise groups at one‐year follow‐up.
cDowngraded due to risk of bias and imprecision.
dRelative changes calculated as mean difference divided by mean at baseline in the exercise group from Paavola 2018 (mean (standard deviation) values were: 7.24 (2.08) points on 0 to 10‐point VAS pain scale; 35.2 (16.2) points on 0 to 100‐point Constant score); and 0.88 (0.08) points on 0 to 1 scale in health‐related quality of life. Absolute difference calculated as mean difference divided by scale of the instrument, expressed as percentage.
eFunctional outcome measured with various measures (Constant score, Shoulder Disability Questionnaire, Subjective Shoulder Rating scale, or Neer score).

fPooled both placebo and non‐operative (exercise or no treatment) comparisons from randomised controlled trials in the analysis of adverse events

gDowngraded due to imprecision (due to low event rates) in the randomised trials
hDowngraded due to indirectness as arthroscopic procedures other than subacromial decompression were included in the surgery registry observational data.
iSerious adverse events as reported in observational studies, 7 per 1000 (95% CI 6 to 8 per 1000) include: deep infection; pulmonary embolism; uncontrolled bleeding; myocardial infection; acute renal failure; ventilation more than 48 hours; cerebral vascular incident; septic shock; cardiac arrest; wound dehiscence; deep venous thrombosis; pneumonia; bleeding requiring transfusion; nerve injury; death; organ space infection.

Antecedentes

disponible en

Esta revisión Cochrane forma parte de una serie actualizada de revisiones Cochrane de intervenciones para los trastornos del hombro. La revisión original sobre todas las intervenciones para el dolor del hombro (Green 1998) se ha dividido en una serie de revisiones que examinan las intervenciones para diferentes trastornos del hombro por separado. La última revisión sobre la cirugía para la enfermedad del manguito rotador se publicó en el Número 1; 2008 (actualizado hasta el 3 de setiembre de 2006; Coghlan 2008). Para esta actualización se ha dividido la revisión de la cirugía para la enfermedad del manguito rotador en tres revisiones: 1) cirugía de descompresión subacromial para la enfermedad del manguito rotador (el tema de esta revisión); 2) cirugía para los desgarros del manguito rotador de espesor total; y 3) cirugía para la tendinopatía calcificada del manguito rotador. Un equipo superpuesto de autores (Lähdeoja 2019) realizó una revisión sistemática paralela, y ambas revisiones informaron las 13th BMJ Rapid Recommendations sobre el mismo tema (Vandvik 2018).

Las estimaciones de la prevalencia durante la vida y mensual del dolor del hombro en la población general varían entre el 6,7% y el 66,7% y entre el 18% y el 31%, respectivamente (Luime 2004). El dolor del hombro es la tercera molestia musculoesquelética más frecuente en las consultas de atención primaria (Rekola 1993). Cada año cerca del 1% de la población a partir de los 45 años de edad se presenta con dolor de hombro en los contextos de atención primaria (Royal College of General Practitioners 1980‐81). Los costos anuales de asistencia sanitaria directa atribuibles a los trastornos del hombro en los EE.UU. en el año 2000 se calcularon en USD 7 000 000 000 (Johnson 2004). Los trastornos del manguito rotador son la causa subyacente más frecuente y las estimaciones varían entre el 65% y el 85%, según el contexto y la edad de la población estudiada (Chard 1991; Ostör 2005; Vecchio 1995). La cirugía de descompresión subacromial se realiza cada vez con mayor frecuencia para los trastornos del manguito rotador (Vitale 2010). Por ejemplo, un estudio del Reino Unido informó un aumento de siete veces de los pacientes sometidos a este procedimiento entre 2000 (2523 pacientes) y 2010 (21 355 pacientes; Judge 2014), mientras que en los EE.UU. se realizaron 257 541 (IC del 95%: 185,268 a 329,814) artroscopias del hombro, con la exclusión de las que se realizaron para la reparación del manguito, en 2006 (Jain 2014).

Descripción de la afección

Existe una gran confusión en los criterios de diagnóstico utilizados para la patología que afecta el manguito rotador y las estructuras relacionadas (Whittle 2015). Se prefiere usar el término general "enfermedad del manguito rotador" como una clasificación sencilla que abarca todos los trastornos sintomáticos del manguito rotador, independientemente del mecanismo (inflamatorio, degenerativo o lesión aguda), o la ubicación anatómica precisa (p.ej., tendón supraespinoso versus bolsa subacromial; Buchbinder 1996). Los diagnósticos incluidos dentro de este término general incluyen tendinopatía o tendinitis del manguito rotador, síndrome de pinzamiento, desgarros parciales y completos del manguito rotador y desgarro completo del manguito rotador, tendinitis calcificada y bursitis subacromial.

En los pacientes con enfermedad sintomática del manguito rotador el padecimiento se inicia con dolor del hombro, a menudo descrito como dolor en la parte superior externa del brazo. Dicho dolor se agrava con las actividades en las que el brazo se eleva por encima de la cabeza y a menudo es peor de noche y al acostarse sobre el lado afectado, lo cual da lugar a perturbaciones del sueño. El dolor se acompaña de pérdida de la funcionalidad y a menudo de discapacidad significativa. Casi siempre se observa la presencia de un arco doloroso (a medida que el brazo se abduce pasivamente lejos del cuerpo, el dolor ocurre entre los 60° y los 120°). Su presencia se asocia con un cociente de verosimilitud positivo de 3,7 (IC: 1,9 a 7,0), mientras que su ausencia se asocia con un cociente de verosimilitud negativo de 0,36 (IC: 0,23 a 0,54; Hermans 2013).

Los postulados actuales proponen que la enfermedad del manguito rotador se produce por una interacción entre factores mecanicistas y biológicos. La teoría mecanicista postula que el pinzamiento mecánico ocurre entre la cara inferior del acromion anterior, el ligamento coracoacromial y el húmero durante la flexión o la abducción del hombro. Según la teoría, la fisiopatología comienza a partir del edema y el espesamiento de la bolsa (estadio 1). Progresa a la fibrosis y a cambios inflamatorios (estadio 2) y con el tiempo al desgarro parcial o completo del tendón (estadio 3; Neer 1983). El traumatismo también puede causar el desgarro, pero a menudo está ausente. Un desgarro causa el desequilibrio en las fuerzas que mueven la articulación del hombro, lo que puede agravar aún más la enfermedad y los síntomas (Nam 2012). Una vez que ocurre un desgarro, no sana de manera espontánea (Yamaguchi 2001). También se ha postulado que la forma del acromion y la fatiga o el desequilibrio de la fuerza muscular en los músculos del manguito rotador predisponen al pinzamiento subacromial (Chen 1999).

Varias observaciones apoyan la teoría mecanicista, incluida la ubicación de los desgarros y la mayor prevalencia con el aumento de la edad (Neer 1983). Los estudios anatómicos y de imagenología han revelado una asociación entre la forma del acromion y la presencia de un desgarro (Moor 2014). Finalmente, la prevalencia mayor en el lado dominante (Shiri 2007) y las mediciones experimentales de la presión (Hyvonen 2003) implican que la enfermedad del manguito rotador se asocia con factores mecánicos.

Los estudios biológicos también ofrecen un marco para explicar el trastorno. El envejecimiento predispone a los tendones a la tendinopatía, lo que podría explicar la mayor prevalencia observada en la edad madura (Teunis 2014). Los estudios histológicos han asociado los desgarros del manguito rotador con varios cambios celulares y extracelulares que afectan la estructura del tendón (Dean 2012), pero el mecanismo biológico exacto que causa el dolor aún no está claro. Si se los toma en combinación, la evidencia actual indica que la causa de la enfermedad del manguito rotador parece ser una interacción entre factores degenerativos, metabólicos y mecánicos. Es tan frecuente después de la edad madura (Minagawa 2013; Yamamoto 2010), que algunos la consideran parte del envejecimiento normal.

Descripción de la intervención

Los procedimientos quirúrgicos que se pueden utilizar para tratar la enfermedad del manguito rotador incluyen descompresión subacromial (acromioplastia/bursectomía), o desbridamiento de los desgarros parciales o una reparación del manguito rotador, o ambos. La cirugía se puede realizar mediante un enfoque abierto, una técnica asistida por artroscopia (miniabierta) o como un procedimiento de artroscopia sola (Nho 2007). La cirugía artroscópica puede dar lugar a menos morbilidad y a un tiempo de recuperación más corto que permite el retorno anterior al trabajo o el deporte (Coghlan 2008; Hata 2001).

Los pacientes utilizan con frecuencia un cabestrillo después de la cirugía durante una a tres semanas y reciben rehabilitación posoperatoria durante tres a seis meses (Hertling 1990; Millett 2006; Van der Meijden 2012). Los principios de la fisioterapia posoperatoria son similares a los de la fisioterapia sola excepto por el uso del cabestrillo, y a menudo el programa de ejercicio se debe ajustar debido al dolor posoperatorio en el período posoperatorio inmediato.

Los posibles riesgos de la cirugía incluyen complicaciones relacionadas con la anestesia o comorbilidades, infección, capsulitis adhesiva posoperatoria (u hombro congelado), lesión nerviosa periférica, dolor continuo e incluso muerte.

El tratamiento no quirúrgico incluye fisioterapias como el fortalecimiento muscular, la estabilización escapular y los ejercicios de estiramiento y flexibilidad (Bennell 2007; Hertling 1990; Kuhn 2009; Misamore 1995; Page 2016), la inyección de glucocorticoides, los fármacos antiinflamatorios no esteroideos (AINE), la acupuntura, la iontoforesis, la fonoforesis, la estimulación nerviosa eléctrica transcutánea (ENET), el campo electromagnético pulsátil (CEMP), el trinitrato de glicerol tópico y el ultrasonido (Buchbinder 2003; Buchbinder 2011; Cumpston 2009; Engebretsen 2009; Gialanella 2011; Green 2005; Page 2016a; Pedowitz 2012). Los efectos beneficiosos de muchos de estos tratamientos no se han establecido en ensayos aleatorios controlados con placebo y de alta calidad.

De qué manera podría funcionar la intervención

Como se describe anteriormente, la teoría mecanicista afirma que los síntomas de pinzamiento ocurren principalmente debido a las fuerzas compresivas y de fricción repetitivas en los tendones del manguito rotador. Por lo tanto, la descompresión subacromial intenta retirar la bolsa subacromial inflamada y reducir las fuerzas compresivas al retirar hueso de la cara inferior anterior/lateral del acromion. Se cree que al ampliar de esta manera el espacio para los tendones que lo atraviesan se detiene el proceso patológico.

Por qué es importante realizar esta revisión

Como se ha detallado, la enfermedad del manguito rotador tiene considerables implicaciones económicas y en la calidad de vida para los pacientes y los sistemas de asistencia sanitaria, y la cantidad de pacientes sometidos a cirugía de descompresión subacromial ha aumentado rápidamente. La cirugía predispone al paciente a los riesgos relacionados con el procedimiento, por lo que su uso tiene que estar apoyado por evidencia de efectos beneficiosos. A pesar de la teoría mecanicista que apoya la cirugía, también pueden ocurrir mejoras a falta de cirugía.

La revisión Cochrane de 2008 identificó 14 ensayos controlados aleatorios (ECA) que incluyeron 829 participantes (Coghlan 2008). Once ensayos incluyeron participantes con pinzamiento, dos ensayos incluyeron participantes con desgarro del manguito rotador y un ensayo incluyó participantes con tendinitis calcificada. Los ensayos examinaron intervenciones heterogéneas y todos fueron susceptibles al sesgo, lo que limita la capacidad de establecer conclusiones firmes acerca de los efectos beneficiosos y perjudiciales de la cirugía para la enfermedad del manguito rotador. Para el tratamiento del pinzamiento hubo evidencia de certeza moderada, basada en tres ensayos, de ninguna diferencia significativa en el resultado entre la descompresión subacromial abierta o artroscópica versus tratamiento activo no quirúrgico (programa de ejercicio, régimen de fisioterapia de ejercicio y educación o programa gradual de fortalecimiento con fisioterapia) para el tratamiento del pinzamiento. Hubo evidencia de certeza moderada de seis ensayos de que no había diferencias clínicamente importantes en el resultado entre la descompresión subacromial artroscópica y abierta, aunque cuatro ensayos informaron de una recuperación más temprana con la descompresión artroscópica.

Desde la última versión publicada de esta revisión se publicaron dos ECA adicionales que evalúan los efectos beneficiosos y perjudiciales de la cirugía para la enfermedad del manguito rotador. Ambos ensayos investigaron la descompresión para los pacientes con enfermedad del manguito rotador que excluyó los desgarros de espesor total, y ambos incluyeron un grupo control con cirugía placebo (Beard 2018; Paavola 2018). Por lo tanto, es oportuna una revisión actualizada de la evidencia disponible.

Objetivos

disponible en

Resumir la evidencia disponible de los efectos beneficiosos y perjudiciales de la cirugía de descompresión subacromial en comparación con placebo, ninguna intervención o intervenciones no quirúrgicas en pacientes con enfermedad del manguito rotador (con exclusión de los desgarros totales del manguito rotador).

Métodos

disponible en

Criterios de inclusión de estudios para esta revisión

Tipos de estudios

Se incluyeron ECA de cualquier diseño (p.ej., paralelo, cruzado, factorial), ensayos clínicos controlados que utilizaron un método de asignación cuasialeatorio (métodos de asignación de los participantes a un tratamiento que no son estrictamente aleatorios, p.ej., fecha de nacimiento, número de historia clínica o alternancia). Los informes de los ensayos fueron elegibles independientemente del idioma, la fecha de publicación o el estado de publicación.

Para los efectos perjudiciales, también se incluyeron estudios observacionales prospectivos de los registros de cirugía diseñados para registrar los daños causados por la descompresión subacromial o la artroscopia del hombro para diagnósticos mixtos, incluidos los síntomas de pinzamiento.

Tipos de participantes

Se incluyeron ensayos en adultos (18 años de edad o más) con enfermedad del manguito rotador confirmada mediante historia clínica, examen físico, imagenología de resonancia magnética (IRM), ecografía o artrograma. Se excluyeron los ensayos que incluyeron participantes con desgarros de espesor total, a menos que fuera una minoría de los participantes (< 20%). Se excluyeron los estudios de adultos sometidos a cirugía por tumores benignos o malignos, capsulitis adhesiva, inestabilidad del hombro, reemplazo articular o fracturas. Para los efectos perjudiciales no hubo restricciones con respecto a los diagnósticos de los participantes.

Tipos de intervenciones

Se incluyó la cirugía de descompresión subacromial (bursectomía abierta o artroscópica y acromioplastia) versus placebo, el tratamiento no quirúrgico o ningún tratamiento. Para esta actualización, debido a que el efecto beneficioso de la cirugía sobre el placebo o el tratamiento no quirúrgico todavía no está establecido, se excluyeron los estudios que compararon un tipo de técnica quirúrgica con otra. También se excluyeron los estudios que sólo evaluaron diferentes dispositivos quirúrgicos (como la comparación de dos tipos de materiales o técnicas de sutura) o productos biológicos.

Los comparadores podían incluir:

  • Cirugía placebo

  • Tratamientos no quirúrgicos, incluida la fisioterapia, los ejercicios, las intervenciones farmacológicas como los AINE o glucocorticoides u otras inyecciones

  • Espera y observación / ningún tratamiento o tratamiento retardado

Tipos de medida de resultado

Se aseguró que los resultados de la presente revisión fueran consistentes con el conjunto central de dominios preliminar The Outcome Measures in Rheumatology (OMERACT) para los ensayos clínicos de los trastornos del hombro (Buchbinder 2017).

Resultados principales

Se incluyeron los siguientes resultados.

  • Dolor general (media o cambio medio medido con una escala analógica visual [EAV], escala de calificación numérica o categórica). Cuando los ensayos no midieron el dolor general se planificó incluir otras medidas del dolor con un nivel más alto en la siguiente jerarquía: dolor no especificado, dolor con la actividad, dolor durante la noche o en reposo.

  • Funcionalidad física. Cuando los autores de los ensayos informaron de los datos de resultado de más de una escala de funcionalidad, se extrajeron los datos de la escala con las calificaciones más altas en la siguiente lista predefinida. Estos cuestionarios en general incluyen varios dominios como el dolor, la funcionalidad, la amplitud de movimiento y la fuerza y proporcionan una puntuación compuesta específica del hombro. La jerarquía se basó en las puntuaciones utilizadas con mayor frecuencia en los ensayos que evalúan la cirugía, debido a que hay una escasez de investigación para informar qué medida es el valor de referencia (Page 2015).

    • Constant‐Murley Score

    • Shoulder Pain and Disability Index (SPADI)

    • Oxford Shoulder Score (OSS)

    • American Shoulder and Elbow Surgeons Standardized Form (ASES‐SF)

    • UCLA Shoulder Score

    • Disabilities of the Arm, Shoulder and Hand (DASH)

    • Shoulder Disability Questionnaire (SDQ)

    • cualquier otra escala de funcionalidad del hombro.

  • Evaluación general de éxito del tratamiento por el participante como la definieron los autores de los ensayos (p.ej., proporción de participantes con mejoría general significativa). Ver también, Diferencias entre el protocolo y la revisión.

  • Calidad de vida relacionada con la salud, medida con herramientas genéricas (como los componentes del Short Form‐36 [SF‐36], SF‐12, EQ‐5D, 15D) o herramientas específicas de la enfermedad.

  • Número de participantes que experimentaron eventos adversos, extraídos de los ensayos aleatorios (incluidas las complicaciones neurovasculares, las infecciones, la rigidez del hombro/capsulitis adhesiva posoperatoria [hombro congelado])

  • Cantidad de participantes que experimentaron un evento adverso grave, extraída de los registros quirúrgicos. Se definieron los efectos perjudiciales graves como muerte, hemorragia (no controlada o que requirió transfusión), paro cardíaco que requirió reanimación cardiopulmonar, infarto de miocardio, accidente cerebrovascular, insuficiencia renal aguda, intubación no planificada, necesidad de ventilación durante más de 48 horas, infección profunda (sitio quirúrgico u órgano/espacio), sepsis, shock séptico, neumonía, dehiscencia de la herida, embolia pulmonar, trombosis venosa profunda o lesión nerviosa periférica.

Resultados secundarios

  • Participación (recreación y trabajo)

  • Fracaso del tratamiento (p.ej., progresión a desgarro de espesor total)

Momento de evaluación de los resultados

Se extrajeron los resultados en los siguientes puntos temporales.

  • Hasta los tres meses inclusive

  • De tres meses hasta seis meses

  • Más de seis meses hasta un año

  • Más de un año hasta dos años

  • Más de dos años hasta cinco años

  • Más de cinco años

Cuando hubo múltiples puntos temporales en los que se midieron los resultados se extrajo el último punto temporal dentro del período (es decir, si un estudio informó resultados a las seis semanas y a los cuatro meses y 12 meses, se extrajeron los resultados a los cuatro meses (para el análisis hasta los seis meses) y a los 12 meses. El punto temporal primario fue un año.

Métodos de búsqueda para la identificación de los estudios

Búsquedas electrónicas

This current review update includes studies published between March 2006 and 22 October 2018. We searched the following databases for randomised or quasi‐randomised trials.

  • Cochrane Central Register of Controlled Trials (CENTRAL, 2018, Issue 10) via Cochrane Library; Appendix 1

  • OVID MEDLINE, 2006 to 22 October 2018; Appendix 2

  • OVID Embase, 2006 to 22 October 2018; Appendix 3

  • ClinicalTrials.gov for ongoing trials; Appendix 4

  • World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) search portal (apps.who.int/trialsearch/) for ongoing trials to 22 October 2018; Appendix 5

Búsqueda de otros recursos

We used the data from Lähdeoja 2019, who summarised serious adverse events from arthroscopic shoulder surgery registries.

We also reviewed the reference lists of the included trials and any relevant review articles retrieved from the electronic searches, to identify any other potentially relevant trials.

Obtención y análisis de los datos

Selección de los estudios

Three review authors (TK, NBJ and CP) independently selected trials for possible inclusion against a predetermined checklist of inclusion criteria (see Criteria for considering studies for this review). We screened titles and abstracts and initially categorised studies into the following groups.

  • Possibly relevant: trials that met the inclusion criteria and trials from which it was not possible to determine whether they met the criteria either from their title or abstract

  • Excluded: those clearly not meeting the inclusion criteria

If a title or abstract suggested that the trial was eligible for inclusion, or we could not tell, we obtained a full‐text version of the article, and two to three review authors (TK, NBJ and CP) independently assessed it to determine whether it met the inclusion criteria. The review authors resolved discrepancies through discussion or adjudication by a fourth author (RB).

For harms, we included the studies identified in the parallel systematic review (Lähdeoja 2019).

Extracción y manejo de los datos

Two of three review authors (TK NBJ, CP) independently extracted the following data from the included trials.

  • Trial characteristics, including design (e.g. parallel or cross‐over), country, sample size calculation, primary analysis, source of funding, and trial registration status (with registration number recorded if available)

  • Number of participants, inclusion/exclusion criteria, participant characteristics, including age, sex, duration of symptoms, outcomes at baseline and details regarding the cuff tear if present

  • Intervention characteristics for each treatment group, and use of co‐interventions

  • Outcomes reported, including the measurement instrument used and timing of outcome assessment

When additional data were required, we contacted the trial authors to obtain this. Where data were imputed or calculated (e.g. standard deviations calculated from standard errors, P values, confidence intervals, imputed from graphs, from standard deviations in other trials), we reported this in the Notes section of Characteristics of included studies. We resolved any disagreements and issues by consultation with RB.

To prevent selective inclusion of data based on the results, we used the following a priori defined decision rules to select data from trials.

  • Where trial authors reported both final values and change from baseline values for the same outcome, we extracted final values.

  • Where trial authors reported both unadjusted and adjusted values for the same outcome, we extracted unadjusted values.

  • Where trial authors reported data analysed based on the intention‐to‐treat (ITT) sample and another sample (e.g. per‐protocol, as‐treated), we extracted ITT‐analysed data.

  • For cross‐over RCTs, we preferentially extracted data from the first period only.

We used a priori hierarchies (see Types of outcome measures) to choose the outcome for each domain if the trial measured one outcome with several instruments.

When trial authors had used different scales, we transformed the scales to match the most commonly used instrument scale before pooling, and reversed the scale if needed to make it comparable to the most commonly used instrument (see Measures of treatment effect).

Serious adverse events from surgical registries: two review authors (TL and CA) extracted the study characteristics and the event rates. We solved any discrepancies by consensus.

Evaluación del riesgo de sesgo de los estudios incluidos

Pairs of authors (TK, RJ, CP, NBJ, TL or CA), assessed the risk of bias of each included trial and resolved any disagreements by consensus, or consultation with RB where necessary.

We assessed the following methodological domains, as recommended by Cochrane (Higgins 2017):

  • sequence generation;

  • allocation sequence concealment;

  • blinding of participants and study personnel;

  • blinding of outcome assessment (assessed separately for self‐reported and objectively assessed outcomes);

  • incomplete outcome data;

  • selective outcome reporting;

  • other potential source of bias: in this bias we judged whether the number of cross‐overs from placebo or from exercise therapy to surgery might bias the analysis.

We rated each item as being at 'low risk', 'unclear risk' or 'high risk' of bias.

For observational studies reporting serious adverse events, for assessing risk of bias we used methods described in Hayden 2013:

  • study participation;

  • study attrition;

  • prognostic factor measurement;

  • outcome measurement;

  • study confounding;

  • statistical analysis and reporting

Medidas del efecto del tratamiento

We used the Cochrane statistical software, Review Manager 5.3 to perform data analysis (Review Manager 2014). For dichotomous outcomes, we expressed the difference as risk ratios (RRs) with 95% CIs. For continuous data, we expressed results as mean differences (MD) with 95% confidence intervals when the same measurement tool was used across studies or standardised mean difference (SMD) when the same outcome was measured using different instruments.

Where trials used different measures for the same outcome or concept, we used the most common outcome measure as an index outcome measure. We transformed MDs and standard deviations (SDs) of other outcome measures to the scale of the index instrument and pooled the data using MD as the summary estimate, according to the methods of Thorlund 2011. For pain, we assumed VAS and numeric rating scale (NRS) were comparable scales, and transformed 1 to 9 (Haahr 2005) and 1 to 10 (Brox 1993) to a zero to 10 scale. The trials used various functional measures (Constant score, shoulder disability score, subjective shoulder rating scale, and Neer score), but as these were all measured in 0 to 100 scale, no transformation was necessary except for reversal of shoulder disability score used by Ketola 2009.

When large variations in SDs led to problematic weights in the meta‐analysis, we pooled SMDs. In this case, we back‐transformed SMDs to a typical scale (e.g. 0 to 100 for function), by multiplying the SMD by a typical among‐person standard deviation (e.g. the SD of the control group at baseline from the most representative trial; as per Chapter 12 of the Cochrane Handbook for Systematic Reviews of Interventions (Schünemann 2017a)). This method was only required for the quality‐of‐life outcome. For this outcome, we used an SD of 0.28 (EQ‐5D index), taken from Beard 2018 in the primary analysis (Analysis 1.4) and SD of 0.07 (15D) taken from Paavola 2018 in the secondary analysis (Analysis 2.4).

In the Comments column of the 'Summary of findings' tables, we reported the absolute percent difference, the relative percent change from baseline, and for outcomes that show a clinically important difference between treatment groups, we reported the number needed‐to‐treat for an additional beneficial outcome (NNTB), or number needed‐to‐treat for an additional harmful outcome (NNTH).

For dichotomous outcomes we planned to calculate the NNTB or NNTH from the control group event rate and the risk ratio using the Visual Rx NNT calculator (Cates 2008). As there were no clinically important differences in the analyses, we did not calculate the NNTB for continuous measures.

For dichotomous outcomes, we calculated the absolute difference from the difference in the risks between the intervention and control group, as calculated in GRADEpro GDT (GRADEpro GDT 2015), and expressed as a percentage. We calculated the relative percent change as the RR minus 1 and expressed as a percentage. For continuous outcomes, we calculated the absolute difference as the MD divided by the scale and expressed as percentage. We calculated the relative difference (RD) as the absolute benefit (MD) divided by the baseline mean of the control group, expressed as a percentage.

For harms, we calculated incidence proportions using a generalised linear model, using a binomial distribution and an identity link function.

Cuestiones relativas a la unidad de análisis

The unit of analysis was the participant for all trials. For studies containing more than two intervention groups, making multiple pair‐wise comparisons between all possible pairs of intervention groups possible, we included the same group of participants only once in the meta‐analysis

Manejo de los datos faltantes

When required, we contacted trial authors to obtain data that were missing from the trial reports. For continuous outcomes (pain and disability), we calculated the weight of the trial using the number of participants analysed at that time point. If the number of participants analysed was not presented for each time point, we used the number of randomised participants in each group at baseline. For dichotomous outcomes, we used the final data for the events reported in each trial.

For continuous outcomes with no SD reported, we calculated SDs from standard errors (SEs), 95% confidence intervals (CIs) or P values. If we could not obtain any measurement of variance from the trial reports or by contacting the authors, we imputed the SD from the most representative trial. Where we imputed or calculated data (e.g. SDs calculated from SEs, 95% CIs or P‐values, or imputed from graphs or from SDs in other trials), we reported this in the Characteristics of included studies tables.

Evaluación de la heterogeneidad

We assessed clinical diversity by determining whether the characteristics of participants, interventions, outcome measures and timing of outcome measurement were similar across trials. We assessed statistical heterogeneity using the I2 statistic (Higgins 2003). We interpreted the I2 statistic using the following as an approximate guide:

  • 0% to 40% might not be important;

  • 30% to 60% may represent moderate heterogeneity;

  • 50% to 90% may represent substantial heterogeneity;

  • 75% to 100% considerable heterogeneity (Deeks 2017).

Evaluación de los sesgos de notificación

To assess small study effects, we planned to generate funnel plots for meta‐analyses including at least 10 trials of varying size. If we detected asymmetry in the funnel plots, we planned to review the characteristics of the trials to assess whether the asymmetry was likely due to publication bias or other factors, such as methodological or clinical heterogeneity of the trials (Sterne 2011).

To assess outcome reporting bias, we compared the outcomes specified in trial protocols with the outcomes reported in the corresponding trial publications; if trial protocols were unavailable, we compared the outcomes reported in the methods and results sections of the trial publications (Dwan 2011; Kirkham 2010).

Síntesis de los datos

We defined the following review questions.

For people with rotator cuff disease (without full‐thickness tears):

  • is subacromial decompression surgery more effective than placebo surgery?

  • is subacromial decompression surgery more effective than physical therapy or rehabilitation or exercises alone?

  • is subacromial decompression surgery more effective than no treatment?

Surgery could be followed by postoperative physical therapy or rehabilitation or an exercise program.

For benefit, we considered the first comparison, subacromial decompression versus placebo, to be the least prone to bias and it was therefore the primary comparison for addressing the objectives of this review.

For adverse events, as we expected the results to be similar for both placebo and non‐operative comparisons (exercise or no treatment), to simplify the presentation we presented these data in the same analyses.

We combined results of trials with similar characteristics (participants, interventions, outcome measures and timing of outcome measurement) to provide estimates of benefits and harms. We pooled outcomes using the random‐effects model as a default based on the assumption that clinical and methodological heterogeneity was likely to exist and to have an impact on the results.

GRADE and 'Summary of findings' tables

We presented the six major outcomes (pain, function, global assessment of success, health‐related quality of life, adverse events, serious adverse events) of the review in 'Summary of findings' tables, which summarise the certainty of evidence, the magnitude of effect of the interventions examined, and the sum of available data on the outcomes as recommended by Cochrane. The summary of findings table includes an overall grading of the evidence related to each of the main outcomes, using the GRADE approach (Schünemann 2017b).

We planned two tables, one for surgery versus placebo and one for surgery versus exercise.

Pairs of review authors (TK, TL, CA, RJ and RB), assessed the certainty of the evidence as high, moderate, low, or very low using the five GRADE considerations (study limitations, consistency of effect, imprecision, indirectness and publication bias) to assess the body of evidence that contributes data to the meta‐analyses for the prespecified outcomes (Schünemann 2017a). We used GRADEpro software to prepare the 'Summary of findings' tables (GRADEpro GDT 2015). We justified decisions to downgrade the certainty of evidence in the footnotes.

A parallel systematic review provided the best estimates of the minimally important differences (MIDs) for each of the measures in the trials where available (Hao 2019). In pain (VAS/NRS), we considered 1.5 points (0 to 10 scale; Tashjian 2009; Hao 2019); in function (Constant score) 8.3 points (Hao 2019); on EQ‐5D‐3L index (UK version; −0.59 to 1) 0.07 (Hao 2019); and on 15D 0.015 points (Alanne 2015).

Análisis de subgrupos e investigación de la heterogeneidad

We did not plan subgroup analyses.

Análisis de sensibilidad

We performed sensitivity analyses to investigate the robustness of the treatment effect by performing an analysis that included all trials combined, that is, trials with placebo and exercise groups, to see if inclusion of trials that did not blind participants changed the overall treatment effect. These were performed for the outcomes of overall pain and function at the six‐month and one‐year time points.

We also planned a sensitivity analysis to assess the impact of including studies with imputed SDs for the outcomes of pain and function.

Results

Description of studies

Results of the search

Only three of the 14 trials included in the previous Cochrane Review (Coghlan 2008), met the inclusion criteria for this updated review due to the restriction in scope from the original review (Brox 1993; Haahr 2005; Rahme 1998). We excluded 11 trials because they compared one type of surgery to another. An additional trial that we had previuosly excluded due to uncertainty about its design, we have now included, following correspondence from the trial authors confirming that it was an RCT (Peters 1997).

The results of the updated search are shown in Figure 1. The updated search returned 3913 records. After duplicates were removed and the titles and abstracts screened for eligibility, we retrieved 29 full texts. Five new RCTs (Beard 2018; Farfaras 2016; Paavola 2018; Peters 1997; Ketola 2009) met the inclusion criteria for this review. In total, we included eight trials in the current review.


Study flow diagram

Study flow diagram

For serious adverse events, we included two studies from a single, prospective registry collecting outcomes of arthroscopic shoulder surgery including subacromial decompression (Hill 2017; Shields 2015) as identified in the co‐published review (Lähdeoja 2019).

We identified one ongoing trial meeting the inclusion criteria and its characteristics are presented in Characteristics of ongoing studies table (Paloneva 2008). One trial (TRANSIT 2006), was reported to be completed, but we could not identify published results and the trial authors did not respond to queries. This trial is awaiting classification, along with Schulze 2017, which is awaiting translation from German.

We could find no trial registration for four of the included trials (Brox 1993; Farfaras 2016; Haahr 2005; Ketola 2009), noting that one trial was published before trial registration became mandatory (Brox 1993).

Included studies

We have provided a full description of the eight included trials in the Characteristics of included studies table, and a summary of trial features and participant characteristics in Table 1.

Open in table viewer
Table 1. Baseline demographic and clinical characteristics of the trial participants

Trial

Country

Groups (number randomised)

Mean age, years

Mean symptom duration in months (duration specified in inclusion criteria)

Mean pain

Mean shoulder‐specific score

Mean HRQoL

Treatment delivered by

Beard 2018

UK

Subacromial decompression (106)

53

Not reported (≥ 3 months)

Not reported

39a

0.52

38 different surgeons

Placebo surgery (103)

54

43a

0.55

No treatment (104)

53

38a

0.50

Not specified

Brox 1993

Norway

Subacromial decompression (45)

48

Not reported (≥ 3 months)

Not reported

64b

Not measured

2 surgeons

Exercise therapy (50)

47

66

1 physiotherapist

Placebo‐laser (30)

48

65

1 physiotherapist

Farfaras 2016

Sweden

Open subacromial decompression (24)

52

Not reported (≥ 6 months)

Not reported

48a

69.6 (SF‐36 General Health)

Not specified

Arthroscopic subacromial decompression (29)

49

56a

60.1

Exercise therapy (34)

50

56a

67.3

Haahr 2005

Denmark

Subacromial decompression (45)

45

Not reported (6 months‐3 years)

5.9

35a

Not measured

2 surgeons

Exercise therapy (45)

44

6.5

34a

2 physiotherapists

Ketola 2009

Finland

Subacromial decompression (70)

46

31 (≥ 3 months)

6.5

78c

Not measured

One surgeon

Exercise therapy (70)

48

30 (≥ 3 months)

6.5

83c

Physiotherapist

Paavola 2018

Finland

Subacromial decompression (59)

51

18 (≥ 3 months)

7.1

32a

0.89 (15D)

Not specified

Placebo surgery (63)

51

18 (≥ 3 months)

7.2

32a

0.89

Exercise therapy (71)

50

22 (≥ 3 months)

7.2

35a

0.88

Peters 1997

Germany

Subacromial decompression (32)

56

Not reported (not reported)

Not measured

54d

Not measured

Not specified

Exercise therapy (40)

59

59d

Rahme 1998

Sweden

Subacromial decompression (21)

42

Not reported (≥ 12 months)

Not reported

Not measured

Not measured

Not specified

Exercise therapy (21)

42

aConstant score.
bNeer score.
cShoulder Disability Questionnaire.
dSubjective Shoulder Rating Scale.

Randomised controlled trials
Trial design, setting and characteristics

Two trials compared arthroscopic subacromial decompression surgery with arthroscopy only (placebo surgery; Beard 2018; Paavola 2018). The surgery was followed by postoperative exercises in all treatment groups. Both trials also included a third treatment group comprising no treatment (active monitoring), in Beard 2018 and an exercise therapy program in Paavola 2018.

Six trials compared arthroscopic or open subacromial decompression followed by exercises with exercises alone (Brox 1993; Farfaras 2016; Haahr 2005; Ketola 2009; Peters 1997; Rahme 1998). One of these trials, Farfaras 2016, included two surgery groups (open or arthroscopic decompression), while one other trial, Brox 1993, also included a third treatment group comprising placebo laser.

The included trials were conducted in six different countries: Denmark (Haahr 2005), Finland (Ketola 2009; Paavola 2018), Germany (Peters 1997), Norway (Brox 1993), Sweden (Farfaras 2016; Rahme 1998), and the UK (Beard 2018).

The total duration of the trials varied between 3 and 14 years and the duration of follow‐up ranged from one year (Beard 2018; Rahme 1998), up to a mean of 12‐13 years in two trials (Ketola 2009; Farfaras 2016).

Three trials reported receiving funding from foundations unrelated to commercial purposes (Beard 2018; Brox 1993; Paavola 2018). Five trials did not report funding sources (Farfaras 2016; Haahr 2005; Ketola 2009; Peters 1997; Rahme 1998). One study reported that one of its authors had received remuneration from an instrument company but the trial itself was not funded by the company (Farfaras 2016).

All studies with an exercise therapy treatment arm allowed cross‐over from exercise therapy to surgery. In the placebo‐controlled trials, the blinded participants could be unblinded if they desired other interventions due to poor outcome or were hospitalised due to a complication (Beard 2018; Paavola 2018). The number of participants not receiving their allocated treatment, having surgery although allocated to exercises, or who were unblinded during follow‐up are presented in Table 2.

Open in table viewer
Table 2. Deviations from allocated treatment

Trial

Group

Did not receive allocated treatment

Crossed over to active surgery

Re‐operated

Side interventions in surgery

Unblinded

Beard 2018

Subacromial decompression

19 (18%)

N/Aa

0

None reported

0 (0%)

Placebo surgery

35 (34%)

10 (10%)

0

None reported

1 (1%)

No treatment

26 (25%)

25 (24%)

0

No surgery

No blinding

Brox 1993

Subacromial decompression

13 (29%)

N/Aa

0

None reported

No blinding

Eexercise therapy

7 (14%)

1 (2%)

0

No surgery

Placebo‐laser

4 (13%)

2 (7%)

0

No surgery

Farfaras 2016

Open subacromial decompression

6 (25%)

N/Aa

0

None reported

No blinding

Arthroscopic subacromial decompression

5 (29%)

N/Aa

0

None reported

Exercise therapy

0

3 (9%)

0

No surgery

Haahr 2005

Subacromial decompression

4 (9%)

N/Aa

0

None reported

No blinding

Eercise therapy

2 (4%)

6 (13%) by 1 year
11 (24%) by 4‐8 years

0

No surgery

Ketola 2009

Subacromial decompression

13 (19%)

N/Aa

0

14 (20%) labrum repair

No blinding

Exercise therapy

0

5 (7%) by 1 year

14 (20%) by 2 years
18 (26%) by 5 years

0

No surgery

Paavola 2018

Subacromial decompression

0

N/Aa

2 (3%)

0 (0%)

6 (10%)

Placebo surgery

0

8 (13%)

8 (13%)

0 (0%)

9 (14%)

Exercise therapy

0

15 (21%)

3 (4%)

No surgery

No blinding

Peters 1997

Subacromial decompression

0

N/Aa

0

None reported

No blinding

Exercise therapy

0

0 (0%)

0

None reported

Rahme 1998

Subacromial decompression

0

N/Aa

0

5 rotator cuff tears were sutured

No blinding

Exercise therapy

0

13 (62%)

0

No surgery

aN/A (not applicable), participants in subacromial decompression group could not cross over to surgery.

Trial participants

All participants were recruited from secondary/tertiary care hospitals offering surgical care. Across all included trials there were a total of 1062 participants allocated to either operative or non‐operative treatments. The two placebo‐controlled trials included 506 participants; 331 were randomised to either subacromial decompression or placebo surgery and 175 were randomised to unmasked exercise or no treatment. In the open‐label trials, 376 participants were randomised to subacromial decompression (open or arthroscopic) or exercise therapy and 30 were randomised to unmasked placebo laser in one trial. The number of participants per trial ranged from 42 to 313 and their mean age varied from 42 to 65 years, and almost all had a slight female predominance (other than Peters 1997).

Inclusion criteria for all trials were comparable, requiring clinical features consistent with impingement syndrome, including painful abduction and positive impingement test. Three trials explicitly reported exclusion of full‐thickness rotator cuff tears (Beard 2018; Ketola 2009; Paavola 2018). Brox 1993 excluded "rotator cuff rupture" and Farfaras 2016 "total rotator cuff rupture"; Haahr 2005 excluded participants who had, "signs of a rupture of the cuff", and Peters 1997 excluded participants if they had, "sonographic evidence of complete rupture of the rotator cuff". One trial did not explicitly report exclusion of tears (Rahme 1998).

Two trials used MRI (Ketola 2009; Paavola 2018), two used ultrasound (Farfaras 2016; Haahr 2005), and one used MRI or ultrasound (Beard 2018), to identify rotator cuff tears. Two trials did not specify exclusion on the basis of imaging (Brox 1993; Rahme 1998). In Rahme 1998, 3 of 21(14%) participants in the surgery group were found to have full‐thickness rotator cuff tears during surgery and these were repaired. The corresponding number in the non‐operative treatment group is unknown.

Four trials required symptoms to have been present for at least three months (Beard 2018; Brox 1993; Ketola 2009; Paavola 2018), two trials required symptoms to have been present for six months (Farfaras 2016; Haahr 2005), one trial required symptoms to have been present for 12 months (Rahme 1998), and one trial did not specify a time (Peters 1997). Six trials did not report mean symptom duration, or reported it in categories, and we could not extract the mean duration (Beard 2018; Brox 1993; Farfaras 2016; Haahr 2005; Peters 1997; Rahme 1998). Mean symptom duration was 30 to 31 months across treatment groups in Ketola 2009 and 18 to 22 months across the three treatment groups in Paavola 2018.

Mean baseline pain scores were comparable across the trials, varying between 5.9 and 7.2 (0 to 10 scale). Mean baseline function measured by the Constant‐score (possible range 0 to 100, higher is better) varied between 31 and 58 in the four trials that included this measure (Beard 2018; Farfaras 2016; Haahr 2005; Paavola 2018). Ketola 2009 measured function with the SDQ (possible range 0 to 100, higher is worse), and baseline scores were 78 and 83 (reversed scores 22 and 17) in surgery and exercise groups, respectively. Brox 1993 measured function using the Neer score (possible range 0 to 100, higher is better), and the baseline scores were 64, 66 and 65 in the surgery, exercises and placebo‐laser groups, respectively.

Health‐related quality of life was assessed in three trials, all using different measures. Beard 2018 reported a baseline of 0.50 to 0.55 measured by the EQ‐5D index (possible range −0.59 to 1 scale, higher is better); Paavola 2018 reported a baseline of 0.88 to 0.89, measured by the 15D (possible range 0 to 1 scale, higher is better); and Farfaras 2016 reported all SF‐36 subdomains (possible range 0 to 1, higher score indicates lower disability), at baseline with a baseline score of 74.3 (open subacromial decompression), 65.2 (arthroscopic subacromial decompression), and 73.5 (exercise therapy), in the SF‐36 mental health score.

Paavola 2018 excluded participants if the surgeon deemed that pain was not due to impingement during arthroscopy but before participants were randomised (which occurred intra‐operatively). Beard 2018 randomised participants before the procedure and did not exclude patients if other pathologies were found at surgery. In trials comparing subacromial decompression surgery to exercise therapy, the participants in the exercise group did not undergo arthroscopy to rule out other pathologies (Brox 1993; Farfaras 2016; Haahr 2005; Ketola 2009; Peters 1997; Rahme 1998).

Interventions

Details of the interventions in each trial are presented in the Characteristics of included studies table. One to 38 surgeons performed operations, depending on the trial. The operations were performed arthroscopically in all trials except the ope‐ surgery group in Farfaras 2016 and the surgery group in Rahme 1998.

Arthroscopic subacromial decompression appeared to have been performed similarly across the studies. It included bursectomy, followed by removal of bone from the anterior/lateral undersurface of acromion and release of the acromioclavicular ligament. In Ketola 2009, the acromioclavicular ligament was released only if the operating surgeon deemed it to be tight; in this trial the surgeon also repaired labrum injuries in 14 participants. Other trials did not specifically report other surgical co‐interventions in the operative treatment groups.

Physiotherapists instructed and supervised exercises, which included home exercises. In the exercise groups, the exercises focused on active strengthening and correction of balance and humeroscapular kinematics. One trial reported specific details of the exercises (Paavola 2018).

Most of the studies did not explicitly report whether NSAIDs or glucocorticoid injections were permitted during the trial. However Ketola 2009 indicated that participants could receive up to three injections during the trial and reported a mean of 1 injection (range 1 to 10), in the exercise group and 0.3 injections (range 0 to 3), in the surgery group by two years' follow‐up. The details of the no‐treatment group in Beard 2018 and placebo‐laser group in Brox 1993 are displayed in the Characteristics of included studies table.

Outcomes

Pain

Two trials did not report a pain outcome (Farfaras 2016; Peters 1997). Five trials measured and reported pain in various continuous scales, all with higher scores indicating worse pain (Beard 2018; Brox 1993; Haahr 2005; Ketola 2009; Paavola 2018). Rahme 1998 measured pain using a continuous scale but only reported it categorically. Two trials included dichotomous assessment of pain (Ketola 2009; Paavola 2018).

Beard 2018 measured pain using the PainDETECT questionnaire, which assesses current, strongest and average pain intensity on a NRS from 0 to 10. Brox 1993 assessed pain with activity, as well as at rest and at night, on a 1 to 9 scale. Haahr 2005 measured pain using the Constant pain subscore, and also measured worst and average pain and discomfort in the last three months, and average pain and discomfort in the past seven days (all on 0 to 9 scales), using the Project on Research and Intervention in Monotonous work (PRIM) questionnaire. Ketola 2009 measured pain (unspecified) as well as pain at night on a 0 to 10 scale and also reported the proportion of pain‐free participants (VAS < 3), and pain‐free days during the last three months. Paavola 2018 measured pain at rest and with arm activity on a 0 to 100 scale and also reported the proportion of participants who exceeded the threshold for minimal clinically important improvement and the proportion who had reached the patient‐acceptable symptom state. Rahme 1998 measured pain at rest on a 0 to 10 scale but only reported the results as the proportion of participants reaching more than 50% reduction in pain.

Function

Seven trials included a composite multidimensional shoulder score, which could include pain, disability, range of motion and strength (Beard 2018; Brox 1993; Farfaras 2016; Haahr 2005; Ketola 2009; Paavola 2018; Peters 1997). These included the Constant score (Beard 2018; Farfaras 2016; Haahr 2005; Paavola 2018), Oxford Shoulder Score (Beard 2018), Simple Shoulder Test (Paavola 2018), Shoulder Disablity Questionnaire (Ketola 2009), Watson‐Sonnabend score (Farfaras 2016), and Neer score (Brox 1993). In addition, Ketola 2009 included a self‐reported assessment of function/disability measured on a VAS/NRS 0 to 10 scale, and Haahr 2005 reported 'impaired activity' (0 to 9 scale, higher is worse) as a PRIM sub score. Rahme 1998 assessed function by rating 'pour out of pot' and 'hand in neck' manoeuvres, and Peters 1997 used the subjective shoulder rating scale, a questionnaire developed and validated by the same authors (Kohn 1997).

Participant global assessment of treatment success

Five trials included varying measures of global assessment of treatment success (Beard 2018; Brox 1993; Ketola 2009; Paavola 2018; Rahme 1998).

Beard 2018 assessed global assessment of satisfaction with three questions: 1) How are the problems now compared to before randomisation? (7‐step Likert scale from no problems to much worse); 2) How pleased are you with the results of the treatment? (5‐step Likert scale from very pleased to very disappointed); and 3) Would you choose the same treatment again? (yes/no/not sure). Brox 1993 defined treatment success as those who had more than 80 out of 100 on the Neer score (but only reported this outcome for those who continued follow‐up until 2.5 years, at six months and 2.5 years). Ketola 2009 assessed proportion of participants whose overall state of health was better compared with before treatment on a 5‐point scale ranging from a lot worse to a lot better at a mean of 12 years' follow‐up. Paavola 2018 assessed global satisfaction on a VAS scale and also reported proportion of participants who were 'responders' (satisfied or very satisfied with treatment outcome used. Rahme 1998 defined success as relative reduction of pain by more than 50% compared with baseline.

Health‐related quality of life

Four trials included a measure of health‐related quality of life (Beard 2018; Farfaras 2016; Ketola 2009; Paavola 2018). Beard 2018 used the European Quality of Life with five dimensions index (EQ‐5D index) and EQ‐VAS index, Farfaras 2016 used the SF‐36, and two trials used the 15D (Ketola 2009; Paavola 2018), although Ketola 2009 only reported this outcome at more than 10 years in.

Adverse events and serious adverse events

Only three trials reported adverse events (Beard 2018; Ketola 2009; Paavola 2018). No studies reported serious adverse events.

Minor outcomes

Three trials included a measure of participation (recreation and work; Brox 1993; Ketola 2009; Paavola 2018). Paavola 2018 reported the number of participants at work and able to perform sports or leisure activities without difficulties. Brox 1993 reported the number of participants absent from work due to shoulder problems. Ketola 2009 measured self‐reported working ability on a VAS scale and sick leave due to shoulder reasons in three categories (1 to 7 days per year; 8 to 14 days per year; > 14 days per year), and whether or not the participant was retired due to shoulder condition (at a mean of 12 years' follow‐up only).

None of the trial authors included a definition of treatment failure. Ketola 2009 used MRI to identify cuff tears at five‐year follow‐up and Farfaras 2016 used ultrasound at 13 years and we considered full‐thickness tears as failures. Cross‐overs could occur in one direction (from exercise to surgery) and we did not consider these as treatment failures. The deviations from allocated treatment by trial are presented in Table 2.

Observational studies

The two included observational studies included samples from a single surgical registry in the USA over two separate time periods, using a systematic sampling process to minimise risk of selection bias, and investigating 30‐day postoperative complication rates (Hill 2017; Shields 2015). Hill 2017 included 15,015 participants undergoing arthroscopic shoulder surgery from 258 participating centres for the years 2005 to 2011, and Shields 2015 included 10,255 participants from more than 600 centres undergoing surgery from 2011 to 2013 (Table 3).

Open in table viewer
Table 3. Types and numbers of surgical procedures included in the two registry studies

Procedure

N (%) Hill 2017

N (%) Shields 2015

Rotator cuff repair

6399 (43)

3439 (33.5)

Subacromial decompression

2542 (16.9)

3362 (32.8)

Superior labrum lesion repair

1175 (7.8)

976 (9.5)

Capsuloraphy

1000 (6.7)

726 (7)

Distal clavicle resection

1029 (6.9)

544 (5.3)

Extensive debridement

1130 (7.5)

461 (4.5)

Limited debridement

1029 (6.9)

379 (3.7)

Lysis and resection of adhesion

279 (1.9)

149 (1.5)

Biceps tenodesis

263 (1.8)

105 (1)

Synovectomy

137 (0.9)

76 (0.7)

Foreign body removal

62 (0.4)

38 (0.4)

All

15,015

10,255

Excluded studies

We excluded 14 trials from this update and specify reasons for exclusion in the Characteristics of excluded studies table. Four trials recruited mainly participants with full‐thickness rotator cuff tears or calcific tendinopathy and these trials will be included in other updates in this series of Cochrane Reviews of interventions for shoulder disorders (Kukkonen 2014; Lambers Heerspink 2015; Maugars 2009; Moosmayer 2010). In comparison to our previous version of this review (Coghlan 2008), we also excluded trials comparing one type of surgery to another from this update.

Risk of bias in included studies

The summary of the risk of bias assessment is presented in Figure 2.


'Risk of bias' summary: review authors' judgements about each risk of bias item for each included study

'Risk of bias' summary: review authors' judgements about each risk of bias item for each included study

Two trials comparing subacromial decompression with placebo met all methodological low risk of bias criteria for this comparison (Beard 2018; Paavola 2018). The other trials had various sources of bias, most notably detection and performance bias arising from lack of blinding of participants and personnel (Brox 1993; Farfaras 2016; Haahr 2005; Ketola 2009; Peters 1997; Rahme 1998). These same biases applied to the comparisons of surgery to no treatment (Beard 2018), or to exercises (Paavola 2018), of the placebo‐controlled trials. The assessment of each domain of risk of bias for the included trials is summarised in the Characteristics of included studies table.

Allocation

Four trials reported adequate random sequence generation and allocation concealment, and we therefore deemed them to have low risk of selection bias (Beard 2018; Haahr 2005; Ketola 2009; Paavola 2018), while we deemed a fifth trial at unclear risk due to failure to explicitly report allocation concealment, although there was likely adequate random sequence generation (Brox 1993).

We judged two trials to be at unclear risk of selection bias due to failure to adequately report their methods of randomisation and allocation concealment (Peters 1997; Rahme 1998), while we judged one at high risk for both of these domains (Farfaras 2016).

Blinding

Both placebo‐controlled trials were at low risk of performance and detection bias for the comparison of decompression and placebo surgery as they blinded participants and all study personnel other than those in the operating room (Beard 2018; Paavola 2018). For the comparison of surgery to no treatment in Beard 2018 and exercises alone in Paavola 2018, we judged there to be high risk of performance and detection bias, as the participants in the non‐operative treatment groups were not blinded. This may have resulted in an overestimate of the benefit of surgery for these comparisons.

Similarly we judged all trials that compared surgery to non‐operative treatment to be at high risk of performance and detection bias as participants were aware of their treatment allocation (Brox 1993; Farfaras 2016; Haahr 2005; Ketola 2009; Peters 1997; Rahme 1998). We assigned a high risk of bias even if trialists had blinded outcome assessors because all major outcomes were subjective. The trials did not use outcomes that were completely objective and for the imaging outcomes, the radiologists could not be reliably blinded to treatment allocation.

Incomplete outcome data

Risk of attrition bias was low in four trials (Beard 2018; Brox 1993; Haahr 2005; Paavola 2018), high in two trials (Farfaras 2016; Ketola 2009), and unclear in two trials (Peters 1997; Rahme 1998).

In Beard 2018, the number of participants and reasons for loss to follow‐up were similar across the groups (six months: 16/106 (15%) and 9/103 (9%) in the decompression and placebo surgery groups respectively; one year: 18/106 (17%) and 10/103 (10%) in the decompression and placebo surgery groups respectively). In Brox 1993, 4 out of 45 (9%) and 1 out of 50 (2%) participants were lost to follow‐up at six months in the surgery and exercise groups respectively, and the corresponding loss to follow‐up was 6 out of 45 (13%) and 5 out of 50 (10%) participants at 2.5 years. In Haahr 2005 4 out of 45 (9%) and 2 out of 45(4%) participants dropped out or were lost to follow‐up at 12 months in the surgery and exercise groups respectively. In Paavola 2018, missing data were also low and comparable between the groups: for pain and function zero to four participants in the decompression group (0% to 7%); two to seven participants (3 to 11%) in the placebo‐surgery group, and three to seven participants (4% to 10%) in the exercise therapy group in follow‐up points up to 24 months.

Risk of attrition bias was high in Farfaras 2016 as data from 9 out of 24 participants in the open decompression group, 10 out of 29 participants in the arthroscopic decompression group and 13 out of 34 participants in the exercise group were not included in the analysis (only a per‐protocol analysis was performed). Risk of attrition bias was high in Ketola 2009 as there were large and differing proportions of missing data at 3, 6 and 12 months' follow‐up (three months: 27/70 (39%) in the decompression group versus 13/70 (19%) in the exercise group; six months: 26/70 (37%) in the decompression group versus 14/70 (20%) in the exercise group; 12 months: 19/70 (27%) in the decompression group versus 18/70 (26%) in the exercise group). Risk of attrition bias was unclear in Peters 1997 as there was an imbalance in loss to follow‐up at one year (decompression: 6/32 (19%) versus 4/40 (10%) in the exercise group), and the reasons were not provided. It was also unclear in Rahme 1998 as 3 out of 21 (14%) participants in the exercise group were lost to follow‐up and no reasons were provided.

Selective reporting

Risk of reporting bias was low in two trials (Beard 2018; Paavola 2018), high in three trials (Haahr 2005; Peters 1997; Rahme 1998), and unclear in three trials (Brox 1993; Farfaras 2016; Ketola 2009).

We judged Haahr 2005 to be at high risk of reporting bias as there was no trial protocol or trial registration and some outcomes appeared to have been added post hoc and others were incompletely reported. No protocol or trial registration was available for Peters 1997 to confirm whether they had collected any measures other than the subjective shoulder rating score. Rahme 1998 did not report the outcomes specified in the methods consistently and at all time points. For example, they only reported six‐month and 12‐month results in pain but they also specified them as collected at eight and 16 weeks.

We assigned unclear risk for reporting bias for Brox 1993 mainly as participation in work was only reported at two to five years for a subset of participants. It also had no trial protocol or trial registration but this predated mandatory trial registration. We also assigned unclear risk to Farfaras 2016 as we could not find a published protocol and they did not report some outcomes pertinent to this review (pain and adverse events). We also judged Ketola 2009 to be at unclear risk of selective reporting, mainly because some outcomes reported to be measured were not reported (passive movement and strength), and they reported adverse events only for the surgery group.

Other potential sources of bias

Four trials had no other identified potential sources of bias (Beard 2018; Haahr 2005; Paavola 2018; Peters 1997).

We deemed three trials at high risk of other bias. Brox 1993 performed an unplanned interim analysis at six months after recruiting 68 out of 125 participants, and as this showed no benefit of placebo laser, they terminated planned recruitment to this group. Farfaras 2016 stopped recruitment early and there was an unexplained imbalance in the number of participants across the three treatment arms. In Rahme 1998, 12 out of 21 (57%) participants originally allocated to the exercises group crossed over to surgery after six months. The trial authors analysed them as a separate group. In our analysis, we included them in the exercise group as allocated, to conform to intention‐to‐treat principles (Analysis 2.3).

We judged Ketola 2009 to be at unclear risk of other bias as nine (13%) participants in the surgery group had an unplanned labral repair during the operation, which may have biased the estimate of the effect of surgery (in either direction). Both treatment groups also received glucocorticoid injections over the two‐year follow‐up (mean of 0.3, range 0 to 3; and 1.0, range 0 to 10 in the surgery and exercise groups, respectively). This may also have biased the estimates.

Risk of bias in the observational studies

The 'Risk of bias' assessment from the co‐published, parallel systematic review (Lähdeoja 2019), is reproduced in Table 4. In general these studies were at low risk of most biases.

Open in table viewer
Table 4. Risk of bias for registry studies of serious adverse events

Domain

Hill 2017

Shields 2015

Judgement

Study participation

Unsure, but judged unlikely to incur significant bias

Yes, large number of centres, judged likely to be representative

Unclear

Study attrition

Probably low risk given the tracking of participants who went elsewhere for care, and given follow‐up was 30 days

Probably low risk given the tracking of participants who went elsewhere for care, and given follow‐up was 30 days

Low

Prognostic factor measurement

Yes: arthroscopic procedure is the prognostic factor

Yes: arthroscopic procedure is the prognostic factor

Low

Outcome measurement

Yes: based on hospital record + participant contact call

Yes: based on hospital record + participant contact call

Low

Study confounding

Yes: total harms are of interest, no proper confounders

Yes: total harms are of interest, no proper confounders

Low

Statistical analysis and reporting

Unclear, judged not likely to lead to overestimation of harms

Unclear, judged not likely to lead to overestimation of harms

Low

Effects of interventions

See: Summary of findings for the main comparison Subacromial decompression compared to placebo surgery; Summary of findings 2 Subacromial decompression compared to exercises

Benefits

1. Subacromial decompression versus placebo

We considered that both placebo‐controlled trials (Beard 2018; Paavola 2018) recruited clinically comparable participants with respect to inclusion criteria and baseline characteristics of pain, disability and quality of life, to allow pooling of data. We were able to pool data for pain, function (both trials used the Constant score), participant global assessment of treatment success, health‐related quality of life and adverse events. Statistical heterogeneity was unimportant across all outcomes and end points. The certainty of evidence was high for pain, function and health‐related quality of life and moderate for participant global assessment of treatment success (downgraded for imprecision; summary of findings Table for the main comparison).

Pain

Based upon the two trials, there were no clinically important differences between subacromial decompression and placebo surgery with respect to mean pain at six months or at one year (high‐certainty evidence). Pain was 4 points with placebo on a zero to 10‐point scale (lower score indicating less pain), and 0.07 points worse (95% CI 0.51 better to 0.64 worse, 299 participants), with subacromial decompression at six months, or 0.7% worse (5% better to 6% worse; Analysis 1.1; summary of findings Table for the main comparison). At one year, mean pain was 2.9 points with placebo and 0.26 points better (95% CI 0.84 better to 0.33 worse, 284 participants), with subacromial decompression, an absolute improvement of 3% (3% worse to 8% better).

Based upon one trial (Paavola 2018), at three months and two years, there were also no clinically important between‐group differences in pain with subacromial decompression versus placebo surgery but we downgraded the evidence to moderate certainty due to imprecision (one trial, 95% CI overlaps MID at two years). At three months, pain was 3.7 points with placebo and 0.47 points worse (95% CI 0.45 better to 1.39 worse, 1 trial, 117 participants), with subacromial decompression. At two years, pain was 2.5 points with placebo and 0.90 points better ( 95% CI 1.79 better to ‐0.01 worse, 118 participants), with surgery.

Function

There was no evidence of clinically important between‐group differences with respect to mean function at any time point (2 trials at 6 months and 1 year and 1 trial at 2 years). Mean function on a zero to 100 scale (higher indicates better function), was 61 points with placebo and 3.7 points worse (95% CI 8.7 worse to 1.3 better, 286 participants) with subacromial decompression at six months; 69 points with placebo and 2.8 points better (95% CI 1.4 worse to 6.9 better, 274 participants) with subacromial decompression at 1‐2 years; and 74 points with placebo and 4.2 points better (95% CI 1.61 worse to 10.01 better), with subacromial decompression at two years (Analysis 1.2). At two years, the 95% CIs do not exclude a clinically important difference.

Participant global assessment of treatment success

Based upon moderate‐certainty evidence (downgraded for imprecision), from two trials, we found no evidence of clinically important between‐group differences in the proportion of participants who rated treatment as successful at six months (surgery: 82/143 (57%) versus placebo: 72/150 (48%), RR 1.17, 95% CI 0.89 to 1.54) or at one year (surgery: 101/142 (71%) versus placebo: 97/148 (66%); RR 1.08, 95% CI 0.93 to 1.27; Analysis 1.3). Based on a single study (Paavola 2018), the success rates were also comparable at two years (surgery: 46/58 (79%) versus placebo 47/58 (81%), RR 0.98, 95% CI 0.82 to 1.17).

Health‐related quality of life

We pooled EQ‐5D data from Beard 2018 with 15D data from Paavola 2018 at six months and one year.

Based upon two trials, subacromial decompression did not improve quality of life more than placebo at six months (SMD ‐0.05 (95% CI ‐0.27 to 0.18, 292 participants). When this is back‐transformed, the EQ‐5D index was 0.67 with placebo and 0.01 points worse (0.08 worse to 0.05 better, 292 participants), with subacromial decompression. At one year the SMD was ‐0.09 (95% CI ‐0.39 to 0.21, 285 participants), and back‐transformed to the EQ‐5D index, EQ‐5D was 0.73 with placebo and 0.03 points worse (95% CI 0.11 worse to 0.06 better; 285 participants), with subacromial decompression (Analysis 1.4).

Based upon one trial there was also no between‐group clinically important difference (downgraded to moderate certainty due to imprecision), in health‐related quality of life at three months. 15D was 0.92 with placebo and 0.01 worse (95% CI 0.03 worse to 0.01 better; 118 participants), with subacromial decompression. At two years, 15D was 0.92 with placebo and 0 points (95% CI 0.01 worse to 0.01 better, 118 participants) better with subacromial decompression (high‐certainty evidence).

Minor outcomes

Based upon one trial (Paavola 2018), there were no important differences in participation in work or return to sport or leisure activities up to two years (Analysis 1.5; Analysis 1.6).

2. Subacromial decompression versus exercise therapy

Of the seven trials that compared subacromial decompression followed by exercises to exercises alone (Brox 1993, Farfaras 2016, Haahr 2005, Ketola 2009; Paavola 2018; Peters 1997; Rahme 1998), we were able to pool outcome data from one or more of the seven trials across the outcomes of interest. The trials recruited clinically similar participants except that three out of 21 (14%) participants in the decompression group in Rahme 1998 were identified as having full‐thickness rotator cuff tears during surgery and the number in the exercise group is unknown.

Pain

Four trials reported pain at three and six months (Brox 1993; Haahr 2005; Ketola 2009; Paavola 2018); three trials at one year (Haahr 2005; Ketola 2009; Paavola 2018), and at two years (Brox 1993; Ketola 2009; Paavola 2018); two trials at five years (Haahr 2005; Ketola 2009), and one trial at ten years (Ketola 2009). Statistical heterogeneity was unimportant at all time points except at two (I2 = 63%), and five years (I2 = 73%).

Moderate‐certainty evidence (downgraded due to the risk of detection and performance bias), indicates that pain did not differ between surgery and exercises at three months, six months or two years. At three months, pain was 4.4 with exercise and 0.55 better (95% CI 1.24 better to 0.14 worse, 361 participants); at six months, 3.9 with exercise and 0.56 points better (95% CI 0.02 better to 1.09 better, 399 participants) with surgery; at two years, 2.8 points after exercise and 0.44 points better (95% CI 0.49 worse to 1.37 better, 352 participants; Analysis 2.1).

At one year, the evidence was low certainty due to bias and imprecision. The 95% CIs included a clinically important change in favour of surgery: pain was 3.7 with exercise and 1.01 points better (95% CI 0.42 better to 1.60 better, 316 participants) with surgery.

At five and ten years, we downgraded the evidence once for bias to moderate certainty; the 95% CIs exclude a clinically important benefit with surgery. At five years, pain was 2.7 with exercise and 0.36 points worse (95% CI 1.17 better to 1.89 worse, 188 participants) with surgery; at ten years, pain was 1.8 with exercises and 1.0 point worse (95% CI 0.25 better to 2.25 worse, 90 participants) with surgery.

Function

Three trials reported function at three months (Brox 1993; Haahr 2005; Ketola 2009); four trials at six months (Brox 1993; Haahr 2005; Ketola 2009; Paavola 2018); three trials at one year ( Haahr 2005; Ketola 2009; Peters 1997); five trials at two years (Brox 1993; Farfaras 2016; Ketola 2009; Paavola 2018; Peters 1997), three trials at five years (Haahr 2005; Ketola 2009; Peters 1997), and two trials at 10 years (Farfaras 2016; Ketola 2009).

Statistical heterogeneity ranged from I2 = 0% to I2 = 81% across different time points, but as there were only few studies this has to be interpreted with care. At six months and one year, the heterogeneity seemed to be largely driven by Ketola 2009; the outcome appears to favour surgery but the confidence intervals overlap with the other studies.

Surgery did not appear to improve function more than exercise at any time point up to five years, but the evidence was low certainty due to bias and imprecision. The 95% CIs include both no change and a clinically important change in favour of surgery. At three months, the mean function was 55 points (on a 0 to 100 scale, higher indicates better function), with exercise and 6.1 points better (95% CI 5.57 worse to 17.79 better, 257 participants), with surgery; at six months mean function was 57 points with exercise and 3.7 points better (95% CI 2.25 worse to 9.58 better, 398 participants), with surgery; at one year, mean function was 58 with exercise and 3.2 points better (95% CI 8.08 worse to 14.55 better, 259 participants), with surgery; at two years mean function was 71 with exercise and 4.9 points better, (95% CI 0.77 better to 9.11 better, 467 participants), with surgery; and at five years, function was 76 with exercise and 7.6 points better (95% CI 0.17 better to 15.09 better, 157 participants) with surgery. At 10 years, there was low‐certainty evidence (downgraded due to bias and imprecision), that surgery was better than exercise with respect to mean function; it was 69 with exercise and 9.54 points better (95% CI 1.93 better to 17.15 better, 156 participants) with surgery (Analysis 2.2).

Using SMD and back‐transformation to Constant score (0 to 100) in analysis yielded generally narrower CIs (data not shown in tables or forest plots). At three months: MD 4.2 points (95% CI −4.2 to 12.6); at six months: MD 3 points (95% CI −1.3 to 7.2); at one year: MD 1.6 points (95% CI −5.8 to 9.0); at two years: MD 4.2 points (95% CI 1.1 to 7.4); at five years: MD 4.6 points (95% CI −0.48 to 9.6); at 10 years: MD 5.8 points (95% CI −2.7 to 14.2).

Participant global assessment of treatment success

Paavola 2018 and Rahme 1998 reported global assessment of success at six months and one year, Paavola 2018 reported this outcome at two years, Haahr 2005 at five years and Ketola 2009 at 10 years. The statistical heterogeneity was unimportant (I2 = 29% at six months and I2 = 0% at one year).

In the secondary comparison we downgraded this outcome to low certainty due to bias and low event rates (imprecision). The success rates were: 40 out of 77 (52%) with surgery versus 33 out of 84 (39%) with exercises (RR 1.47, 95% CI 0.74 to 2.91), at six months; 55 out of 76 (72%) with surgery versus 49 out of 82 (60%) with exercises (RR 1.21, 95% CI 0.96 to 1.51), at one year; 46 out of 58 (79%) with surgery and 43 out of 68 (63%) with exercises (RR 1.25, 95% CI 1.00 to 1.57), at two years; 23 out of 39 (59%) for surgery and 27 out of 40 (68%) for exercises (RR 0.87, 95% CI 0.62 to 1.23), at five years; 23 out of 44 (52%) with surgery and 24 out of 46 (52%) with exercises (RR 1.00, 95% CI 0.67 to 1.49), at 10 years (Analysis 2.3).

Health‐related quality of life

Paavola 2018 measured quality of life with the 15D (0 to 1) at three months, six months, one year and two years. Farfaras 2016 measured it with the SF‐36 (0 to 100) at two years and at 10 years; and Ketola 2009 measured it with 15D at 10 years. The statistical heterogeneity was unimportant at two years (I2 = 22%) and there was no heterogeneity at 10 years.

Surgery appeared to improve health‐related quality of life more than exercise at some time points (six months and 10 years), but the evidence was low certainty due to bias and imprecision. At six months, mean quality of life was 0.89 with exercise and 0.02 points better (95% CI 0.01 better to 0.03 better, 119 participants), with surgery; at one year, mean quality of life was 0.91 with exercise and 0.01 points better (95% CI 0.01 better to 0.03 better, 116 participants) with surgery; at five years, mean quality of life was 0.92 with exercises and 0.01 points better (95% CI 0.02 worse to 0.04 better, 86 participants). At 10 years, SMD was 0.30 (95% CI −0.01 to 0.62, 155 participants). Back‐transformed to 15D, the mean quality of life was 0.89 with exercise and 0.02 points better (95% CI 0 better to 0.04 better) with surgery (Farfaras 2016; Ketola 2009; Analysis 2.4).

In other time points, we found no clinically important between‐group differences (low‐certainty evidence, downgraded due to bias and imprecision). At three months, mean quality of life was 0.9 with exercises and 0.01 points better (95% CI 0.02 worse to 0.04 better; 119 participants) with surgery; at two years, SMD was 0.13, (95% CI ‐0.22 to 0.48, 118 participants; Farfaras 2016; Paavola 2018). When back‐transformed to15D, the mean quality of life was 0.91 with exercises and 0.01 points better (0.01 worse to 0.03 better), with surgery. At five years, mean quality of life was 0.92 with exercises and 0.01 points better (95% CI 0.02 worse to 0.04 better, 86 participants). The 95% CIs do not exclude a clinically important benefit of surgery at these time points.

Minor outcomes

Brox 1993 and Paavola 2018 reported participation in work at six months' and two years' follow‐up. Paavola 2018 also reported this outcome at three months and one year, and Haahr 2005 at four to eight years' follow‐up. Ketola 2009 reported number of participants who retired for shoulder‐related reasons at five and 10 years. The statistical heterogeneity was substantial (I2 = 60%) at six months and unimportant (I2=0%) at two years. We downgraded the evidence to moderate certainty at six months and one year ( due to serious imprecision). At other time points, we downgraded the evidence to low (twice for very serious imprecision)

We found no important between‐group differences in participation in work. At three months, 39 out of 59 participants in the surgery group and 47 out of 68 in the exercise group were at work (RR 0.96, 95% CI 0.75 to 1.22); at six months, 67 out of 87 participants in surgery group and 73 out of 100 in exercise group (RR 1.05, 95% CI 0.81 to 1.36), were at work; at one year, 48 out of 56 in surgery group and 55 out of 63 were at work (RR 0.98, 95% CI 0.85 to 1.13); at two years, 67 out of 90 in surgery group versus 80 out of 93 in the exercise group (RR 0.87; 95% CI 0.70 to 1.07; Analysis 2.5). At five years 72 out of 96 (75%) participants in the surgery group and 62 out of 92 (67%) participants in the exercise group were working (RR 1.13, 95% CI 0.97 to 1.32). At 10 years, 43 out of 44 (98%) and 42 out of 46 (91%) participants were at work in the surgery group and exercise group respectively (RR 1.07, 95% CI 0.97 to 1.18).

One trial reported participation in recreational activities (Paavola 2018). There was no important differences between the groups. The participation rate was 31 out of 55 participants for surgery group versus 28 out of 65 in the exercise group (RR 1.31, 95% CI 0.91 to 1.88), at three months; 34 out of 54 for surgery versus 35 out of 62 for exercises (RR 1.12, 95% CI 0.83 to 1.50), at six months; 42 out of 54 for surgery versus 46 out of 64 for exercises (RR 1.08, 95% CI 0.88 to 1.33), at one year; and 46 out of 56 for surgery versus 48 out of 62 (RR 1.06, 95% CI 0.88 to 1.27), at two years (Analysis 2.6).

Two trials performed imaging to identify rotator cuff tears during follow‐up, one at five years (Ketola 2009), and the other at a mean of 13 years (Farfaras 2016). Full‐thickness tears in the supraspinatus tendon were identified in 8 out of 48 (17%) participants in the surgery group versus 7 out of 42 (17%) in the exercise group in Ketola 2009 (RR 1.00, 95% CI 0.40 to 2.52), at five years, and 2 out of 38 (5%) participants in the surgery group versus 4 out of 28 (14%) participants in the exercise group in Farfaras 2016 (RR 0.37, 95% CI 0.07 to 1.87), at 13 years (Analysis 2.7).

3. Subacromial decompression versus no treatment

One trial included a control group that did not receive any active intervention (active monitoring; Beard 2018). The evidence was downgraded to low certainty due to bias and imprecision (95% CI overlaps minimal important difference) for all outcomes.

Pain

At six months, mean pain was 5 points (on a zero to 10 scale), with no treatment and 0.80 points better (95% CI 0.00 better to 1.60 better; 177 participants), with surgery. At one year,the mean pain was 4.1 points with no treatment and 1.20 points better (0.36 better to 2.04 better; 166 participants), with surgery. The CIs do not exclude a clinically important difference between the groups (Analysis 3.1).

Function

At six months, mean function was 45.4 points (on a zero to 100 scale), with no treatment and 11.10 points better (95% CI 4.52 better to 17.68 better, 165 participants), with surgery. At one year, mean function was 57 points with no treatment and 9.5 points better (95% CI 2.66 better to 16.34 better, 146 participants), with surgery (Analysis 3.2). The CIs do not exclude a clinically important difference between the groups.

Global assessment of success

More participants had treatment success after surgery compared with no treatment: 49 out of 87 (56%) participants with surgery versus 27 out of 80 (34%) participants with no treatment (RR 1.67, 95% CI 1.17 to 2.39), at six months, and 62 out of 87 (71%) participants with surgery versus 43 out of 80 (54%) participants with no treatment (RR 1.33, 95% CI 1.04 to 1.69). The differences correspond with a NNTB of 4 at six months and 6 at one year (Analysis 3.3).

Health‐related quality of life

We found no clinically important difference in quality of life between surgery and no treatment but the 95% CIs do not exclude important difference. At six months, quality of life measured with the EQ‐5D index was 0.52 (−0.59 to 1 scale), with no treatment and 0.13 points better (95% CI 0.03 better to 0.23 better), with surgery. At one year, EQ‐5D was 0.66 with no treatment and 0.08 points better (95% CI 0.01 worse to 0.17 better), with surgery (Analysis 3.4).

Minor outcomes

Beard 2018 did not report any participation or treatment failure outcomes.

Harms

Subacromial decompression versus non‐operative control
Adverse events

Adverse events were reported in two randomised controlled trials (Beard 2018; Paavola 2018). Both trials included a placebo control group and also included a third treatment group comprising no treatment (active monitoring) in Beard 2018 and an exercise therapy program in Paavola 2018. A third trial (Ketola 2009) reported an absence of adverse events in the surgery group but did not explicitly report whether or not there were adverse events in the exercise therapy group. Evidence from the randomised trials was downgraded to moderate‐certainty due to imprecision from low event rates (summary of findings Table for the main comparison; summary of findings Table 2).

Beard 2018 reported that two out of 106 participants in the decompression group, two out of 103 in the placebo group and two out of 104 in the no treatment group had frozen shoulder. Paavola 2018 reported frozen shoulder in three out of 59 participants in the subacromial decompression group, one out of 63 participants in the placebo group and two out of 71 participants in the exercise group. One participant in the placebo group had temporary swelling in the brachial area related to a brachial plexus block, while one participant in the exercise group also developed aggravation of low back pain. The RR for adverse events was 0.91 (95% CI 0.31 to 2.65; 406 participants) (Analysis 4.1).

Serious adverse events

There were no reports of serious adverse events in any randomised trials. Reports of serious adverse events came from two observational reports from a surgery registry recording 30‐day morbidity after shoulder arthroscopic surgery. Overall, we are uncertain if there is an increased risk of serious adverse events with decompression surgery (moderate‐certainty evidence, downgraded for indirectness as observational studies included other arthroscopic shoulder surgeries in addition to subacromial decompression procedures).

The incidence of serious harms following mixed shoulder arthroscopic procedures was 0.5% (0.4% to 0.7%) during 2006 to 2011 (Shields 2015), and 0.6% (0.5% to 0.7%), during 2011 to 2013 (Hill 2017). The adverse events were not reported separately by procedure (Table 5). The co‐published parallel review provides the full report of these events (Lähdeoja 2019).

Open in table viewer
Table 5. Serious adverse events in registry studies

Eventa

N (%) Hill 2017

N (%) Shields 2015

Mortality

2 (0.01)

4 (0.04)

Bleeding requiring transfusion

7 (0.05

5 (0.05)

Sepsis

0 (0)

1 (0.01)

Septic shock

3 (0.02)

2 (0.02)

Deep infection

1 (0.01)

1 (0.01)

Organ or space surgical site infection

3 (0.02)

2 (0.02)

Wound dehiscence

1 (0.01)

1 (0.01)

Deep vein thrombosis

21 (0.14)

8 (0.08)

Pulmonary embolism

20 (0.13)

7 (0.07)

Myocardial infarction

3 (0.02)

4 (0.04)

Cardiac arrest requiring cardiopulmonary

resuscitation

1 (0.01)

2 (0.02)

Cerebral vascular event

4 (0.03)

2 (0.02)

Acute renal failure

2 (0.01)

1 (0.01)

Pneumonia

13 (0.09)

7 (0.07)

Unplanned intubation

7 (0.05)

3 (0.03)

Ventilator > 48 hours

2 (0.01)

1 (0.01)

Peripheral nerve injury

2 (0.01)

2 (0.02)

aThese serious adverse events were recorded across all procedures in the registry and were not reported separately by procedure.

Sensitivity analyses

To assess the robustness of the findings in our primary analysis, we pooled data from both the placebo‐controlled trials and open‐label trials (subacromial decompression versus exercises), in sensitivity analyses. We did the analyses for pain at the six‐month and one‐year time points and for function at six‐month and one‐to‐three‐year time points.

Pooling the unblinded trials with the placebo‐controlled trials did not change the estimates of treatment effects to a clinically important level. Statistical heterogeneity was unimportant (0%) in all pain comparisons. With respect to function, statistical heterogeneity was larger when combining open‐label trials compared with the placebo‐controlled trials (I2 = 0% combining the two placebo‐controlled trials versus I2 = 50% to 63% when combining the open‐label trials).

At six months the mean pain was 3.9 (0 to 10 scale, higher is worse), with exercise or placebo and 0.31 points better (95% CI 0.12 worse to 0.75 better, 639 participants), with surgery; at one year, the mean pain was 3.3 with exercise or placebo and 0.58 points better (95% CI 0.12 better to 1.05 better, 532 participants), with surgery. The CIs exclude the clinically important difference (Analysis 5.1; Analysis 5.2).

At six months, mean function was 58 points (0 to 100 scale, higher indicates better), with exercise or placebo and 1.05 points better (95% CI 3.77 worse to 5.87 better, 625 participants), with surgery; at one to three years, mean function was 68 points with exercise or placebo and 3.2 points better (95% CI −0.81 to 7.23, 737 participants), with surgery. The CIs exclude an important difference at both time points (Analysis 5.3; Analysis 5.4).

Removing data with imputed SD for function (Peters 1997), in the decompression surgery versus exercises comparisons where relevant, resulted in wider CIs but no clinically important change in the estimate (one year: MD 3.24, 95% CI −8.08 to 14.55, including data from Peters 1997, versus MD 5.98, 95% CI −14.59 to 26.55, excluding these data; two years: MD 4.94, 95% CI 0.77 to 9.11, including data from Peters 1997, versus MD 5.07, 95% CI −0.55 to 10.70, excluding these data; five years: MD 7.63, 95% CI 0.17 to 15.09, including data from Peters 1997, versus MD 5.30, 95% CI −5.31 to 15.91 excluding these data.

Discusión

disponible en

Resumen de los resultados principales

Dos ensayos compararon la cirugía de descompresión artroscópica con cirugía placebo (artroscopia sin descompresión). En comparación con la cirugía placebo, evidencia de certeza alta indica que la descompresión subacromial no proporciona efectos beneficiosos clínicamente importantes en lo que se refiere al dolor, la funcionalidad o la calidad de vida al año. Probablemente no hubo diferencias importantes en la evaluación global del participante del éxito del tratamiento (evidencia de certeza moderada, disminuida debido a la imprecisión) (Resumen de los hallazgos, tabla 1). Los análisis de sensibilidad que incluyeron los resultados de los ensayos abiertos (con alto riesgo de sesgo) no cambiaron las estimaciones de forma considerable.

Siete ensayos compararon la descompresión subacromial con el tratamiento con ejercicio. Evidencia de certeza baja disponible de tres ensayos al año indica que no hubo efectos beneficiosos clínicamente importantes en cuanto al dolor, la funcionalidad, la evaluación global del éxito o la calidad de vida relacionada con la salud (Resumen de los hallazgos, tabla 2). La evidencia se disminuyó debido al sesgo y la imprecisión. Los ensayos estuvieron sujetos a sesgos de realización y de detección debido a que los participantes conocían qué tratamiento habían recibido. Los IC del 95% de las estimaciones del tratamiento no excluyen diferencias clínicamente importantes entre el ejercicio y la cirugía.

Cerca del 3% de los participantes de los estudios informaron de eventos adversos en los ensayos controlados aleatorios, aunque debido a las tasas bajas de eventos no existe seguridad sobre si la cirugía se asocia con un mayor riesgo de eventos adversos en comparación con los grupos control (Resumen de los hallazgos, tabla 1).

En un registro de cirugía que presentó la morbilidad a 30 días después de la cirugía artroscópica del hombro se observaron eventos adversos graves que incluyeron muerte, trombosis venosa profunda, neumonía y daño nervioso periférico. Aunque no se conocen las estimaciones precisas, sobre la base del registro National Surgical Quality Improvement Program (NSQIP), el riesgo de eventos adversos graves probablemente es menor del 1%

Compleción y aplicabilidad general de las pruebas

Esta revisión incluyó dos ensayos controlados con placebo de descompresión subacromial que tuvieron bajo riesgo de sesgo. Ambos ensayos también incluyeron un tercer grupo control de ningún tratamiento o ejercicios, y los participantes de estos grupos conocían la asignación al tratamiento. Se incluyeron seis ensayos adicionales que compararon la descompresión subacromial con el tratamiento con ejercicio y todos tuvieron alto riesgo de sesgo de realización y de detección. Uno de estos ensayos también incluyó un grupo control adicional que recibió tratamiento con láser apagado (placebo). No se identificaron ensayos que compararan la cirugía de descompresión subacromial con otros tratamientos no quirúrgicos como los AINE, los glucocorticoides u otras inyecciones.

Los ensayos se realizaron en seis países y los participantes de los ensayos tenían características clínicas típicas de la enfermedad del manguito rotador (con pinzamiento y sin desgarros de espesor total o completos del manguito rotador o calcificación). La mayoría de los ensayos excluyeron los desgarros de espesor total mediante IRM, ecografía o artroscopia antes de la inclusión. Los participantes también fueron similares en cuanto a la edad (media de edad 41 a 59 años), la distribución del sexo (predominio femenino leve), el dolor y la funcionalidad al inicio, la duración de los síntomas y el fracaso en la mejora con el tratamiento conservador (tratamiento con ejercicio con o sin inyecciones de glucocorticoides) durante al menos tres meses. Por lo tanto, la síntesis de esta revisión se puede aplicar a pacientes similares en la práctica clínica. Los ensayos no incluyeron participantes de edad muy avanzada ni informaron resultados en subpoblaciones específicas como los trabajadores manuales, por lo que no es posible establecer conclusiones específicas para estos subgrupos.

El análisis primario sólo incluyó ensayos con bajo riesgo de sesgo, pero los resultados no cambiaron de manera significativa cuando todos los ensayos disponibles se agruparon en el análisis de sensibilidad. El control placebo da lugar a falta de direccionalidad debido a que la cirugía placebo no es una opción de tratamiento en la práctica clínica. Sin embargo, los resultados mayormente consistentes de los estudios no cegados dejan pocas dudas en cuanto a la inferencia de que la descompresión subacromial no proporciona efectos beneficiosos importantes en pacientes con enfermedad del manguito rotador que se manifiesta como pinzamiento doloroso del hombro.

La medición del dolor varió a través de los ensayos desde dolor no especificado hasta dolor con la actividad o dolor promedio, así como dolor durante la noche y en reposo. Se prefirió extraer los datos generales del dolor cuando estuvieron disponibles, pero algunos ensayos sólo informaron el dolor con la actividad y otros no especificaron el marco de la pregunta mediante la cual evaluaron el dolor.

Con respecto a la funcionalidad los ensayos utilizaron diferentes medidas de resultado. Se decidió extraer la puntuación Constant siempre que se utilizó debido a que se usó en dos ensayos de la comparación primaria y en la mayoría de los ensayos de la segunda comparación (Beard 2018; Farfaras 2016; Haahr 2005; Paavola 2018). Otras medidas no se utilizaron en más de un estudio. La puntuación Constant otorga un peso considerable a la capacidad en lugar de a la funcionalidad/discapacidad. Sin embargo, su validez y respuesta son aceptables en comparación con otros instrumentos (Roy 2010) y la revisión sistemática paralela (Lähdeoja 2019) proporcionó estimaciones de credibilidad alta de la DMI (Hao 2019).

Debido a que se esperaba que los ensayos no proporcionaran datos suficientes para calcular los eventos adversos graves debido a su baja incidencia, también se realizó otra revisión de estudios observacionales de la descompresión subacromial y la artroscopia del hombro para diversos diagnósticos, como se describe en Lähdeoja 2019. Las estimaciones se basaron en dos estudios que utilizaron un registro grande con un total de 25 270 procedimientos artroscópicos del hombro en más de 600 centros de los EE.UU.

Los períodos de seguimiento de los ensayos variaron desde un año hasta 13 años y la mayoría de los ensayos presentaron los resultados después de dos años o más. Hubo un aumento del sesgo de deserción y de informe en los puntos temporales de seguimiento más largos. Las comparaciones a los cinco y diez años proporcionaron evidencia de baja certeza de que la cirugía puede mejorar la funcionalidad, pero no el dolor. Sin embargo, es posible que existan otros factores de confusión con respecto a los efectos del tratamiento durante los períodos más largos de seguimiento. Paavola 2018 presentará los resultados a los cinco años, que probablemente afectará la confianza en las estimaciones a los cinco años.

Calidad de la evidencia

Evidencia de certeza alta de ensayos controlados aleatorios indica que la descompresión subacromial no proporciona efectos beneficiosos clínicamente importantes sobre placebo en cuanto al dolor, la funcionalidad o la calidad de vida. Debido a la imprecisión la certeza de la evidencia se disminuyó a moderada para la evaluación global del éxito del tratamiento; probablemente no hubo un efecto beneficioso importante en este resultado con respecto a placebo.

La certeza de la evidencia de los ensayos aleatorios que compararon la descompresión subacromial con el ejercicio se disminuyó a certeza baja para el dolor, la funcionalidad, la evaluación global del éxito y la calidad de vida relacionada con la salud, debido principalmente al sesgo de detección asociado con el diseño abierto y la imprecisión; los IC del 95% de las estimaciones del efecto no confirmaron ni descartaron efectos clínicamente importantes.

Para los eventos adversos, la certeza de la evidencia de los ensayos controlados aleatorios se disminuyó a moderada debido a las tasas bajas de eventos informadas y, por lo tanto, a las estimaciones imprecisas de los riesgos comparativos.

Debido a que sólo hubo unos pocos ensayos en cada comparación no fue posible obtener estimaciones precisas de la heterogeneidad. Los dos ensayos controlados con placebo presentaron resultados consistentes para todos los resultados. Aunque los ensayos que compararon la descompresión subacromial con ejercicio mostraron inconsistencia a los seis meses y al año, influida por un estudio para la funcionalidad, la certeza de la evidencia no se disminuyó debido a que los IC se superponen con los otros estudios y sólo hubo de tres a cuatro ensayos en los puntos temporales que fue posible agrupar.

La evidencia con respecto a la incidencia de eventos adversos graves fue de certeza moderada. Los estudios de registros estaban bien diseñados. Aunque pueden ocurrir unos pocos eventos en esta población incluso sin cirugía, la mayoría de los eventos adversos graves observados probablemente fueron atribuibles al procedimiento índice (Tabla 4; Tabla 5), por lo que la certeza predeterminada de la evidencia comenzó siendo alta. Las cirugías incluidas combinaron procedimientos artroscópicos del hombro, por lo que la certeza se disminuyó debido a la falta de direccionalidad.

Sesgos potenciales en el proceso de revisión

Hasta donde se sabe, se identificaron todos los ensayos relevantes que cumplieron los criterios de inclusión mediante búsquedas en todas las bases de datos principales, sin restricciones de idioma. Se utilizaron hasta tres asesores independientes para la detección y selección de los artículos, así como para la evaluación del riesgo de sesgo de los ensayos. Ninguno de los autores de la revisión se había involucrado en la realización de los ensayos incluidos.

Hubo muy pocos estudios para evaluar el riesgo de sesgo de publicación. Se identificó un ensayo en curso que compara la cirugía con el ejercicio y un ensayo completado en 2008 sin resultados disponibles (cirugía versus atención habitual). Es poco probable que los resultados de estos ensayos, cuando estén disponibles, alteren las conclusiones de esta revisión.

Acuerdos y desacuerdos con otros estudios o revisiones

Además de la revisión Cochrane original (Coghlan 2008), se identificaron otras dos revisiones sistemáticas publicadas que compararon específicamente la cirugía con ejercicios en el tratamiento del síndrome de pinzamiento (Saltychev 2015; Toliopoulos 2014). Las conclusiones de estas revisiones coinciden con la revisión actualizada. Ambas concluyeron que no hay efectos beneficiosos de la cirugía con respecto a los tratamientos conservadores para el pinzamiento del hombro. Ninguna de las revisiones anteriores incluyó ensayos controlados con placebo.

Study flow diagram
Figuras y tablas -
Figure 1

Study flow diagram

'Risk of bias' summary: review authors' judgements about each risk of bias item for each included study
Figuras y tablas -
Figure 2

'Risk of bias' summary: review authors' judgements about each risk of bias item for each included study

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 1 Pain (VAS or NRS 0‐10, lower is better).
Figuras y tablas -
Analysis 1.1

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 1 Pain (VAS or NRS 0‐10, lower is better).

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 2 Functional outcome (Constant score 0‐100, 100 is best).
Figuras y tablas -
Analysis 1.2

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 2 Functional outcome (Constant score 0‐100, 100 is best).

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 3 Global assessment of treatment success.
Figuras y tablas -
Analysis 1.3

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 3 Global assessment of treatment success.

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 4 Health‐related quality of life (various measures, higher is better).
Figuras y tablas -
Analysis 1.4

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 4 Health‐related quality of life (various measures, higher is better).

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 5 Participation (number at work).
Figuras y tablas -
Analysis 1.5

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 5 Participation (number at work).

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 6 Participation (number returning to sport or leisure activities).
Figuras y tablas -
Analysis 1.6

Comparison 1 Subacromial decompression vs placebo for rotator cuff disease, Outcome 6 Participation (number returning to sport or leisure activities).

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 1 Pain (VAS 0‐10, 0 is no pain).
Figuras y tablas -
Analysis 2.1

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 1 Pain (VAS 0‐10, 0 is no pain).

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 2 Functional outcome (0‐100, 100 is best).
Figuras y tablas -
Analysis 2.2

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 2 Functional outcome (0‐100, 100 is best).

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 3 Global assessment of treatment success.
Figuras y tablas -
Analysis 2.3

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 3 Global assessment of treatment success.

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 4 Health‐related quality of life (various measures, 0‐1; higher is better).
Figuras y tablas -
Analysis 2.4

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 4 Health‐related quality of life (various measures, 0‐1; higher is better).

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 5 Participation (number at work).
Figuras y tablas -
Analysis 2.5

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 5 Participation (number at work).

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 6 Participation (numbers returning to sport or leisure activities).
Figuras y tablas -
Analysis 2.6

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 6 Participation (numbers returning to sport or leisure activities).

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 7 Treatment failure.
Figuras y tablas -
Analysis 2.7

Comparison 2 Subacromial decompression vs exercise treatment for rotator cuff disease, Outcome 7 Treatment failure.

Comparison 3 Subacromial decompression vs no treatment for rotator cuff disease, Outcome 1 Pain (NRS 0‐10 lower is better).
Figuras y tablas -
Analysis 3.1

Comparison 3 Subacromial decompression vs no treatment for rotator cuff disease, Outcome 1 Pain (NRS 0‐10 lower is better).

Comparison 3 Subacromial decompression vs no treatment for rotator cuff disease, Outcome 2 Functional outcomes (Constant score 0‐100, 100 is best).
Figuras y tablas -
Analysis 3.2

Comparison 3 Subacromial decompression vs no treatment for rotator cuff disease, Outcome 2 Functional outcomes (Constant score 0‐100, 100 is best).

Comparison 3 Subacromial decompression vs no treatment for rotator cuff disease, Outcome 3 Global assessment of treatment success.
Figuras y tablas -
Analysis 3.3

Comparison 3 Subacromial decompression vs no treatment for rotator cuff disease, Outcome 3 Global assessment of treatment success.

Comparison 3 Subacromial decompression vs no treatment for rotator cuff disease, Outcome 4 Health‐related quality of life (EQ‐5D 3L −0.59 to 1, higher is better).
Figuras y tablas -
Analysis 3.4

Comparison 3 Subacromial decompression vs no treatment for rotator cuff disease, Outcome 4 Health‐related quality of life (EQ‐5D 3L −0.59 to 1, higher is better).

Comparison 4 Harms: Subacromial decompression versus non‐operative treatment, Outcome 1 Total adverse events.
Figuras y tablas -
Analysis 4.1

Comparison 4 Harms: Subacromial decompression versus non‐operative treatment, Outcome 1 Total adverse events.

Comparison 5 Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease), Outcome 1 Pain at 6 months (VAS or NRS 0‐10, higher is better).
Figuras y tablas -
Analysis 5.1

Comparison 5 Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease), Outcome 1 Pain at 6 months (VAS or NRS 0‐10, higher is better).

Comparison 5 Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease), Outcome 2 Pain at 1 year (VAS or NRS 0‐10, higher is better).
Figuras y tablas -
Analysis 5.2

Comparison 5 Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease), Outcome 2 Pain at 1 year (VAS or NRS 0‐10, higher is better).

Comparison 5 Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease), Outcome 3 Function at 6 months (various measures 0‐100, higher is better).
Figuras y tablas -
Analysis 5.3

Comparison 5 Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease), Outcome 3 Function at 6 months (various measures 0‐100, higher is better).

Comparison 5 Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease), Outcome 4 Function at 1‐3 years (various measures, higher is better).
Figuras y tablas -
Analysis 5.4

Comparison 5 Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease), Outcome 4 Function at 1‐3 years (various measures, higher is better).

Comparison 5 Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease), Outcome 5 Pain at 1 year.
Figuras y tablas -
Analysis 5.5

Comparison 5 Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease), Outcome 5 Pain at 1 year.

Summary of findings for the main comparison. Subacromial decompression compared to placebo surgery

Subacromial decompression compared to placebo surgery for people with impingement syndrome without full‐thickness rotator cuff tears

Patient or population: people with impingement syndrome without full‐thickness rotator cuff tears
Setting: hospitals in Finland and UK
Intervention: subacromial decompression
Comparison: placebo surgery (diagnostic arthroscopy)

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

№ of participants
(studies)

Certainty of the evidence
(GRADE)

Comments

Risk with placebo surgery

Risk with subacromial decompression

Paina
(scale from 0‐10, 0 is no pain)
Follow‐up: 1 year

The mean pain was 2.9 pointsb

The mean pain was 0.26 points better
(0.84 better to 0.33 worse)

284
(2 RCTs)

⊕⊕⊕⊕
High

Absolute difference 3% better (8% better to 3% worse); relative difference 4% better (12% better to 5% worse)c

Functional outcome

(Constant score from 0‐100, 100 is best)
Follow‐up: 1 year

The mean functional outcome was 69b

MD 2.76 higher
(1.36 lower to 6.87 higher)

274
(2 RCTs)

⊕⊕⊕⊕
High

Absolute difference 3% better (7% better to 1% worse); relative difference 9% better (22% better to 4% worse)c

Global assessment of treatment success

655 per 1000

708 per 1000
(610 to 832)

RR 1.08
(0.93 to 1.27)

290
(2 RCTs)

⊕⊕⊕⊝
Moderated

Absolute difference 5% more reported success (5% fewer to 16% more); relative difference 8% more reported success (7% fewer to 27% more)

Health‐related quality of life
(scale from −0.59 to 1, 1 is perfect health)
Follow‐up: 1 year

The mean health‐related quality of life was 0.73b

MD 0.03 lower
(0.11 lower to 0.06 higher)

285
(2 RCTs)

⊕⊕⊕⊕
High

SMD 0.09 worse (0.39 worse to 0.21 better)

Absolute difference 2% worse (7% worse to 4% better); relative difference 5% worse (20% worse to 11% better)c

Adverse events

37 per 1000

34 per 1000
(11 to 98)

RR 0.91
(0.31 to 2.65)

406
(2 RCTs)d

⊕⊕⊕⊝
Moderatee

Absolute difference of 1% fewer events with surgery (4% fewer to 3% more); relative difference 9% fewer events with surgery (69% fewer to 165% more)

Serious adverse events

No events

No events

No estimate

331
(2 RCTs)

⊕⊕⊕⊝
Moderatef

Although precise estimates are unknown, serious adverse event rates in observational studies are reported as less than 1%g

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; MD: mean difference; RR: risk ratio; SMD: standardised mean difference

GRADE Working Group grades of evidence
High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aPain measured with numeric rating scale (NRS) or visual analogue scale (VAS).
bMedian value in placebo groups after one‐year follow‐up.
cRelative changes calculated relative to baseline in control group (i.e. absolute change (mean difference) divided by mean at baseline in the placebo group from Paavola 2018 (values were: 7.23 points on 0 to 10‐point VAS pain; 31.7 points on 0 to 100‐point Constant score) and Beard 2018 (0.55 points on EQ‐5D quality‐of‐life scale). Absolute change calculated as mean difference divided by scale of the instrument, expressed as percentage.

dPooled both placebo and non‐operative (exercise or no treatment) comparisons from randomised controlled trials in the analysis of adverse events
eDowngraded due to imprecision (due to low event rates, or 95% confidence intervals that included both benefits and harms) in the randomised trials.

fDowngraded due to indirectness as arthroscopic procedures other than subacromial decompression were included in the surgery registry observational data
gSerious adverse events as reported in observational studies, 7 per 1000 (95% CI 6 to 8 per 1000) include: deep infection; pulmonary embolism; uncontrolled bleeding; myocardial infection; acute renal failure; ventilation more than 48 hours; cerebral vascular incident; septic shock; cardiac arrest; wound dehiscence; deep venous thrombosis; pneumonia; bleeding requiring transfusion; nerve injury; death; organ space infection.

Figuras y tablas -
Summary of findings for the main comparison. Subacromial decompression compared to placebo surgery
Summary of findings 2. Subacromial decompression compared to exercises

Subacromial decompression compared to exercises for people with impingement syndrome without full‐thickness rotator cuff tears

Patient or population: people with impingement syndrome without full‐thickness rotator cuff tears
Setting: hospitals or home
Intervention: subacromial decompression
Comparison: exercises

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

№ of participants
(studies)

Certainty of the evidence
(GRADE)

Comments

Risk with exercise

Risk with subacromial decompression

Paina
(scale from: 0‐10, 0 is no pain)
Follow‐up: 1 year

The mean pain was 3.7 pointsb

MD 1.01 better
(1.6 better to 0.42 better)

316
(3 RCTs)

⊕⊕⊝⊝
Lowc

Absolute difference 10% better (4% better to 16% better); relative difference 14% better (6% better to 22% better)d

Functional outcomee

(scale from 0‐100, 100 is best)
Follow‐up: 1 year

The mean functional outcome was 58b

MD 3.24 better
(8.08 worse to 14.55 better)

259
(3 RCTs)

⊕⊕⊝⊝
Lowc

Absolute difference 3% better (8% worse to 15% better); relative difference 9% better (23% worse to 41% better)d

Global assessment of treatment success

598 per 1000

723 per 1000
(574 to 902)

RR 1.21
(0.96 to 1.51)

158
(2 RCTs)

⊕⊕⊝⊝
Lowc

Absolute difference 13% more reported success (2% fewer to 30% more); relative difference 21% more reported success (4% fewer to 51% more)

Health‐related quality of life

(15D; scale from: 0‐1, 1 is perfect health)
Follow‐up: 1 year

The mean health‐related quality of life was 0.91b

MD 0.01 better
(0.01 worse to 0.03 better)

116
(1 RCT)

⊕⊕⊝⊝
Lowc

Absolute difference 1% better (1% worse to 3% better); relative difference 1% better (1% worse to 3% better)d

Adverse events

37 per 1000

34 per 1000
(11 to 98)

RR 0.91
(0.31 to 2.65)

406
(2 RCTs)f

⊕⊕⊕⊝
Moderateg

Absolute difference of 1% fewer events with surgery (4% fewer to 3% more); relative difference 9% fewer events with surgery (69% fewer to 165% more)

Serious adverse events

No events

No events

Not estimable

⊕⊕⊕⊝
Moderateh

Although precise estimates are unknown, serious adverse events rates in observational studies are reported as less than 1%i

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; MD: mean difference; RR: risk ratio

GRADE Working Group grades of evidence
High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aPain measured with numeric rating scale (NRS) or visual analogue scale (VAS).
bMedian value in exercise groups at one‐year follow‐up.
cDowngraded due to risk of bias and imprecision.
dRelative changes calculated as mean difference divided by mean at baseline in the exercise group from Paavola 2018 (mean (standard deviation) values were: 7.24 (2.08) points on 0 to 10‐point VAS pain scale; 35.2 (16.2) points on 0 to 100‐point Constant score); and 0.88 (0.08) points on 0 to 1 scale in health‐related quality of life. Absolute difference calculated as mean difference divided by scale of the instrument, expressed as percentage.
eFunctional outcome measured with various measures (Constant score, Shoulder Disability Questionnaire, Subjective Shoulder Rating scale, or Neer score).

fPooled both placebo and non‐operative (exercise or no treatment) comparisons from randomised controlled trials in the analysis of adverse events

gDowngraded due to imprecision (due to low event rates) in the randomised trials
hDowngraded due to indirectness as arthroscopic procedures other than subacromial decompression were included in the surgery registry observational data.
iSerious adverse events as reported in observational studies, 7 per 1000 (95% CI 6 to 8 per 1000) include: deep infection; pulmonary embolism; uncontrolled bleeding; myocardial infection; acute renal failure; ventilation more than 48 hours; cerebral vascular incident; septic shock; cardiac arrest; wound dehiscence; deep venous thrombosis; pneumonia; bleeding requiring transfusion; nerve injury; death; organ space infection.

Figuras y tablas -
Summary of findings 2. Subacromial decompression compared to exercises
Table 1. Baseline demographic and clinical characteristics of the trial participants

Trial

Country

Groups (number randomised)

Mean age, years

Mean symptom duration in months (duration specified in inclusion criteria)

Mean pain

Mean shoulder‐specific score

Mean HRQoL

Treatment delivered by

Beard 2018

UK

Subacromial decompression (106)

53

Not reported (≥ 3 months)

Not reported

39a

0.52

38 different surgeons

Placebo surgery (103)

54

43a

0.55

No treatment (104)

53

38a

0.50

Not specified

Brox 1993

Norway

Subacromial decompression (45)

48

Not reported (≥ 3 months)

Not reported

64b

Not measured

2 surgeons

Exercise therapy (50)

47

66

1 physiotherapist

Placebo‐laser (30)

48

65

1 physiotherapist

Farfaras 2016

Sweden

Open subacromial decompression (24)

52

Not reported (≥ 6 months)

Not reported

48a

69.6 (SF‐36 General Health)

Not specified

Arthroscopic subacromial decompression (29)

49

56a

60.1

Exercise therapy (34)

50

56a

67.3

Haahr 2005

Denmark

Subacromial decompression (45)

45

Not reported (6 months‐3 years)

5.9

35a

Not measured

2 surgeons

Exercise therapy (45)

44

6.5

34a

2 physiotherapists

Ketola 2009

Finland

Subacromial decompression (70)

46

31 (≥ 3 months)

6.5

78c

Not measured

One surgeon

Exercise therapy (70)

48

30 (≥ 3 months)

6.5

83c

Physiotherapist

Paavola 2018

Finland

Subacromial decompression (59)

51

18 (≥ 3 months)

7.1

32a

0.89 (15D)

Not specified

Placebo surgery (63)

51

18 (≥ 3 months)

7.2

32a

0.89

Exercise therapy (71)

50

22 (≥ 3 months)

7.2

35a

0.88

Peters 1997

Germany

Subacromial decompression (32)

56

Not reported (not reported)

Not measured

54d

Not measured

Not specified

Exercise therapy (40)

59

59d

Rahme 1998

Sweden

Subacromial decompression (21)

42

Not reported (≥ 12 months)

Not reported

Not measured

Not measured

Not specified

Exercise therapy (21)

42

aConstant score.
bNeer score.
cShoulder Disability Questionnaire.
dSubjective Shoulder Rating Scale.

Figuras y tablas -
Table 1. Baseline demographic and clinical characteristics of the trial participants
Table 2. Deviations from allocated treatment

Trial

Group

Did not receive allocated treatment

Crossed over to active surgery

Re‐operated

Side interventions in surgery

Unblinded

Beard 2018

Subacromial decompression

19 (18%)

N/Aa

0

None reported

0 (0%)

Placebo surgery

35 (34%)

10 (10%)

0

None reported

1 (1%)

No treatment

26 (25%)

25 (24%)

0

No surgery

No blinding

Brox 1993

Subacromial decompression

13 (29%)

N/Aa

0

None reported

No blinding

Eexercise therapy

7 (14%)

1 (2%)

0

No surgery

Placebo‐laser

4 (13%)

2 (7%)

0

No surgery

Farfaras 2016

Open subacromial decompression

6 (25%)

N/Aa

0

None reported

No blinding

Arthroscopic subacromial decompression

5 (29%)

N/Aa

0

None reported

Exercise therapy

0

3 (9%)

0

No surgery

Haahr 2005

Subacromial decompression

4 (9%)

N/Aa

0

None reported

No blinding

Eercise therapy

2 (4%)

6 (13%) by 1 year
11 (24%) by 4‐8 years

0

No surgery

Ketola 2009

Subacromial decompression

13 (19%)

N/Aa

0

14 (20%) labrum repair

No blinding

Exercise therapy

0

5 (7%) by 1 year

14 (20%) by 2 years
18 (26%) by 5 years

0

No surgery

Paavola 2018

Subacromial decompression

0

N/Aa

2 (3%)

0 (0%)

6 (10%)

Placebo surgery

0

8 (13%)

8 (13%)

0 (0%)

9 (14%)

Exercise therapy

0

15 (21%)

3 (4%)

No surgery

No blinding

Peters 1997

Subacromial decompression

0

N/Aa

0

None reported

No blinding

Exercise therapy

0

0 (0%)

0

None reported

Rahme 1998

Subacromial decompression

0

N/Aa

0

5 rotator cuff tears were sutured

No blinding

Exercise therapy

0

13 (62%)

0

No surgery

aN/A (not applicable), participants in subacromial decompression group could not cross over to surgery.

Figuras y tablas -
Table 2. Deviations from allocated treatment
Table 3. Types and numbers of surgical procedures included in the two registry studies

Procedure

N (%) Hill 2017

N (%) Shields 2015

Rotator cuff repair

6399 (43)

3439 (33.5)

Subacromial decompression

2542 (16.9)

3362 (32.8)

Superior labrum lesion repair

1175 (7.8)

976 (9.5)

Capsuloraphy

1000 (6.7)

726 (7)

Distal clavicle resection

1029 (6.9)

544 (5.3)

Extensive debridement

1130 (7.5)

461 (4.5)

Limited debridement

1029 (6.9)

379 (3.7)

Lysis and resection of adhesion

279 (1.9)

149 (1.5)

Biceps tenodesis

263 (1.8)

105 (1)

Synovectomy

137 (0.9)

76 (0.7)

Foreign body removal

62 (0.4)

38 (0.4)

All

15,015

10,255

Figuras y tablas -
Table 3. Types and numbers of surgical procedures included in the two registry studies
Table 4. Risk of bias for registry studies of serious adverse events

Domain

Hill 2017

Shields 2015

Judgement

Study participation

Unsure, but judged unlikely to incur significant bias

Yes, large number of centres, judged likely to be representative

Unclear

Study attrition

Probably low risk given the tracking of participants who went elsewhere for care, and given follow‐up was 30 days

Probably low risk given the tracking of participants who went elsewhere for care, and given follow‐up was 30 days

Low

Prognostic factor measurement

Yes: arthroscopic procedure is the prognostic factor

Yes: arthroscopic procedure is the prognostic factor

Low

Outcome measurement

Yes: based on hospital record + participant contact call

Yes: based on hospital record + participant contact call

Low

Study confounding

Yes: total harms are of interest, no proper confounders

Yes: total harms are of interest, no proper confounders

Low

Statistical analysis and reporting

Unclear, judged not likely to lead to overestimation of harms

Unclear, judged not likely to lead to overestimation of harms

Low

Figuras y tablas -
Table 4. Risk of bias for registry studies of serious adverse events
Table 5. Serious adverse events in registry studies

Eventa

N (%) Hill 2017

N (%) Shields 2015

Mortality

2 (0.01)

4 (0.04)

Bleeding requiring transfusion

7 (0.05

5 (0.05)

Sepsis

0 (0)

1 (0.01)

Septic shock

3 (0.02)

2 (0.02)

Deep infection

1 (0.01)

1 (0.01)

Organ or space surgical site infection

3 (0.02)

2 (0.02)

Wound dehiscence

1 (0.01)

1 (0.01)

Deep vein thrombosis

21 (0.14)

8 (0.08)

Pulmonary embolism

20 (0.13)

7 (0.07)

Myocardial infarction

3 (0.02)

4 (0.04)

Cardiac arrest requiring cardiopulmonary

resuscitation

1 (0.01)

2 (0.02)

Cerebral vascular event

4 (0.03)

2 (0.02)

Acute renal failure

2 (0.01)

1 (0.01)

Pneumonia

13 (0.09)

7 (0.07)

Unplanned intubation

7 (0.05)

3 (0.03)

Ventilator > 48 hours

2 (0.01)

1 (0.01)

Peripheral nerve injury

2 (0.01)

2 (0.02)

aThese serious adverse events were recorded across all procedures in the registry and were not reported separately by procedure.

Figuras y tablas -
Table 5. Serious adverse events in registry studies
Comparison 1. Subacromial decompression vs placebo for rotator cuff disease

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Pain (VAS or NRS 0‐10, lower is better) Show forest plot

2

Mean Difference (IV, Random, 95% CI)

Subtotals only

1.1 3 months

1

107

Mean Difference (IV, Random, 95% CI)

0.47 [‐0.45, 1.39]

1.2 6 months

2

299

Mean Difference (IV, Random, 95% CI)

0.07 [‐0.51, 0.64]

1.3 1 year

2

284

Mean Difference (IV, Random, 95% CI)

‐0.26 [‐0.84, 0.33]

1.4 2 years

1

118

Mean Difference (IV, Random, 95% CI)

‐0.9 [‐1.79, ‐0.01]

2 Functional outcome (Constant score 0‐100, 100 is best) Show forest plot

2

Mean Difference (IV, Random, 95% CI)

Subtotals only

2.1 6 months

2

286

Mean Difference (IV, Random, 95% CI)

‐3.72 [‐8.72, 1.28]

2.2 1 year

2

274

Mean Difference (IV, Random, 95% CI)

2.76 [‐1.36, 6.87]

2.3 2 years

1

117

Mean Difference (IV, Random, 95% CI)

4.20 [‐1.61, 10.01]

3 Global assessment of treatment success Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

3.1 6 months

2

293

Risk Ratio (M‐H, Random, 95% CI)

1.17 [0.89, 1.54]

3.2 1 year

2

290

Risk Ratio (M‐H, Random, 95% CI)

1.08 [0.93, 1.27]

3.3 2 years

1

116

Risk Ratio (M‐H, Random, 95% CI)

0.98 [0.82, 1.17]

4 Health‐related quality of life (various measures, higher is better) Show forest plot

2

Std. Mean Difference (IV, Random, 95% CI)

Subtotals only

4.1 3 months

1

109

Std. Mean Difference (IV, Random, 95% CI)

‐0.17 [‐0.55, 0.21]

4.2 6 months

2

292

Std. Mean Difference (IV, Random, 95% CI)

‐0.05 [‐0.27, 0.18]

4.3 1 year

2

285

Std. Mean Difference (IV, Random, 95% CI)

‐0.09 [‐0.39, 0.21]

4.4 2 years

1

118

Std. Mean Difference (IV, Random, 95% CI)

0.0 [‐0.36, 0.36]

5 Participation (number at work) Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

5.1 3 months

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

5.2 6 months

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

5.3 1 year

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

5.4 2 years

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

6 Participation (number returning to sport or leisure activities) Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

6.1 3 months

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

6.2 6 months

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

6.3 1 year

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

6.4 2 years

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

Figuras y tablas -
Comparison 1. Subacromial decompression vs placebo for rotator cuff disease
Comparison 2. Subacromial decompression vs exercise treatment for rotator cuff disease

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Pain (VAS 0‐10, 0 is no pain) Show forest plot

4

Mean Difference (IV, Random, 95% CI)

Subtotals only

1.1 3 months

4

361

Mean Difference (IV, Random, 95% CI)

‐0.55 [‐1.24, 0.14]

1.2 6 months

4

399

Mean Difference (IV, Random, 95% CI)

‐0.56 [‐1.09, ‐0.02]

1.3 1 year

3

316

Mean Difference (IV, Random, 95% CI)

‐1.01 [‐1.60, ‐0.42]

1.4 2 years

3

352

Mean Difference (IV, Random, 95% CI)

‐0.44 [‐1.37, 0.49]

1.5 5 years

2

188

Mean Difference (IV, Random, 95% CI)

0.36 [‐1.17, 1.89]

1.6 10 years

1

90

Mean Difference (IV, Random, 95% CI)

1.00 [‐0.25, 2.25]

2 Functional outcome (0‐100, 100 is best) Show forest plot

6

Mean Difference (IV, Random, 95% CI)

Subtotals only

2.1 3 months

3

257

Mean Difference (IV, Random, 95% CI)

6.11 [‐5.57, 17.79]

2.2 6 months

4

398

Mean Difference (IV, Random, 95% CI)

3.66 [‐2.25, 9.58]

2.3 1 year

3

259

Mean Difference (IV, Random, 95% CI)

3.24 [‐8.08, 14.55]

2.4 2 years

5

467

Mean Difference (IV, Random, 95% CI)

4.94 [0.77, 9.11]

2.5 5 years

2

157

Mean Difference (IV, Random, 95% CI)

7.63 [0.17, 15.09]

2.6 10 years

2

156

Mean Difference (IV, Random, 95% CI)

9.54 [1.93, 17.15]

3 Global assessment of treatment success Show forest plot

4

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

3.1 6 months

2

161

Risk Ratio (M‐H, Random, 95% CI)

1.47 [0.74, 2.91]

3.2 1 year

2

158

Risk Ratio (M‐H, Random, 95% CI)

1.21 [0.96, 1.51]

3.3 2 years

1

126

Risk Ratio (M‐H, Random, 95% CI)

1.25 [1.00, 1.57]

3.4 5 years

1

79

Risk Ratio (M‐H, Random, 95% CI)

0.87 [0.62, 1.23]

3.5 10 years

1

90

Risk Ratio (M‐H, Random, 95% CI)

1.00 [0.67, 1.49]

4 Health‐related quality of life (various measures, 0‐1; higher is better) Show forest plot

3

Std. Mean Difference (IV, Random, 95% CI)

Subtotals only

4.1 3 months

1

119

Std. Mean Difference (IV, Random, 95% CI)

0.13 [‐0.23, 0.49]

4.2 6 months

1

119

Std. Mean Difference (IV, Random, 95% CI)

0.51 [0.15, 0.88]

4.3 1 year

1

116

Std. Mean Difference (IV, Random, 95% CI)

0.16 [‐0.21, 0.52]

4.4 2 years

2

181

Std. Mean Difference (IV, Random, 95% CI)

0.13 [‐0.22, 0.48]

4.5 5 years

1

86

Std. Mean Difference (IV, Random, 95% CI)

0.12 [‐0.30, 0.54]

4.6 10 years

2

155

Std. Mean Difference (IV, Random, 95% CI)

0.30 [‐0.01, 0.62]

5 Participation (number at work) Show forest plot

4

Risk Ratio (M‐H, Random, 95% CI)

Subtotals only

5.1 3 months

1

127

Risk Ratio (M‐H, Random, 95% CI)

0.96 [0.75, 1.22]

5.2 6 months

2

187

Risk Ratio (M‐H, Random, 95% CI)

1.05 [0.81, 1.36]

5.3 1 year

1

119

Risk Ratio (M‐H, Random, 95% CI)

0.98 [0.85, 1.13]

5.4 2 years

2

183

Risk Ratio (M‐H, Random, 95% CI)

0.87 [0.70, 1.07]

5.5 5 years

2

188

Risk Ratio (M‐H, Random, 95% CI)

1.13 [0.97, 1.32]

5.6 10 years

1

90

Risk Ratio (M‐H, Random, 95% CI)

1.07 [0.97, 1.18]

6 Participation (numbers returning to sport or leisure activities) Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

6.1 3 months

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

6.2 6 months

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

6.3 1 year

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

6.4 2 years

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

7 Treatment failure Show forest plot

2

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

7.1 5 years

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

7.2 13 years

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

Figuras y tablas -
Comparison 2. Subacromial decompression vs exercise treatment for rotator cuff disease
Comparison 3. Subacromial decompression vs no treatment for rotator cuff disease

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Pain (NRS 0‐10 lower is better) Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Totals not selected

1.1 6 months

1

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

1.2 1 year

1

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

2 Functional outcomes (Constant score 0‐100, 100 is best) Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Totals not selected

2.1 6 months

1

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

2.2 1 year

1

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

3 Global assessment of treatment success Show forest plot

1

Risk Ratio (M‐H, Random, 95% CI)

Totals not selected

3.1 6 months

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

3.2 1 year

1

Risk Ratio (M‐H, Random, 95% CI)

0.0 [0.0, 0.0]

4 Health‐related quality of life (EQ‐5D 3L −0.59 to 1, higher is better) Show forest plot

1

Mean Difference (IV, Random, 95% CI)

Totals not selected

4.1 6 months

1

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

4.2 1 year

1

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

Figuras y tablas -
Comparison 3. Subacromial decompression vs no treatment for rotator cuff disease
Comparison 4. Harms: Subacromial decompression versus non‐operative treatment

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Total adverse events Show forest plot

2

406

Risk Ratio (M‐H, Random, 95% CI)

0.91 [0.31, 2.65]

Figuras y tablas -
Comparison 4. Harms: Subacromial decompression versus non‐operative treatment
Comparison 5. Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease)

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Pain at 6 months (VAS or NRS 0‐10, higher is better) Show forest plot

5

639

Mean Difference (IV, Random, 95% CI)

‐0.31 [‐0.75, 0.12]

1.1 Surgery vs placebo‐surgery (blinded)

2

270

Mean Difference (IV, Random, 95% CI)

0.07 [‐0.55, 0.69]

1.2 Surgery vs non‐surgical therapy (unblinded)

4

369

Mean Difference (IV, Random, 95% CI)

‐0.55 [‐1.11, 0.02]

2 Pain at 1 year (VAS or NRS 0‐10, higher is better) Show forest plot

4

532

Mean Difference (IV, Random, 95% CI)

‐0.58 [‐1.05, ‐0.12]

2.1 Surgery vs placebo‐surgery (blinded)

2

257

Mean Difference (IV, Random, 95% CI)

‐0.22 [‐0.85, 0.40]

2.2 Surgery vs any conservative or no therapy (unblinded)

3

275

Mean Difference (IV, Random, 95% CI)

‐0.94 [‐1.57, ‐0.31]

3 Function at 6 months (various measures 0‐100, higher is better) Show forest plot

5

625

Mean Difference (IV, Random, 95% CI)

1.05 [‐3.77, 5.87]

3.1 Surgery vs placebo‐surgery (blinded)

2

257

Mean Difference (IV, Random, 95% CI)

‐3.30 [‐8.25, 1.65]

3.2 Surgery vs conservative or no treatment (unblinded)

4

368

Mean Difference (IV, Random, 95% CI)

3.82 [‐2.40, 10.05]

4 Function at 1‐3 years (various measures, higher is better) Show forest plot

7

737

Mean Difference (IV, Random, 95% CI)

3.21 [‐0.81, 7.23]

4.1 Surgery vs placebo‐surgery

2

245

Mean Difference (IV, Random, 95% CI)

2.46 [‐2.05, 6.98]

4.2 Surgery vs any non‐surgical therapy

6

492

Mean Difference (IV, Random, 95% CI)

3.72 [‐2.29, 9.72]

5 Pain at 1 year Show forest plot

5

733

Mean Difference (IV, Random, 95% CI)

‐0.78 [‐1.17, ‐0.39]

Figuras y tablas -
Comparison 5. Sensitivity analysis (subacromial decompression vs exercises or placebo for rotator cuff disease)