Scolaris Content Display Scolaris Content Display

Electroestimulación neuromuscular para adultos con enfermedad pulmonar obstructiva crónica

Collapse all Expand all

Antecedentes

En los pacientes con enfermedad pulmonar obstructiva crónica (EPOC), la administración de electroestimulación neuromuscular (EENM) sola, o junto con entrenamiento convencional con ejercicios, podría mejorar la condición de los músculos periféricos, aumentar la capacidad de ejercicio y el rendimiento funcional, reducir los síntomas y mejorar la calidad de vida relacionada con la salud (CdVRS).

Objetivos

Determinar los efectos de la EENM, aplicada sola o de forma concurrente con el entrenamiento convencional con ejercicios a uno o más músculos periféricos, sobre la fuerza y la resistencia de los músculos periféricos, el tamaño de los músculos, la capacidad de ejercicio, el rendimiento funcional, los síntomas, la CdVRS y los eventos adversos en los pacientes con EPOC.

Métodos de búsqueda

Se hicieron búsquedas en el registro especializado del Grupo Cochrane de Vías Respiratorias (Cochrane Airways Group Specialised Register), en la Physiotherapy Evidence Database, en registros de ensayos clínicos y en resúmenes de congresos el 14 marzo 2018.

Criterios de selección

Ensayos controlados aleatorios que reclutaron a pacientes adultos con EPOC y compararon los resultados entre un grupo que recibió EENM y un grupo que recibió atención habitual, o que compararon los resultados entre un grupo que recibió EENM más entrenamiento convencional con ejercicios y un grupo que participó en el entrenamiento convencional con ejercicios solo.

Obtención y análisis de los datos

Dos autores de la revisión extrajeron los datos y evaluaron el riesgo de sesgo de forma independiente mediante la herramienta Cochrane "Riesgo de sesgo". Los datos continuos se expresaron como diferencia de medias estandarizada (DME) o diferencia de medias (DM), con el intervalo de confianza (IC) del 95% correspondiente. Se evaluó la calidad de la evidencia mediante el enfoque GRADE.

Resultados principales

Diecinueve estudios cumplieron los criterios de inclusión, de los cuales 16 contribuyeron con datos de 267 participantes con EPOC (edad promedio 56 a 76 años y el 67% eran hombres). De estos 16 estudios, siete exploraron el efecto de la EENM versus atención habitual y nueve exploraron el efecto de la EENM más el entrenamiento convencional con ejercicios versus el entrenamiento convencional con ejercicios solo. Seis estudios utilizaron estimulación simulada en el grupo control. Cuando se aplicó sola, la EENM produjo un aumento en la fuerza de los músculos periféricos (DME 0,34; IC del 95%: 0,02 a 0,65; evidencia de baja calidad) y en la resistencia del cuádriceps (DME 1,36; IC del 95%: 0,59 a 2,12; evidencia de baja calidad), pero el efecto sobre el tamaño muscular del muslo no estuvo claro (DM 0,25; IC del 95%: ‐0,11 a 0,61; evidencia de baja calidad). Hubo aumentos en la distancia de caminata en seis minutos (six‐minute walk distance [6MWD]) (DM 39,26 m; IC del 95%: 16,31 a 62,22; evidencia de baja calidad) y en el tiempo transcurrido hasta los síntomas de limitación con los ejercicios a una intensidad submáxima (DM 3,62 minutos; IC del 95%: 2,33 a 4,91). Hubo una reducción en la gravedad de la fatiga de las piernas al completar una prueba de ejercicio (DM ‐1,12 unidades; IC del 95%: ‐1,81 a ‐0,43). El aumento de la tasa máxima de captación de oxígeno (VO2 máximo) fue de significación marginal (DM 0,10 l/minuto; IC del 95%: 0,00 a 0,19).

Para la EENM con entrenamiento convencional con ejercicios hubo un efecto incierto sobre la fuerza de los músculos periféricos (DME 0,47; IC del 95%: ‐0,10 a 1,04; evidencia de calidad muy baja) y no hubo estudios suficientes para realizar un metanálisis sobre el efecto sobre la resistencia del cuádriceps o el tamaño muscular del muslo. Sin embargo, hubo un aumento en la 6MWD a favor de la EENM combinada con entrenamiento convencional con ejercicios (DM 25,87 m; IC del 95%: 1,06 a 50,69; evidencia de muy baja calidad). En los pacientes ingresados en una unidad de cuidados intensivos o un centro respiratorio de alta dependencia, la EENM combinada con ejercicios convencionales redujo el tiempo transcurrido hasta que los participantes se sentaran por primera vez fuera de la cama en 4,98 días (IC del 95%: ‐8,55 a ‐1,41; evidencia de calidad muy baja), aunque la heterogeneidad estadística para este análisis fue alta (I2 = 60%). Para ambos tipos de estudios (es decir, EENM versus atención habitual y EENM con entrenamiento convencional con ejercicios versus entrenamiento convencional con ejercicios solo), no hubo una diferencia de riesgos para la mortalidad ni los eventos adversos leves en los participantes que recibieron EENM.

Conclusiones de los autores

La EENM, cuando se aplica sola, aumenta la fuerza y la resistencia del cuádriceps, la 6MWD y el tiempo transcurrido hasta los síntomas de limitación con los ejercicios a una intensidad submáxima y reduce la gravedad de la fatiga de las piernas al completar una prueba de ejercicio. Puede aumentar el VO2 máximo, pero el efecto verdadero sobre esta medida de resultado podría ser trivial. Sin embargo, la calidad de la evidencia fue baja o muy baja debido al riesgo de sesgo dentro de los estudios, la imprecisión de las estimaciones, el escaso número de estudios y la inconsistencia entre los estudios. Aunque no hubo una ganancia adicional en la fuerza del cuádriceps con la EENM más el entrenamiento convencional con ejercicios, hubo evidencia de un aumento en la 6MWD. Además, en los pacientes más debilitados el agregado de la EENM puede haber acelerado el logro de un hito funcional, o sea, la primera vez que se sentaron fuera de la cama.

PICOs

Population
Intervention
Comparison
Outcome

The PICO model is widely used and taught in evidence-based health care as a strategy for formulating questions and search strategies and for characterizing clinical studies or meta-analyses. PICO stands for four different potential components of a clinical question: Patient, Population or Problem; Intervention; Comparison; Outcome.

See more on using PICO in the Cochrane Handbook.

Estimulación muscular para pacientes con enfermedad pulmonar obstructiva crónica (EPOC)

Pregunta de la revisión

Se revisó la evidencia de aplicar estimulación eléctrica a los músculos de los muslos de los pacientes con EPOC (una afección pulmonar a largo plazo que se caracteriza por tos, producción de esputo [líquido en los pulmones, es decir, flema] y dificultad para respirar). Se consideraron los estudios que utilizaron dos grupos; uno recibió estimulación eléctrica mediante la colocación de almohadillas conductoras por encima del músculo, el otro recibió atención médica habitual. También se analizaron los estudios que agregaron la estimulación eléctrica a un programa de ejercicios y compararon los resultados con un grupo que solo realizó el programa de ejercicios.

Los estudios midieron la fuerza muscular y la resistencia (por cuánto tiempo el músculo podría trabajar), el tamaño muscular, la capacidad de ejercicio, la disnea, la fatiga de la pierna y la calidad de vida relacionada con la salud (CdVRS; una medida de satisfacción del paciente con su vida y su salud). También se analizó si la aplicación de estimulación eléctrica a los músculos de los muslos causó algún efecto no deseado.

Antecedentes

Los pacientes con EPOC encuentran difícil realizar ejercicios y tienen dificultad para respirar. No obstante, los ejercicios como caminar a paso rápido con frecuencia o la bicicleta estática reducen las dificultades para respirar y mejoran la capacidad para hacer ejercicio. Una manera en la que el ejercicio ayuda es a mejorar la condición (cuán bien trabajan) de los músculos de los muslos.

Sin embargo, para algunos pacientes con EPOC, ejercitarse a un nivel que sea suficientemente alto para mejorar la condición de los músculos de los muslos es difícil porque presentan disnea grave con el ejercicio. En estos pacientes el uso de una corriente eléctrica para estimular los músculos de los muslos podría ayudar a mejorar su condición. Debido a que la estimulación eléctrica se aplica a solo algunos músculos (a diferencia del ejercicio, que incluye varios músculos), se puede realizar sin provocar mucha disnea. Si la estimulación eléctrica puede mejorar la condición de los músculos de las piernas, quizás sea un enfoque de rehabilitación útil.

Fecha de la búsqueda

La evidencia está actualizada hasta marzo de 2018.

Características de los estudios

Diecinueve estudios cumplieron los criterios de inclusión para la revisión, de los cuales 16 tenían datos sobre 267 participantes que podrían incluirse en los análisis. La edad promedio de los pacientes en cada uno de los estudios varió de 56 a 76 años y 179 (67%) eran hombres. Siete estudios exploraron el efecto de aplicar estimulación eléctrica sola y nueve estudios exploraron el efecto de agregar la estimulación eléctrica a un programa de ejercicios. La estimulación eléctrica se aplicó en una variedad de contextos como en el domicilio, en un departamento del hospital para pacientes ambulatorios, en una sala de hospital o en una unidad de cuidados intensivos. La mayoría de los estudios estimularon los músculos de los muslos una o dos veces al día por 30 a 60 minutos, cuatro a siete días cada semana por cuatro a ocho semanas.

Resultados clave

Los estudios que exploraron el efecto de aplicar estimulación eléctrica sola mostraron un aumento en la fuerza y la resistencia de los músculos de los muslos. Mostraron un aumento en algunas medidas de capacidad de ejercicio pero no en todas, así como una disminución en la gravedad de la fatiga de las piernas después del ejercicio. Los estudios que exploraron el efecto de añadir la estimulación eléctrica a un programa de ejercicios mostraron un aumento pequeño en la distancia caminada en seis minutos. En los pacientes más enfermos (p.ej. en una unidad de cuidados intensivos), el añadido de la estimulación eléctrica a un programa de ejercicios les ayudó a pasar menos días confinados a la cama. La estimulación eléctrica no aumentó el riesgo de efectos secundarios.

Calidad de la evidencia

La calidad de la evidencia aportada por esta revisión fue baja. Lo anterior se debe a que la mayoría de los estudios tuvieron problemas de diseño. Es probable que la inclusión de estudios futuros en esta revisión cambie los resultados.

Conclusiones de los autores

available in

Implicaciones para la práctica

Cuando se aplicó independientemente de otras estrategias de rehabilitación, la electroestimulación neuromuscular (EENM) aplicada al cuádriceps aumentó la fuerza del cuádriceps y la resistencia del cuádriceps. También hubo mejorías en la distancia caminada en seis minutos (6MWD), el tiempo transcurrido hasta los síntomas de limitación con los ejercicios a una intensidad submáxima y en la gravedad de la fatiga de las piernas al finalizar una prueba de ejercicio. Puede aumentar la tasa máxima de captación de oxígeno (VO2 máximo), pero el efecto verdadero sobre esta medida de resultado podría ser trivial. Por lo tanto, en los participantes que no pueden o no desean asistir a un programa de rehabilitación pulmonar, se podría considerar el uso de la EENM. Sin embargo, la calidad de la evidencia es baja.

Cuando se aplicó con entrenamiento convencional con ejercicios, el efecto de la EENM sobre la fuerza de los músculos periféricos no está claro. Sin embargo, este resultado parece haber estado influenciado por la inclusión de un estudio que realizó menos de diez sesiones durante cuatro semanas. La eliminación de este estudio mostró un aumento significativo en la fuerza de los músculos periféricos. Hubo evidencia de un aumento en la 6MWD, pero este resultado parece haber estado influenciado por la inclusión de un estudio que reclutó a pacientes ingresados en una unidad de cuidados intensivos (UCI) con una exacerbación aguda de la enfermedad. Falta evidencia de un efecto beneficioso adicional, además de los efectos observados con el ejercicio convencional sobre los síntomas o la calidad de vida relacionada con la salud. Sin embargo, en los pacientes ingresados en una UCI o una unidad respiratoria de alta dependencia, la EENM combinada con ejercicio convencional puede acelerar el logro de un hito funcional; o sea, el tiempo transcurrido hasta que los participantes se sentaran por primera vez fuera de la cama. Por lo tanto, es probable que el agregado del protocolo de fuerza con la EENM a un programa de ejercicios sea más beneficioso para los pacientes que presentan o se recuperan de una exacerbación. Sin embargo, nuevamente, la calidad de la evidencia es baja.

Independientemente de si se aplicó sola o en conjunto con entrenamiento convencional con ejercicios, la EENM parece no aumentar el riesgo de eventos adversos.

Implicaciones para la investigación

En los pacientes con EPOC, dada la evidencia de que la rehabilitación pulmonar, que incluye un componente de entrenamiento con ejercicios obligatorios, cambia resultados como la 6MWD, los síntomas y la CdVRS (McCarthy 2015), en la práctica clínica parecería haber poco fundamento para ofrecer la EENM como una opción al entrenamiento con ejercicios. Por lo tanto, la pregunta más relevante con respecto al uso de la EENM en los pacientes con EPOC es: ¿el agregado de EENM a un programa de entrenamiento convencional con ejercicios produce efectos beneficiosos adicionales además de los que se observan después del entrenamiento convencional con ejercicios? Los protocolos de EENM descritos en los estudios incluidos en esta revisión fueron diversos y a menudo no utilizaron parámetros dirigidos específicamente a adaptaciones en la fuerza o la resistencia; un factor que puede haber moderado el efecto. Los estudios futuros deben considerar el tipo de adaptación (es decir, fuerza o resistencia) que es más aconsejable en respuesta a un programa de EENM (Dolmage 2016). En los pacientes que están muy debilitados y carecen de la fuerza para completar las actividades cotidianas (como cambiar de posición sentada a de pie), es probable que sean necesarios protocolos que maximicen las adaptaciones en la fuerza antes de que sea apropiada la participación en un programa de entrenamiento con ejercicios. Por el contrario, en los pacientes que tienen una fuerza adecuada para las actividades cotidianas, pero tienen dificultades para realizar un ejercicio aeróbico efectivo debido a la disnea intolerable (es decir, los pacientes derivados a un programa de rehabilitación pulmonar), es probable que los protocolos que maximizan las adaptaciones en la resistencia sean los más apropiados. Es necesario explorar la repercusión de estos protocolos en la resistencia muscular, en lugar de solo en la fuerza muscular. Con respecto a otras medidas de resultado, los estudios deben considerar la posibilidad de evaluar el efecto de la EENM sobre medidas como el VO2 máximo, así como en medidas que se conoce que son de más interés, como el tiempo transcurrido hasta los síntomas de limitación con los ejercicios a una fuerza alta constante y la progresión de los síntomas durante el ejercicio (p.ej. respuestas en periodos de tiempo equivalentes). Finalmente, las características de "los pacientes que responden" a la EENM necesitan exploración adicional.

Summary of findings

Open in table viewer
Summary of findings for the main comparison. NMES compared to usual care (with or without sham NMES) for COPD

NMES compared to usual care (with or without sham NMES) for COPD

Patient or population: COPD

Setting: generally outpatient or home

Intervention: NMES

Comparison: usual care (with or without sham NMES)

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

№ of participants
(studies)

Quality of the evidence
(GRADE)

Comments

Risk with usual care (with or without sham NMES)

Risk with NMES

Peripheral muscle force

assessed with: any method

SMD 0.34 SD higher
(0.02 higher to 0.65 higher)

159
(6 RCTs)

⊕⊕⊝⊝
Lowa

In real terms, using data available in 1 study that reported changes in quadriceps force in kg (Maddocks 2016), an SMD of 0.34 was equivalent to a difference in force of 3.1 kg (from a baseline mean force of 23.1 kg).

Peripheral muscle endurance/fatigability

assessed with: any method

SMD 1.36 SD higher
(0.59 higher to 2.12 higher)

35
(2 RCTs)

⊕⊕⊝⊝
Lowb

Thigh muscle size assessed with: any method

SMD 0.25 SD higher
(0.11 lower to 0.61 higher)

124
(4 RCTs)

⊕⊕⊝⊝
Lowc

Exercise capacity

assessed with: 6MWD (m)

The mean change in 6MWD in the control group ranged from ‐5.70 m to 0.80 m

MD 39.26 m more
(16.31 more to 62.22 more)

72
(2 RCTs)

⊕⊕⊝⊝
Lowd

Functional performance

assessed with: time (days) until first sit out of bed

None of the studies reported on functional performance.

Symptoms of dyspnoea reported on completion of an exercise test

assessed with: Borg score

The mean change in dyspnoea reported on completion of an exercise test ranged from ‐0.50 to 0.40

MD 1.03 less dyspnoea
(2.13 less to 0.06 more)

55
(3 RCTs)

⊕⊝⊝⊝
Very lowe

Health‐related quality of life

assessed with: SGRQ

The mean change in HRQoL ranged from ‐2.00 to 0.07

MD 4.12 better
(12.60 better to 4.35 worse)

72
(2 RCTs)

⊕⊝⊝⊝
Very lowf

Minor adverse events

assessed: related to intervention only (e.g. redness)

5970 per 100,000

0 per 100,000
(‐418 to 418)

RD 0.00
(‐0.07 to 0.07)

139
(5 RCTs)

⊕⊕⊝⊝
Lowg

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

6MWD: 6‐minute walk distance; CI: confidence interval; COPD: chronic obstructive pulmonary disease; MD: mean difference; NMES: neuromuscular electrical stimulation; RCT: randomised controlled trials; RD: risk difference; SD: standard deviation; SGRQ: Saint George's Respiratory Questionnaire; SMD: standardised mean difference.

GRADE Working Group grades of evidence
High quality: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate quality: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low quality: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low quality: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aDowngraded one level due to risk of bias (three studies did not use sham stimulation) and one level due to imprecision (wide confidence intervals).

bDowngraded one level due to risk of bias (one study did not use sham stimulation) and one level due to small number of studies available for analyses.

cDowngraded one level due to risk of bias (one study did not use sham stimulation) and one level due imprecision (wide confidence intervals).

dDowngraded one level due to small number of studies available for analyses and one level due imprecision (wide confidence intervals).

eDowngraded one level due to risk of bias (one study did not use sham stimulation), one level for imprecision (wide confidence intervals) and one level for inconsistency.

fDowngraded one level due to small number of studies available for analyses, one level for imprecision (wide confidence intervals) and one level due to inconsistent findings.

gDowngraded one level due to risk of bias (two studies did not use sham stimulation) and one level for inconsistent findings.

Open in table viewer
Summary of findings 2. NMES and exercise compared to exercise (with or without sham NMES) for COPD

NMES and exercise compared to exercise (with or without sham NMES) for COPD

Patient or population: COPD

Setting: intensive care unit, inpatient rehabilitation, outpatient or home

Intervention: NMES + exercise

Comparison: exercise (with or without sham NMES)

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

№ of participants
(studies)

Quality of the evidence
(GRADE)

Comments

Risk with exercise (with or without sham NMES)

Risk with NMES and exercise

Peripheral muscle force

assessed with: any method

SMD 0.47 SD higher
(‐0.10 higher to 1.04 higher)

84
(4 RCTs)

⊕⊝⊝⊝
Very lowa

Peripheral muscle endurance/fatigability

assessed with: any method

None of the studies reported peripheral muscle endurance/fatigability.

Thigh muscle size assessed with: any method

None of the studies reported thigh muscle size.

Exercise capacity

assessed with: 6MWD (m)

The mean change in 6MWD ranged from 10.30 m to 94.00 m

MD 25.87 m more
(1.06 more to 50.69 more)

138
(6 RCTs)

⊕⊝⊝⊝
Very lowb

Functional performance

assessed with: time (days) until first sit out of bed

The mean time until first sit out of bed ranged from 12.60 to 14.33 days

MD 4.98 fewer days
(8.55 to 1.41 fewer)

44
(2 RCTs)

⊕⊝⊝⊝
Very lowc

Symptoms of dyspnoea reported on completion of an exercise test

assessed with: Borg score

The mean change in dyspnoea reported on completion of an exercise test ranged from ‐0.62 units to 1.00 units

MD 0.44 less dyspnoea
(2.27 less to 1.38 more)

44
(2 RCTs)

⊕⊝⊝⊝
Very lowd

Health‐related quality of life

assessed with: any validated questionnaire

SMD 0.56 SD better
(1.27 better to 0.15 worse)

122
(5 RCTs)

⊕⊝⊝⊝
Very lowe

Minor adverse events
assessed: related to intervention only (e.g. redness)

0 per 1000

0 per 1000
(0 to 0)

Not estimable

144
(6 RCTs)

⊕⊕⊝⊝

Lowf

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

6MWD: 6‐minute walk distance; CI: confidence interval;COPD: chronic obstructive pulmonary disease; MD: mean difference; NMES: neuromuscular electrical stimulation; RCT: randomised controlled trials; SD: standard deviation; SMD: standardised mean difference.

GRADE Working Group grades of evidence
High quality: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate quality: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low quality: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low quality: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aDowngraded one level due to risk of bias (three studies did not use sham stimulation), one level due to imprecision (wide confidence intervals) and one level due to inconsistent findings.

bDowngraded one level due to risk of bias (five studies did not use sham stimulation), one level due to imprecision (wide confidence intervals) and one level due to inconsistent findings.

cDowngraded one level due to risk of bias (neither study used sham stimulation), one level due imprecision (wide confidence intervals) and one level due to small number of studies available for analyses.

dDowngraded one level due to risk of bias (one study did not use sham stimulation), one level due imprecision (wide confidence intervals) and small number of studies available for analyses, and one level for inconsistent findings.

eDowngraded one level due to risk of bias (four studies did not use sham stimulation), one level for imprecision (wide confidence intervals) and one level for inconsistency.

fDowngraded one level due to risk of bias (four studies did not use sham stimulation) and one level for imprecision (wide confidence intervals).

Antecedentes

available in

Descripción de la afección

La enfermedad pulmonar obstructiva crónica (EPOC) es una afección caracterizada por la limitación persistente del flujo aéreo espiratorio (Vogelmeier 2017). También se asocia con varias manifestaciones sistémicas que incluyen el desacondicionamiento profundo de los músculos periféricos (Maltais 2014). La prevalencia de la EPOC de al menos una gravedad moderada entre los adultos con más de 40 años de edad es aproximadamente del 10% (Buist 2007). La queja fundamental de los pacientes con esta afección es la disnea (Vogelmeier 2017). Una revisión Cochrane actualizada indicó que, en los pacientes con EPOC, la rehabilitación pulmonar que incluye el entrenamiento convencional con ejercicios aumenta la tolerancia al ejercicio, reduce los síntomas de la disnea y la fatiga y mejora la calidad de vida relacionada con la salud (CdVRS) (McCarthy 2015). Lo anterior parece estar relacionado con una reducción en los signos indicadores de desacondicionamiento muscular, como la acumulación temprana de ácido láctico (Casaburi 1991). No obstante, entre los pacientes con la limitación ventilatoria más marcada para hacer ejercicio, la disnea intolerable puede excluir la aplicación de un estímulo de entrenamiento a los músculos periféricos que sea de intensidad suficiente para permitir una adaptación al entrenamiento. Por este motivo, hay interés en el uso de estrategias para optimizar la carga de entrenamiento soportada por los músculos del movimiento, en particular el cuádriceps (Hill 2014). Una de dichas estrategia es la administración de electroestimulación neuromuscular (EENM). La EENM incluye producir una contracción muscular por la aplicación de una corriente eléctrica intermitente a un músculo periférico superficial (Maffiuletti 2010).

Descripción de la intervención

La EENM incluye la colocación de almohadillas conductoras por encima del músculo y con el uso de una corriente eléctrica intermitente para desencadenar potenciales de acción, activar las ramificaciones nerviosas intramusculares y las fibras musculares para generar una contracción muscular fuerte (Maffiuletti 2010). Las almohadillas conductoras se conectan con una unidad preprogramada de estimulación. Los parámetros de estimulación se pueden manipular para favorecer un patrón de contracciones que promueva adaptaciones de fuerza o de resistencia en el músculo. Por ejemplo, los protocolos dirigidos a una adaptación de la fuerza pueden comprender pocas contracciones mediante la estimulación de alta frecuencia para asegurar la fuerza más alta posible, realizadas con la corriente más alta tolerada para maximizar el número de fibras musculares captadas (Maffiuletti 2010). Un período de contracción relativamente largo seguido de un período de descanso incluso más largo puede ser ventajoso (Filipovic 2011). Estos protocolos, que figuran comúnmente en los estudios realizados en pacientes con EPOC, intentan crear la mayor fuerza posible durante todas y cada una de las contracciones porque es probable que el estrés mecánico estimule la síntesis de proteínas contráctiles (Murton 2010). Los protocolos dirigidos a una adaptación de la resistencia pueden comprender contracciones múltiples relativamente frecuentes y breves durante períodos prolongados. Contracciones relativamente cortas intercaladas con períodos cortos de descanso pueden ser ventajosas (Nuhr 2004). Estos protocolos intentan imitar contracciones repetidas para elevar el metabolismo y la acumulación de productos que estimulan la biogénesis mitocondrial (e inhibir la síntesis de proteínas, es decir, adaptaciones de fuerza) (Takahashi 1993). La intensidad más alta tolerada se puede utilizar para los protocolos de fuerza y de resistencia, porque al maximizar la intensidad de la estimulación aumenta el número de fibras estimuladas. Este hecho es importante porque, a diferencia de las contracciones voluntarias, la captación ordenada de las fibras musculares no ocurre con la estimulación transcutánea (Gregory 2005; Henneman 1985). El grupo muscular al que habitualmente se dirige más la EENM es el cuádriceps.

De qué manera podría funcionar la intervención

La EENM se puede utilizar para aumentos previstos de la fuerza o la resistencia de los músculos periféricos. Las ganancias previstas en la fuerza pueden ser muy apropiadas en los pacientes muy debilitados (p.ej. supervivientes en la unidad de cuidados intensivos [UCI]) y los que no tienen la fuerza necesaria para realizar las actividades cotidianas (p.ej. levantarse de la posición de sentado). Por el contrario, las ganancias previstas en la resistencia pueden ser muy apropiadas para los pacientes que no pueden lograr una intensidad adecuada durante el ejercicio aeróbico debido a la aparición de una disnea intolerable (p.ej. en pacientes con enfermedad grave o durante exacerbaciones de la enfermedad) (Parker 2005). Específicamente, el entrenamiento con ejercicio aeróbico como caminar a paso rápido o el ciclismo, incluye muchos músculos, como los músculos posturales que deben estar apoyados por el sistema de ventilación. En los pacientes con EPOC, el sistema de ventilación está comprometido y, por lo tanto, la duración a la que un estímulo de entrenamiento efectivo se puede mantener durante el ejercicio aeróbico a menudo está limitada por la disnea intolerable (Maltais 1997). Por el contrario, la EENM contrae grupos musculares aislados, por lo que se reduce la carga ventilatoria general (Sillen 2011). Por este motivo, en los pacientes con EPOC que presentan disnea tan grave que les impide participar en un entrenamiento con ejercicios aeróbicos a una intensidad suficiente para condicionar los músculos periféricos, la EENM podría ser una opción apropiada. Como las deficiencias en la capacidad de ejercicio se han relacionado con disminuciones en la función del cuádriceps (Maltais 2000; Saey 2003), es probable que condicionar estos músculos mediante la EENM aumente la capacidad de ejercicio.

Por qué es importante realizar esta revisión

El objetivo de esta revisión fue determinar los efectos de la EENM, aplicada sola o de forma concurrente con el entrenamiento convencional con ejercicios, sobre la fuerza y la resistencia de los músculos periféricos, el tamaño muscular, la capacidad de ejercicio, el rendimiento funcional, los síntomas, la CdVRS y los eventos adversos en pacientes adultos con EPOC. Los resultados de esta revisión proporcionarán a los médicos que trabajan en el área de la rehabilitación pulmonar, así como a los médicos que tratan a pacientes hospitalizados con una exacerbación aguda de la EPOC, información para guiar sus decisiones con respecto a si utilizar este enfoque o no.

Objetivos

available in

Determinar los efectos de la EENM, aplicada sola o de forma concurrente con el entrenamiento convencional con ejercicios a uno o más músculos periféricos, sobre la fuerza y la resistencia de los músculos periféricos, el tamaño de los músculos, la capacidad de ejercicio, el rendimiento funcional, los síntomas, la CdVRS y los eventos adversos en los pacientes con EPOC.

Métodos

available in

Criterios de inclusión de estudios para esta revisión

Tipos de estudios

Solo fueron elegibles para inclusión los ensayos controlados aleatorios (ECA), ya que son el diseño de estudio de referencia (gold standard) para determinar la efectividad de una intervención. Se excluyeron los ensayos aleatorios cruzados.

Tipos de participantes

Adultos con un diagnóstico de EPOC independientemente de la estabilidad clínica; o sea, estudios que reclutaron a pacientes con EPOC estables o a pacientes con una exacerbación de la EPOC. Se incluyeron los estudios que reclutaron una muestra de participantes con una variedad de enfermedades respiratorias crónicas solo si la mayoría de los participantes (más del 50%) presentaron un diagnóstico de EPOC.

Tipos de intervenciones

  • EENM (de cualquier músculo periférico) en comparación con atención habitual (cualquier aspecto de la atención médica habitual, con o sin entrenamiento con EENM simulada, pero sin entrenamiento convencional con ejercicios). Lo anterior permitió determinar los efectos de la EENM sin otras estrategias de rehabilitación con ejercicios.

  • EENM (de cualquier músculo periférico) más entrenamiento convencional con ejercicios (que incluye el movimiento activo de los miembros si los participantes estuvieran hospitalizados) en comparación con entrenamiento convencional con ejercicio solo, con o sin entrenamiento con EENM simulada. Lo anterior permitió determinar los efectos de utilizar la EENM como complemento al entrenamiento convencional con ejercicios.

Tipos de medida de resultado

Resultados primarios

  • Fuerza de los músculos periféricos (con el uso de cualquier método): definida como la fuerza máxima (o de torsión) producida durante una contracción voluntaria máxima o una fuerza de contracción producida en respuesta a la estimulación de un nervio periférico.

  • Resistencia/fatiga de los músculos periféricos (con el uso de cualquier método): definida como el rendimiento durante cualquier prueba que tenía como objetivo producir una disminución en la fuerza muscular con el transcurso del tiempo mediante contracciones musculares repetidas.

  • Tamaño del músculo del muslo (con el uso de cualquier método).

Para estos resultados específicos del músculo, se extrajeron las mediciones realizadas antes y después del período de intervención.

  • Eventos adversos graves (p.ej. mortalidad) registrados durante el período de intervención solamente.

Debido a que la EENM tiene como objetivo condicionar los músculos periféricos, se seleccionaron los resultados específicos de los músculos como los resultados primarios para este estudio. Los eventos adversos graves también se seleccionaron como un resultado primario, ya que la información sobre este resultado ayudará a los médicos al determinar si la EENM entraña un riesgo para los pacientes con EPOC.

Resultados secundarios

  • Capacidad de ejercicio (p.ej. la distancia de caminata en seis minutos [6MWD], la distancia gradual de caminata en la estera, el rendimiento durante la endurance shuttle walk test [ESWT], la tasa máxima de captación de oxígeno (VO2 máximo), la fuerza máxima, el umbral del lactato, el tiempo transcurrido hasta los síntomas de limitación durante una prueba de fuerza submáxima constante, los cambios en las medidas cardiorrespiratorias tomadas en períodos de tiempo equivalentes).

  • Rendimiento funcional (p.ej. Timed Up and Go test o la capacidad para salir de la cama de forma independiente).

  • Síntomas de disnea y fatiga (con el uso de cualquier cuestionario o escala validados).

  • Calidad de vida relacionada con la salud (con el uso de cualquier cuestionario validado de CdVRS específica de la enfermedad).

Para los resultados de capacidad de ejercicio, rendimiento funcional, síntomas y CdVRS, se obtuvieron las mediciones realizadas antes y después del período de intervención.

  • Eventos adversos leves registrados durante el período de intervención sola (p.ej. malestar, dolor musculoesquelético, dolor muscular, irritación cutánea).

La capacidad de ejercicio, las medidas de rendimiento funcional, los síntomas y la CdVRS son resultados que se perciben como importantes por los pacientes. O sea, cualquier mejoría en la función muscular después de la EENM es poco probable que se perciba como importante por el paciente a menos que el efecto se traduzca en una mejoría en la capacidad de ejercicio, las medidas de rendimiento funcional, los síntomas de disnea y fatiga o la CdVRS.

El informe de uno o más de los resultados enumerados aquí no fue un criterio de inclusión para la revisión.

Métodos de búsqueda para la identificación de los estudios

Búsquedas electrónicas

We searched the following databases:

  • the Cochrane Airways Trials Register;

  • the Physiotherapy Evidence Database (PEDro).

The Cochrane Airways Trials Register is maintained by the Information Specialist for the Group. It contains studies identified from several sources:

  • monthly searches of the Cochrane Central Register of Controlled Trials (CENTRAL), through the Cochrane Register of Studies Online (crso.cochrane.org);

  • weekly searches of MEDLINE OvidSP from 1946 to date of search;

  • weekly searches of Embase OvidSP from 1974 to date of search;

  • monthly searches of PsycINFO OvidSP from 1967 to date of search;

  • monthly searches of CINAHL EBSCO (Cumulative Index to Nursing and Allied Health Literature) from 1937 to date of search;

  • monthly searches of AMED EBSCO (Allied and Complementary Medicine);

  • handsearches of the proceedings of major respiratory conferences.

Studies contained in the Cochrane Airways Trials Register are identified through search strategies based on the scope of Cochrane Airways. Details of these strategies, and a list of handsearched conference proceedings are in Appendix 1. Records in the Cochrane Airways Trials Register were searched using the strategy outlined in Appendix 2. This strategy was adapted to search PEDro. The most recent search was conducted on 14 March 2018.

We searched ClinicalTrials.gov (www.ClinicalTrials.gov) and the World Health Organization trials portal (www.who.int/ictrp/en/). We searched all databases from their inception to the date of search, and imposed no restrictions on language of publication or publication status.

Búsqueda de otros recursos

We checked reference lists of all primary studies and review articles for additional references and relevant manufacturers' websites for trial information. We contacted investigators who were prominent in this field to ask about unpublished or ongoing studies.

We handsearched abstracts presented at the World Confederation for Physical Therapy ‐ congress meetings from 2003, 2007, 2011, 2015 and 2017.

We searched for errata or retractions from included studies published in full text on PubMed (www.ncbi.nlm.nih.gov/pubmed).

Obtención y análisis de los datos

Selección de los estudios

Two groups of review authors (KH and SM or KH and VC) independently screened the titles and abstracts of all studies identified as a result of the search and coded them as 'retrieve' (eligible or potentially eligible/unclear) or 'do not retrieve.' We retrieved the full‐text study reports/publications, and two review authors (KH and SM or KH and VC) independently screened the full text and identified studies for inclusion. We recorded the reasons for exclusion of ineligible studies. We resolved disagreements through discussion. We identified and excluded duplicates and collated multiple reports of the same study, so that each study, rather than each report, was the unit of interest in the review. The selection process was recorded in sufficient detail to complete a PRISMA flow diagram and a Characteristics of excluded studies table.

Studies reported as full text, those published as abstracts only and unpublished data were eligible for inclusion.

Extracción y manejo de los datos

We used an electronic data collection form related to study characteristics and outcomes after it was piloted on two studies included in the review. We extracted the following study characteristics.

  • Methods: study design, total duration of study, details of any 'run‐in' period, number of study centres and locations, study setting, withdrawals, date of study and details to allow an assessment of the risk of bias.

  • Participants: number, mean age, age range, gender, severity of condition, diagnostic criteria, presence (or not) of a recent (four weeks or less) acute exacerbation of their disease, baseline lung function, smoking history, inclusion criteria and exclusion criteria.

  • Interventions: NMES training and, where relevant, sham training parameters (including stimulation current, force of stimulated contraction, current ramp, pulse width, stimulation frequency, on time, duty cycle, frequency of exposure, duration of therapy and muscles stimulated).

  • Outcomes: data related to both primary and secondary outcomes assessed before (i.e. baseline) and after the intervention period. We extracted baseline data, postintervention data (i.e. measures of central tendency, measures of dispersion and sample size) and data pertaining to the change from baseline (or, where possible, calculated using baseline and postintervention data).

  • Notes: funding for trial and notable conflicts of interest of trial authors.

For each study, two review authors (SM, PR, TJF, MR or VC and KH) independently extracted data from included studies. We resolved disagreements by consensus. If outcome data were not reported in a usable way, we contacted the study authors to seek clarification. When we were unable to contact the authors, it was noted in the Characteristics of included studies table that data were not reported in a usable way. Once data extraction was complete, one review author (KH) transferred data into the Review Manager 5 (RevMan 2014). We double‐checked data to ensure that they had been entered correctly by comparing the data presented in the systematic review with that provided in the study reports. A second review author (VC) spot‐checked study characteristics for accuracy against the trial report.

We analysed measures of peripheral muscle force and endurance, muscle size, exercise capacity, functional performance, symptoms of dyspnoea and fatigue and HRQoL as continuous data. We reported adverse events as dichotomous outcomes (yes/no).

We presented data reported using scales (e.g. quadriceps endurance and HRQoL) with a consistent direction of effect.

Evaluación del riesgo de sesgo de los estudios incluidos

Two groups of review authors (KH and SM or KH and VC) independently assessed the risk of bias for each study using the criteria outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). We resolved disagreements by discussion. We assessed the risk of bias according to the following domains.

  • Random sequence generation.

  • Allocation concealment.

  • Blinding of participants and personnel.

  • Blinding of outcome assessment.

  • Incomplete outcome data.

  • Selective outcome reporting.

  • Other bias.

In the 'Risk of bias' table, we graded each potential source of bias as high, low or unclear and provided a quote from the study report, together with a justification for our judgement. We summarised the risk of bias judgements across different studies for each of the domains listed. We described the implications of a lack of blinding separately for different key outcomes. When information on risk of bias related to unpublished data or correspondence with an investigator, we noted this in the 'Risk of bias' table.

When considering the quality of the evidence for treatment effects, we took into account the risk of bias for the studies that contributed to each outcome.

Assessment of bias in conducting the systematic review

We conducted the review according to the published protocol (Hill 2013), and reported deviations from it in the Differences between protocol and review section.

Medidas del efecto del tratamiento

For dichotomous data, we calculated the risk difference (RD) and their 95% confidence intervals (CI). For continuous data that were reported using different units of measurement, we calculated the standardised mean differences (SMD) and their corresponding 95% CI using the change scores together with the standard deviation (SD) of the baseline measures in both groups. For continuous data that were reported using the same units of measurement, we calculated the mean differences (MD) and their corresponding 95% CI using the changes scores and the SD of the change scores in both groups. For studies that did not report the SD of the change scores, we used the SD of the baseline measures in both groups.

We undertook meta‐analyses only when meaningful (i.e. when treatments, participants and the underlying clinical question were similar enough for pooling to make sense).

We extracted skewed data as medians, interquartile ranges or range and converted them to mean and SDs using online software (Wen 2011), and used them in meta‐analyses that estimated MD. However, we did not included studies that reported outcome data as median, maximum and minimum values, or interquartile range in meta‐analyses that estimated SMD (Abdellaoui 2011; Akar 2017; Tasdemir 2015).

Cuestiones relativas a la unidad de análisis

For studies that randomly assigned participants to groups (i.e. either NMES or control), the unit of analysis was the participant. For studies that randomly assigned one limb of a person to receive NMES and the other limb to receive control, the unit of analysis was the limb. We accept that inclusion of these studies may dampen our effect size for the results of NMES on muscle function because NMES may produce systemic effects such as improvement in microcirculation and increased heart rate response, which result in contralateral leg facilitation (Gerovasili 2009; Hortobágyi 1999). To address this issue, we undertook a sensitivity analysis, in which we excluded studies that used this design to see whether this changed our estimate of the effect.

Manejo de los datos faltantes

We contacted investigators to verify key study characteristics and to obtain missing outcome data (e.g. when a study was identified as an abstract only).

Evaluación de la heterogeneidad

We used the I2 statistic to measure statistical heterogeneity among the trials in each analysis. We explored possible causes of substantial heterogeneity (I2 of 50% or greater) through sensitivity analyses.

Evaluación de los sesgos de notificación

If we were able to pool more than 10 trials for any one meta‐analysis, we planned to create a funnel plot to examine possible publication and small‐study biases. Where available, we reviewed protocols published on clinical trial registries to explore reporting bias.

Síntesis de los datos

We expected that some disparity would be present in the way NMES was applied between the studies, and that would introduce heterogeneity to the effects of the intervention. Therefore, we used a random‐effects model for the meta‐analyses.

'Summary of findings' table

We created a 'Summary of findings' table using the following outcomes: peripheral muscle force, peripheral muscle endurance, thigh muscle size, 6MWD, functional performance, dyspnoea, HRQoL and minor adverse events. We used the five GRADE considerations (study limitations, consistency of effect, imprecision, indirectness and publication bias) to assess the quality of a body of evidence as it related to the studies that contributed data to the meta‐analyses for the prespecified outcomes (Guyatt 2008). We also presented results of subgroup analyses. We applied methods and recommendations described in Section 8.5 and Chapter 12 of the Cochrane Handbook for Systematic Reviews of Interventions using GRADEpro software (Higgins 2011). We justified all decisions to downgrade or upgrade the quality of studies in the table to aid the reader's understanding of the review.

Análisis de subgrupos e investigación de la heterogeneidad

For each analysis (i.e. NMES versus usual care, and NMES plus conventional exercise training versus conventional exercise training alone), we planned the following subgroup analyses.

  • Studies that recruited participants who were clinically stable versus studies that recruited participants during an acute exacerbation of COPD. This allowed us to explore whether the effectiveness of NMES differed between people who were clinically stable versus those who were experiencing an acute exacerbation of their disease.

  • Studies that used stimulation frequencies less than 15 Hz versus studies that used stimulation frequencies of 15 Hz or greater (Sillen 2011). This separated studies that used frequencies more likely to result in pulse fusion, a tetanic muscle contraction and favour strength adaptations (i.e. 15 Hz or greater) from those that did not (i.e. less than 15 Hz) and may assist in determining the most effective stimulation parameters.

  • Studies that recruited participants with, on average, severe disease (i.e. forced expiratory volume in one second (FEV1) less than 50%) versus studies that recruited participants with, on average, less severe disease (FEV1 of 50% or greater). This allowed us to explore whether the effectiveness of NMES differed between people with mild and moderate disease versus people with severe or very severe disease.

  • Studies that used robust, reliable methods for quantifying peripheral muscle force (i.e. via a mechanical dynamometer, fixed strain gauge or a twitch force elicited in response to stimulation of a peripheral nerve and measured with a strain gauge) versus studies that used less robust measures (i.e. via a hand‐held or non‐fixed dynamometer, the one‐repetition maximum or by applying the Medical Research Council grading system for manual muscle testing) (Clarkson 2000). This was important, as some outcome measures (e.g. Medical Research Council grading system for manual muscle testing) were likely to be less responsive to change than others (e.g. a mechanical dynamometer) and may have been at higher risk of detection bias.

  • Studies in which a minimum of 10 training sessions were completed within a four‐week period versus studies in which fewer than 10 training sessions were completed over this period. This allowed us to explore whether 'dose' influenced effectiveness.

We used the following outcomes in the subgroup analyses.

  • Muscle‐specific outcome measures such as peripheral muscle force, muscle endurance and muscle size.

  • Exercise capacity.

Análisis de sensibilidad

We conducted sensitivity analyses by excluding studies that described the use of different methodologies (e.g. studies that randomly assigned one limb of a person to receive NMES and the other limb to receive control).

Results

Description of studies

Nineteen (28 records) studies met the criteria to be included in this review (Figure 1). Of these, 16 contributed data for the meta‐analyses (Abdellaoui 2011; Akar 2017; Akinlabi 2013; Bourjeily‐Habr 2002; Dang 2011; Giavedoni 2012; Kucio 2016; Latimer 2013; Maddocks 2016; Neder 2002; Tardif 2015; Tasdemir 2015; Vieira 2014; Vivodtzev 2006; Vivodtzev 2012; Zanotti 2003), and one had data that were included in the narrative discussion (Dolmage 2016).


Study flow diagram.

Study flow diagram.

Results of the search

The search strategy yielded 159 potential studies, of which 38 were duplicates that were removed as part of the electronic search process. Of the 121 remaining potential studies, 32 records were excluded based on title or abstract and 40 studies (56 records) were excluded after reading the full paper (Figure 1). We identified four ongoing studies (ChiCTR‐IPR‐16009845; JPRN‐UMIN000024443; NCT01799330; NCT02321163), and one study reported in a conference abstract that we need further information to assess for inclusion (Chen 2017). Of the 19 studies (28 records) that met the criteria for inclusion, three provided no data that could be included in any meta‐analyses (Dolmage 2016; Gigliotti 2004; Zanotti 2010). Of the 16 studies included in the meta‐analyses, seven explored the effect of NMES versus usual care (Bourjeily‐Habr 2002; Giavedoni 2012; Latimer 2013; Maddocks 2016; Neder 2002; Vieira 2014; Vivodtzev 2012; Table 1), and nine explored the effect of NMES plus conventional exercise training versus conventional exercise training alone (Abdellaoui 2011; Akar 2017; Akinlabi 2013; Dang 2011; Kucio 2016; Tardif 2015; Tasdemir 2015; Vivodtzev 2006; Zanotti 2003; Table 2). A total of 13 studies recruited participants who were clinically stable (Akinlabi 2013; Bourjeily‐Habr 2002; Dang 2011; Kucio 2016; Latimer 2013; Maddocks 2016; Neder 2002; Tardif 2015; Tasdemir 2015; Vieira 2014; Vivodtzev 2006; Vivodtzev 2012; Zanotti 2003), and three recruited participants during hospitalisation for an exacerbation (Abdellaoui 2011; Akar 2017; Giavedoni 2012). One study recruited participants who had recently spent a period in the ICU or had been hospitalised with acute exacerbation (or both), and were transferred to an inpatient rehabilitation facility (Vivodtzev 2006). However, at the time of recruitment, participants in this study were clinically stable (Vivodtzev 2006). One study recruited participants who were referred to a respiratory high dependency unit from surrounding ICUs and who were ventilated via a tracheostomy for chronic respiratory failure (Zanotti 2003). However, at the time of recruitment, participants in this study were also clinically stable (Zanotti 2003). One study randomised participants to three intervention arms, but we only extracted data on the groups that received NMES plus conventional exercise training or conventional exercise training alone (Akar 2017). Two studies randomly assigned one leg to receive NMES and used the other leg to receive control (Giavedoni 2012; Latimer 2013). The latest search was run on 14 March 2018.

Open in table viewer
Table 1. Characteristics of studies that contributed data to meta‐analyses (NMES versus usual care)

Study

Setting

Lower limb stimulation

Clinical stability

Dose

Frequency (Hz)

Intervention received by control group

Bourjeily‐Habr 2002

Outpatient

Bilateral quadriceps, hamstrings and calf

Stable

20 min per day, 3 days per week for 6 weeks at an intensity that elicited a muscle contraction, and increasing by 5 mA per week

50

Sham stimulation

Giavedoni 2012

Hospital ward then at home

Unilateral quadriceps

Acute exacerbation

30 min per day, once per day for 14 days at maximum tolerated current

50

Nil

Latimer 2013

Combination of supervised and unsupervised home training

Unilateral quadriceps

Stable

30 min per session,
5 times per week, for 6 weeks at maximum tolerated current

50

Nil

Maddocks 2016

Home

Bilateral quadriceps

Stable

30 min per day, 7 days per
week for 6 weeks with current set to elicit a contraction equivalent to 15‐25% of a maximum voluntary contraction

50

Sham stimulation

Neder 2002

First week as outpatient then home

Bilateral quadriceps

Stable

15 min (to each leg) in the first
week which increased to 30 min thereafter, for 5 days per week for 6 weeks at maximum tolerated current

50

Nil

Vieira 2014

Presumably home

Bilateral quadriceps

Stable

60 min per session, 2 times per day, 5 days per week, for 8 weeks at maximum tolerated current

50

Both groups received respiratory physical therapy (i.e. airway clearance) as indicated as well as stretching exercises for the upper limbs, lower limbs and back (control group also received sham stimulation).

Vivodtzev 2012

Home

Bilateral quadriceps and calf

Stable

60 minutes per session, 5 days per week for 6 weeks at maximum tolerated current

50

Sham stimulation

min: minute; NMES: neuromuscular electrostimulation.

Open in table viewer
Table 2. Characteristics of studies that contributed data to meta‐analyses (NMES + exercise versus exercise alone)

Study

Setting

Lower limb stimulation

Clinical stability

Dose

Frequency (Hz)

Exercise intervention received by control group

Abdellaoui 2011

Intensive care unit

Bilateral quadriceps and hamstrings

Acute exacerbation

1 hour per day, 5 days per week for 6 weeks at maximum tolerated current

35

Both groups received education (once per week) and daily active‐passive mobilisation (control group also received sham stimulation).

Akar 2017

Intensive care unit

Bilateral quadriceps

Respiratory failure

5 days per week (total of 20 sessions) at maximum tolerated current

50

Both groups received active exercise, which comprised active joint range of motion exercise for upper and lower limbs. Participants who could not manage active exercise received active‐assisted or passive range of motion exercise.

Akinlabi 2013

Home

Bilateral quadriceps and hamstrings

Stable

2 days per week for 8 weeks (total of 16 sessions)

10‐50

Low‐intensity symptom‐limited exercise

Dang 2011

Outpatient

Bilateral quadriceps

Stable

36 min, 3 sessions per week for 12 weeks (total of 36 sessions) at maximum tolerated current

8‐45

Usual respiratory rehabilitation (no other details given)

Kucio 2016

Inpatient rehabilitation

Bilateral quadriceps and calf

Stable

36 min, presumably 6 supervised
sessions per week for 3 weeks, intensity not specified

35

Both groups received breathing exercises, treadmill walking and resistance exercise.

Tardif 2015

Home

Bilateral quadriceps

Stable

Presumably 30 min per day, 5 days per week, presumably for 8 weeks at maximum tolerated current

35

Both groups received pulmonary rehabilitation.

Tasdemir 2015

Outpatient

Bilateral quadriceps

Stable

20 min, 2 days per week for 10 weeks at maximum tolerated current

50

Both groups received pulmonary rehabilitation (control group also received sham stimulation).

Vivodtzev 2006

Inpatient rehabilitation

Bilateral quadriceps

Stable, but shortly following acute illness

> 30 min per session, 4 times per week, for 4 weeks at maximum tolerated current

5‐35

Both groups received active limb exercises. The strongest participants also performed walking on a treadmill together with 5‐10 min of resistance arm exercises. They also completed health education sessions 1 day per week.

Zanotti 2003

Respiratory high dependency unit for inpatient rehabilitation

Bilateral quadriceps and gluteals

Stable, but shortly following acute illness

Up to 30 min per session, 2 times per day, 5 days per week for 4 weeks presumably at maximum tolerated current

8‐35

Both groups received rehabilitation that comprised active limb exercises.

min: minute; NMES: neuromuscular electrostimulation.

Included studies

With the exception of risk of bias, the results refer only to studies that provided data that could be incorporated into the review.

Participants

The 16 studies contributed data on 267 participants with COPD, of whom 150 (56%) received NMES. The mean age of the participants ranged from 56 to 76 years and 179 (67%) were men. The mean FEV1 of the participants ranged from 15% to 50% of the predicted value in healthy adults. Common inclusion criteria related to a diagnosis of severe or very severe COPD and severe functional limitation due to dyspnoea. Common exclusion criteria were the presence of an implanted cardiac pacemaker or comorbidities that may have interfered with participation in the study. For further description of the participants included in the studies in these meta‐analyses, refer to the Characteristics of included studies table.

Intervention

The intervention was undertaken:

One study did not state the location for the intervention (Vieira 2014), but it was likely that this study provided the intervention in the home.

The lower limb muscles stimulated were:

Both studies that randomly assigned one leg to receive NMES and used the other leg to receive control stimulated only unilateral quadriceps (Giavedoni 2012; Latimer 2013).

Regarding intensity, when described (either in the paper or through communication with the authors), most studies reported that stimulation was set to the maximum current that was perceived to be tolerable (Abdellaoui 2011; Akar 2017; Dang 2011; Giavedoni 2012; Latimer 2013; Neder 2002; Tardif 2015; Tasdemir 2015; Vieira 2014; Vivodtzev 2006; Vivodtzev 2012). One study described setting an intensity that elicited a muscle contraction, and increasing by 5 mA per week (Bourjeily‐Habr 2002), and another study described setting the intensity to produce a muscular contraction equivalent to 15% to 25% of force generated during a maximum voluntary contraction (Maddocks 2016). Waveforms were most commonly symmetric or biphasic (or both) (Abdellaoui 2011; Akar 2017; Akinlabi 2013; Dang 2011; Giavedoni 2012; Kucio 2016; Latimer 2013; Neder 2002; Tasdemir 2015; Vieira 2014; Vivodtzev 2006; Vivodtzev 2012; Zanotti 2003). Regarding frequency, nine studies stimulated using 50 Hz (Akar 2017; Bourjeily‐Habr 2002; Giavedoni 2012; Latimer 2013; Maddocks 2016; Neder 2002; Tasdemir 2015; Vivodtzev 2012). Other studies reported using frequencies that ranged between 8 Hz and 45 Hz (Dang 2011), 10 Hz and 50 Hz (Akinlabi 2013), 5 Hz and 35 Hz (Vivodtzev 2006), 8 Hz and 35 Hz (Zanotti 2003), or 35 Hz (Abdellaoui 2011; Kucio 2016; Tardif 2015). Regarding duration, most studies stimulated once or twice a day for 30 to 60 minutes on four to seven days per week for four to eight weeks (Abdellaoui 2011; Latimer 2013; Maddocks 2016; Neder 2002; Tardif 2015; Vieira 2014; Vivodtzev 2006; Vivodtzev 2012; Zanotti 2003).

Exercise programmes

For the four studies that were conducted in an ICU, high dependency area or inpatient rehabilitation facility, and compared the effect of NMES plus conventional exercise training versus conventional exercise training alone, exercise training comprised active movement, active‐assisted movement or passive range of motion if the participant was unable to perform active movement through full range (Abdellaoui 2011; Akar 2017; Vivodtzev 2006; Zanotti 2003). One study described a programme that also facilitated participants to walk on a treadmill and use light arm weights once able (Vivodtzev 2006). The one study that was conducted in participants who were hospitalised (but clinically stable), and compared the effect of NMES plus conventional exercise training versus conventional exercise training alone, offered breathing exercises together with treadmill walking and resistance exercises (Kucio 2016). For the four studies that were conducted at home or in a rehabilitation or outpatient centre, and compared the effect of NMES plus conventional exercise training versus conventional exercise training alone, exercise training was described as low intensity symptom‐limited exercise (Akinlabi 2013), or usual exercise training/pulmonary rehabilitation (Dang 2011; Tardif 2015; Tasdemir 2015).

Outcome measures

Regarding the assessment of peripheral muscle force, two studies assessed quadriceps force used an isokinetic chair‐mounted dynamometer (Bourjeily‐Habr 2002; Neder 2002), and six studies assessed quadriceps force using a strain gauge or digital load cell that was fixed to a chair or rig (Dang 2011; Giavedoni 2012; Latimer 2013; Maddocks 2016; Vivodtzev 2006; Vivodtzev 2012). For the one study that measured quadriceps force during both a maximal voluntary isometric contraction and as twitch force in response to supramaximal femoral nerve stimulation (Maddocks 2016), the former, but not the latter measure was used in a meta‐analysis. One study assessed quadriceps force using a device that appeared to be hanging scale (Abdellaoui 2011), and one measured the one‐repetition maximum (Tasdemir 2015). Two studies described performing manual muscle testing of the 'peripheral muscles' or 'lower extremity muscles,' and although it was not clear which muscles were included in this assessment, it seemed likely that this assessment would have included quadriceps as both studies stimulated this muscle (Akar 2017; Zanotti 2003).

Three studies reported the assessment of quadriceps endurance. One study described a fatigue index in which high values were indicative of worse endurance (Neder 2002). Two studies described muscle endurance as time to fatigue during a given task, in which high values were indicative of better endurance (Dang 2011; Vivodtzev 2012). However, one study provided incomplete data on this outcome (Dang 2011), and therefore neither a meta‐analysis nor narrative discussion of these data was possible. One study reported collecting measures of quadriceps endurance, but these measures were of functional performance, such as squat tests in which the participant was required to perform as many squats as possible in 30 seconds (Tasdemir 2015). Therefore, neither a meta‐analysis nor narrative discussion of these data were undertaken.

Five studies reported the assessment of thigh muscle size (Latimer 2013; Maddocks 2016; Vieira 2014; Vivodtzev 2006; Vivodtzev 2012). Maddocks 2016 obtained measures of rectus femoris cross‐sectional area by ultrasound and Vivodtzev 2012 obtained measures of mid‐thigh cross‐sectional area by computed tomography. Latimer 2013 obtained measures of thigh muscle mass by dual‐energy X‐ray absorptiometry (DEXA) and Vieira 2014 and Vivodtzev 2006 obtained measures of thigh circumference via anthropometry.

We collected mortality data as part of our assessment of serious adverse events. Twelve studies contributed mortality data (Abdellaoui 2011; Akinlabi 2013; Bourjeily‐Habr 2002; Dang 2011; Kucio 2016; Maddocks 2016; Neder 2002; Tardif 2015; Tasdemir 2015; Vieira 2014; Vivodtzev 2012; Zanotti 2003 ). For minor adverse events related specifically to the stimulation itself, all but five studies reported data (Akar 2017; Giavedoni 2012; Kucio 2016; Vieira 2014; Vivodtzev 2006).

The most common measure of assessment of exercise capacity was the 6MWD (Abdellaoui 2011; Akinlabi 2013; Dang 2011; Kucio 2016; Maddocks 2016; Tardif 2015; Vieira 2014; Vivodtzev 2006). Other field‐based walking tests were less common, such as the incremental shuttle walk test (ISWT) (Bourjeily‐Habr 2002; Tasdemir 2015), and ESWT (Tasdemir 2015; Vivodtzev 2012). Measures of exercise capacity also comprised peak rate oxygen consumption (VO2peak) expressed as litres per minute (Neder 2002; Vivodtzev 2012), millilitres per minute (Bourjeily‐Habr 2002; Vieira 2014), or millilitres per kilogram per minute (Dang 2011). However, one study that reported on VO2peak could not be included in the meta‐analyses (due to differences in the units of measurement) and narrative discussion was not possible as the data that were provided were incomplete (Dang 2011). Four studies expressed exercise capacity as peak power (Bourjeily‐Habr 2002; Dang 2011; Neder 2002; Tardif 2015), and two studies expressed time to symptom limitation cycling at a constant submaximal intensity (Neder 2002; Vieira 2014). However, two studies that reported peak power and compared NMES plus conventional exercise training with conventional exercise training alone provided incomplete data (Dang 2011; Tardif 2015). Therefore, neither a meta‐analysis nor a narrative discussion of these data was possible (Dang 2011; Tardif 2015).

Two studies reported functional performance giving the time required for the participants in both groups to achieve specific mobility milestones, such as sitting out of bed (Akar 2017; Zanotti 2003).

Six studies assessed symptoms and reported dyspnoea at the end of an exercise test or at iso‐time during an exercise test using the Borg 0 to 10 scale (Maddocks 2016; Neder 2002Tasdemir 2015; Vieira 2014; Vivodtzev 2006; Vivodtzev 2012). Five studies reported leg fatigue or leg effort at the end of an exercise test using the Borg 0 to 10 scale (Maddocks 2016; Neder 2002; Tasdemir 2015; Vieira 2014; Vivodtzev 2012), and one study reported general fatigue during daily life using the Fatigue Severity Scale (Tasdemir 2015). However, Maddocks 2016 reported dyspnoea and leg fatigue on completion of the 6MWT performed at baseline only (i.e. no postintervention period data reported) and therefore neither a meta‐analysis nor narrative discussion of these data was possible. Three studies reported dyspnoea during daily life using the dyspnoea domain of the Chronic Respiratory Disease Questionnaire (CRDQ) (Dang 2011; Maddocks 2016; Neder 2002), and one study used the Maugeri Foundation Respiratory Failure questionnaire (MRF‐28) (Vivodtzev 2006). However, one study that reported dyspnoea during daily life using the CRDQ presented these data at baseline only (i.e. no postintervention period data reported) and therefore neither a meta‐analysis nor narrative discussion of these data was possible (Maddocks 2016). Although two studies that compared NMES plus conventional exercise training with conventional exercise training alone reported dyspnoea during daily life (Dang 2011; Vivodtzev 2006), Vivodtzev 2006 did not report data in a way that could be included in a meta‐analysis and therefore a meta‐analysis for this outcome was not possible. Grades from the modified Medical Research Council Scale were not included in the assessment of dyspnoea, as this scale assesses functional limitation resulting from dyspnoea rather than the severity of dyspnoea itself.

Regarding the assessment of HRQoL, five studies used the St George's Respiratory Questionnaire (SGRQ) in which high values represented worse HRQoL (Akinlabi 2013; Maddocks 2016; Tardif 2015; Tasdemir 2015; Vieira 2014), three used the CRDQ in which high values represented better HRQoL (Dang 2011; Maddocks 2016; Neder 2002), and one used the MRF‐28 in which high values represented worse HRQoL (Vivodtzev 2006). However, one study did not provide data on total CRDQ scores and therefore neither a meta‐analysis nor narrative discussion of these data was possible (Neder 2002). As one study reported HRQoL using both the SGRQ and CRDQ, we used only data collected using the SGRQ in the meta‐analysis (Maddocks 2016).

Excluded studies

After the removal of duplicates and clinical trial registrations, we excluded 40 studies (56 records) with reasons provided in the Characteristics of excluded studies table. Common reasons for exclusion related to the: use of a cross‐over study design; provision of magnetic stimulation; stimulation of muscles that were not peripheral limb muscles; application of electrical stimulation as acu‐transcutaneous electrical nerve stimulation (acu‐TENS); lack of a suitable control group) or insufficient proportion of participants with COPD.

Risk of bias in included studies

See Figure 2 and Figure 3 for a summary of the risk of bias for the studies included in this review.


Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.


Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Allocation

Although all studies reported that participants were randomised to groups, 12 studies did not describe the method used to develop the randomisation sequence and we judged these studies at unclear risk of bias (Akar 2017; Bourjeily‐Habr 2002; Dolmage 2016; Giavedoni 2012; Gigliotti 2004; Kucio 2016; Neder 2002; Tardif 2015; Vivodtzev 2006; Vivodtzev 2012; Zanotti 2003; Zanotti 2010). We judged only studies that described concealment of the randomisation sequence as being at low risk of this bias (Abdellaoui 2011; Akar 2017; Akinlabi 2013; Dang 2011; Maddocks 2016; Tasdemir 2015).

Blinding

Eight studies utilised sham stimulation in the control group and we judged these at low risk of performance bias (Abdellaoui 2011; Bourjeily‐Habr 2002; Dolmage 2016; Maddocks 2016; Tasdemir 2015; Vieira 2014; Vivodtzev 2012; Zanotti 2010). Only one study reported using a blinded assessor to collect all outcome measures and therefore we judged this at low of risk detection bias (Maddocks 2016). Sixteen studies did not describe blinding procedures or used a blinded assessor to collect some, but not all, outcomes, and we judged these studies at unclear risk of bias (Akar 2017; Bourjeily‐Habr 2002; Dang 2011; Dolmage 2016; Giavedoni 2012; Gigliotti 2004; Kucio 2016; Latimer 2013; Neder 2002; Tardif 2015; Tasdemir 2015; Vieira 2014; Vivodtzev 2006; Vivodtzev 2012; Zanotti 2003; Zanotti 2010). We judged two studies that specifically stated that the outcome assessors were not blinded to group allocation as being at high risk of bias (Abdellaoui 2011; Akinlabi 2013).

Incomplete outcome data

Eleven studies provided insufficient information regarding loss to follow‐up and so we judged these studies at unclear risk of bias (Akar 2017; Dang 2011; Dolmage 2016; Giavedoni 2012; Gigliotti 2004; Latimer 2013; Neder 2002; Tardif 2015; Vivodtzev 2006; Zanotti 2003; Zanotti 2010). All other studies reported minimal loss to follow‐up and so we judged these at low risk of bias (Abdellaoui 2011; Akinlabi 2013; Bourjeily‐Habr 2002; Kucio 2016; Maddocks 2016; Tasdemir 2015; Vieira 2014; Vivodtzev 2012).

Selective reporting

We judged the 12 studies that were published without having registered a study protocol as being at an unclear risk of bias (Akar 2017; Akinlabi 2013; Bourjeily‐Habr 2002; Dang 2011; Dolmage 2016; Giavedoni 2012; Gigliotti 2004; Kucio 2016; Neder 2002; Tardif 2015; Vivodtzev 2006; Zanotti 2003). We judged studies that were reported in a way that was generally consistent with a previously registered study protocol at low risk of bias (Abdellaoui 2011; Maddocks 2016; Vivodtzev 2012; Zanotti 2010). We judged studies that were reported in a way that was inconsistent with a previously registered study protocol as being a high risk of bias (Latimer 2013; Tasdemir 2015; Vieira 2014).

Other potential sources of bias

Five studies had a high proportion of men (Abdellaoui 2011; Kucio 2016; Tardif 2015; Tasdemir 2015; Vieira 2014), which may have increased the likelihood of a positive result as men have been demonstrated to tolerate high levels of stimulation when compared with women (Giavedoni 2012; Maffiuletti 2008), and gains in response to NMES appear to be dependent on the ability for participants to tolerate progressively higher current intensities (Vivodtzev 2012). Therefore we judged these at high risk of bias (Abdellaoui 2011; Kucio 2016; Tardif 2015; Tasdemir 2015; Vieira 2014). Seven studies were published in abstract form only (Akinlabi 2013; Dang 2011; Dolmage 2016; Gigliotti 2004; Latimer 2013; Tardif 2015; Zanotti 2010). Although additional information was obtained from the authors of four of these studies (Akinlabi 2013; Dang 2011; Latimer 2013; Tardif 2015), we judged these at unclear or high risk of 'other' bias. Regarding other potential sources of error, one study reported change scores as the difference in medians (not means) and the inclusion of these data in the meta‐analyses may have introduced error to the estimates of the effect (Akinlabi 2013).

Effects of interventions

See: Summary of findings for the main comparison NMES compared to usual care (with or without sham NMES) for COPD; Summary of findings 2 NMES and exercise compared to exercise (with or without sham NMES) for COPD

Primary outcomes

Peripheral muscle force

Six studies compared NMES with usual care and reported on measures of quadriceps muscle force (Bourjeily‐Habr 2002; Giavedoni 2012; Latimer 2013; Maddocks 2016; Neder 2002; Vivodtzev 2012). Meta‐analysis of these studies demonstrated a significant effect, however, the CIs were wide (SMD 0.34, 95% CI 0.02 to 0.65; participants = 159; low‐quality evidence; Analysis 1.1; Figure 4). One study included in this meta‐analysis also assessed quadriceps twitch force elicited in response to stimulation of the femoral nerve and demonstrated no significant between‐group difference (Maddocks 2016). As the meta‐analysis included the two studies that randomly assigned one leg to receive NMES and the other leg to receive control (Giavedoni 2012; Latimer 2013), we conducted a sensitivity analysis that excluded these studies. For this sensitivity analysis, the SMD from the remaining four studies was 0.39 (95% CI ‐0.00 to 0.78) (Bourjeily‐Habr 2002; Maddocks 2016; Neder 2002; Vivodtzev 2012). Regarding subgroup analyses based on whether or not the participants were clinically stable at the time of recruitment, of the six studies that compared NMES with usual care, only one recruited participants during a period of exacerbation (Giavedoni 2012). Therefore, rather than performing subgroup analyses based on the clinical stability of participants at the time of recruitment, we undertook a sensitivity analysis that excluded the study that recruited people during a period of exacerbation. The SMD for this subgroup analysis that included only participants with COPD who recruited during a period of clinical stability was 0.34 (95% CI 0.00 to 0.68) (Bourjeily‐Habr 2002; Latimer 2013; Maddocks 2016; Neder 2002; Vivodtzev 2012).


Forest plot of comparison: 1 Neuromuscular electrostimulation (NMES) versus usual care, outcome: 1.1 Peripheral muscle force.

Forest plot of comparison: 1 Neuromuscular electrostimulation (NMES) versus usual care, outcome: 1.1 Peripheral muscle force.

One study reported a significant increase in hamstring force following NMES that was greater than any seen in the control group (Bourjeily‐Habr 2002). One additional study, published as an abstract with a small number of participants, that could not be included in the meta‐analysis, compared the effect of two NMES training protocols on quadriceps force (Dolmage 2016). This study suggested that the gains in muscle force may be greater following an NMES training programme designed to increase strength (i.e. high‐frequency, low‐duty cycle) when compared with an NMES training protocol designed to increase endurance (i.e. low ‐frequency, high‐duty cycle) (Dolmage 2016). There were insufficient studies to undertake planned subgroup analyses based on stimulation frequency, disease severity, method used to assess muscle force or number of training sessions.

Six studies compared NMES plus conventional exercise training with conventional exercise training alone and reported measures of quadriceps muscle force (Abdellaoui 2011; Dang 2011; Tasdemir 2015; Vivodtzev 2006), or used manual muscle testing to report on peripheral muscle strength (which was likely to include measures of quadriceps muscle force) (Akar 2017; Zanotti 2003). However, data from two studies reported data as median and interquartile range or minimum and maximum values, and therefore were not included in the meta‐analyses (Abdellaoui 2011; Akar 2017). Meta‐analysis of the remaining four studies produced an uncertain effect with an SMD of 0.47 (95% CI ‐0.10 to 1.04; participants = 84; very low‐quality evidence; Analysis 2.1; Figure 5). Regarding the subgroup analyses based on whether or not the method used to measure muscle force was deemed to be robust, two studies used robust methods (Dang 2011; Vivodtzev 2006), and the SMD for these studies was 0.44 (95% CI ‐0.25 to 1.14; participants = 33) and two studies used less robust methods (Tasdemir 2015; Zanotti 2003), and the SMD for these studies was 0.53 (95% CI ‐0.74 to 1.80; participants = 51; Analysis 2.2; Figure 6). The SMD for these subgroups was not different (Chi2 = 0.01; P = 0.91). Only the analysis for muscle force assessed using less robust methods had high statistical heterogeneity (I2 = 79%). Regarding subgroup analyses based on the minimum number of training sessions, of the four studies, only one completed fewer than 10 sessions in four weeks (Tasdemir 2015). Therefore, rather than performing a subgroup analysis based on the minimum number of training sessions, we undertook a sensitivity analysis that excluded the study where participants completed fewer than 10 sessions over four weeks. For this sensitivity analysis, the SMD from the remaining three studies was 0.73 (95% CI 0.19 to 1.28; participants = 57; Analysis 2.3) (Dang 2011; Vivodtzev 2006; Zanotti 2003). One study also undertook manual muscle testing of the upper limbs; however, it was unclear whether the improvement in this measure was different between the groups (Akar 2017). There were insufficient studies to undertake planned subgroup analyses based on clinical stability at the time of recruitment, stimulation frequency or disease severity.


Forest plot of comparison: 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, outcome: 2.1 Peripheral muscle force.

Forest plot of comparison: 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, outcome: 2.1 Peripheral muscle force.


Forest plot of comparison: 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, outcome: 2.2 Peripheral muscle force with subgroups based on methods used to assess muscle force.

Forest plot of comparison: 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, outcome: 2.2 Peripheral muscle force with subgroups based on methods used to assess muscle force.

Peripheral muscle endurance/fatigability

Two studies compared NMES with usual care, and reported on measures of endurance of the quadriceps (Neder 2002; Vivodtzev 2012). Meta‐analysis of these studies demonstrated a significant effect in favour of NMES (SMD 1.36, 95% CI 0.59 to 2.12; participants = 35; low‐quality evidence; Analysis 1.2). One additional study, published as an abstract with a small numbers of participants, that could not be included in the meta‐analysis, compared the effect of two NMES training protocols on quadriceps endurance (Dolmage 2016). This study suggested that the gains in endurance may have been greater following an NMES training programme designed to increase endurance (i.e. low‐frequency, high‐duty cycle) when compared with an NMES training protocol designed the increase strength (i.e. high‐frequency, low‐duty cycle) (Dolmage 2016). There were insufficient studies to undertake planned subgroup analyses based on clinical stability at the time of recruitment, stimulation frequency, disease severity or the number of training sessions.

No studies compared NMES plus conventional exercise training with conventional exercise training alone, and reported on measures of quadriceps endurance.

Thigh muscle size

Four studies compared NMES with usual care, and reported on measures of thigh muscle size (Latimer 2013; Maddocks 2016; Vieira 2014; Vivodtzev 2012). Meta‐analysis of these studies produced an uncertain effect (SMD 0.25, 95% CI ‐0.11 to 0.61; participants = 124; low‐quality evidence; Analysis 1.3). As this analysis included the one study that randomly assigned one leg to receive NMES and the other leg to receive control (Latimer 2013), we conducted a sensitivity analysis that excluded this study. For this sensitivity analysis, the SMD from the remaining three studies was 0.32 (95% CI ‐0.09 to 0.74; participants = 92) (Maddocks 2016; Vieira 2014; Vivodtzev 2012). There were insufficient studies to undertake planned subgroup analyses based on clinical stability of the participants at the time of recruitment, stimulation frequency, disease severity or the number of training sessions.

The one study that compared NMES plus conventional exercise training with conventional exercise training alone, and reported on measures of thigh circumference demonstrated no between‐group difference in this outcome (Vivodtzev 2006).

Serious adverse events

Although six studies compared NMES with usual care, and reported data on mortality (Bourjeily‐Habr 2002; Latimer 2013; Maddocks 2016; Neder 2002; Vieira 2014; Vivodtzev 2012), we excluded data from the study that randomly assigned one leg to receive NMES and the other leg to receive control (Latimer 2013). Meta‐analysis of the remaining five studies demonstrated no risk difference between groups (RD ‐0.02, 95% CI ‐0.08 to 0.05; participants = 131; Analysis 1.4). These studies were undertaken in participants who were clinically stable at the time of recruitment.

Seven studies compared NMES plus conventional exercise training with conventional exercise training alone, and provided information on mortality (Abdellaoui 2011; Akinlabi 2013; Dang 2011; Kucio 2016; Tardif 2015; Tasdemir 2015; Zanotti 2003). Meta‐analysis of these studies demonstrated no risk difference between groups (RD 0.00, 95% CI ‐0.05 to 0.05; participants = 183; Analysis 2.4).

Secondary outcomes

Exercise capacity

Two studies compared NMES with usual care, and reported on measures of 6MWD (Maddocks 2016; Vieira 2014). Meta‐analysis of these studies demonstrated a significant effect (MD 39.26 m, 95% CI 16.31 to 62.22; low‐quality evidence; participants = 72; Analysis 1.5). Both studies were undertaken in participants who were clinically stable at the time of recruitment. There were insufficient studies to undertake planned subgroup analyses for the effect on 6MWD based on clinical stability of the participants at the time of recruitment, stimulation frequency, disease severity or the number of training sessions. The one study that reported on measures of incremental shuttle walk distance (ISWD) demonstrated a significant between‐group increase in favour of NMES (Bourjeily‐Habr 2002). Four studies reported on measures of VO2peak (Bourjeily‐Habr 2002; Neder 2002; Vieira 2014; Vivodtzev 2012), and meta‐analysis of these studies demonstrated a significant effect in favour of NMES (MD 0.10 L/min, 95% CI 0.00 to 0.19; participants = 73; Analysis 1.6). These studies were undertaken in participants who were clinically stable at the time of recruitment. There were insufficient studies to undertake planned subgroup analyses for the effect on VO2peak based on clinical stability of the participants at the time of recruitment, stimulation frequency, disease severity or the number of training sessions. Two studies reported on measures of peak power (Bourjeily‐Habr 2002; Neder 2002), and meta‐analysis of these studies produced an uncertain effect (MD 5.77 W, 95% CI ‐6.00 to 17.53; participants = 33; Analysis 1.7). Both studies were undertaken in participants who were clinically stable at the time of recruitment. There were insufficient studies to undertake planned subgroup analyses for the effect on peak power based on clinical stability of the participants at the time of recruitment, stimulation frequency, disease severity or the number of training sessions. Three studies reported on endurance time during a constant power test on a bike (Neder 2002; Vieira 2014), or on the ESWT (Vivodtzev 2012), and meta‐analysis of these studies demonstrated a significant effect (MD 3.62 minutes, 95% CI 2.33 to 4.91; participants = 55; Analysis 1.8). These studies were undertaken in participants who were clinically stable at the time of recruitment. There were insufficient studies to undertake planned subgroup analyses for the effect on endurance time based on clinical stability of the participants at the time of recruitment, stimulation frequency, disease severity or the number of training sessions.

Six studies compared NMES plus conventional exercise training with conventional exercise training alone, and reported on measures of 6MWD (Abdellaoui 2011; Akinlabi 2013; Dang 2011; Kucio 2016; Tardif 2015; Vivodtzev 2006). Meta‐analysis of these studies demonstrated a significant effect (MD 25.87 m, 95% CI 1.06 to 50.69; participants = 138; very low‐quality evidence; Analysis 2.5). Regarding subgroup analyses based on whether or not the participants were clinically stable at the time of recruitment, of the six studies that compared NMES plus conventional exercise training with conventional exercise training alone, only one recruited participants during a period of exacerbation (Abdellaoui 2011). Therefore, rather than perform a subgroup analysis based on clinical stability, we undertook a sensitivity analysis that excluded the study that recruited participants during a period of exacerbation. The MD for this meta‐analysis that included only people with COPD who were clinically stable at the time of recruitment was 17.80 m (95% CI ‐6.81 to 42.41; participants = 123) (Akinlabi 2013; Dang 2011; Kucio 2016; Tardif 2015; Vivodtzev 2006). Regarding subgroup analyses based on the minimum number of training sessions, of the six studies, only one completed fewer than 10 sessions in four weeks (Akinlabi 2013). Therefore, rather than performing a subgroup analysis based on the minimum number of training sessions, we undertook a sensitivity analysis that excluded the study in which participants completed fewer than 10 sessions over four weeks. For this sensitivity analysis, the MD from the remaining five studies was 25.86 m (95% CI ‐3.17 to 54.89; participants = 128; Analysis 2.6) (Abdellaoui 2011; Dang 2011; Kucio 2016; Tardif 2015; Vivodtzev 2006). There were insufficient studies to undertake planned subgroup analyses for the effect on 6MWD based on stimulation frequency or disease severity. The one study that reported on measures of exercise capacity expressed as ISWD and performance on the ESWT demonstrated a significant between‐group difference in favour of NMES plus conventional exercise training on ISWD, but not performance on the ESWT (expressed in seconds) (Tasdemir 2015).

Functional performance

None of the studies comparing NMES with usual care reported on measures of functional performance.

Two studies compared NMES plus conventional exercise training with conventional exercise training alone (Akar 2017; Zanotti 2003), and reported on the same measure of functional performance; number of days between randomisation and when the participant first transferred out of bed. Meta‐analysis of these studies demonstrated a significant effect on when the participant first transferred out of bed in favour of NMES plus conventional exercise training (MD ‐4.98 days, 95% CI ‐8.55 to ‐1.41; participants = 44; very low‐quality evidence; Analysis 2.7). Although both studies included in this meta‐analysis reported the same direction of effect, this analysis had high statistical heterogeneity (I2 = 60%). One of these studies was undertaken in participants who were clinically stable at the time of recruitment (Zanotti 2003), and the other was undertaken in participants who were experiencing an exacerbation at the time of recruitment (Akar 2017).

Symptoms of dyspnoea and fatigue

Three studies compared NMES with usual care, and reported on measures of dyspnoea reported on completion of a symptom‐limited exercise test (Neder 2002; Vieira 2014; Vivodtzev 2012). Meta‐analysis of these studies produced an uncertain effect (MD ‐1.03 units, 95% CI ‐2.13 to 0.06; participants = 55; very low‐quality evidence; Analysis 1.9). This analysis had high statistical heterogeneity (I2 = 59%). All studies were undertaken in participants who were clinically stable at the time of recruitment. The one study that reported on dyspnoea at iso‐time during the ESWT demonstrated no between‐group difference (Vivodtzev 2012). The one study that reported on measures of dyspnoea during daily life using the CRDQ demonstrated a significant between‐group difference in favour of NMES (Neder 2002). Three studies compared NMES with usual care, and reported on measures of leg fatigue reported on completion of an exercise test (Neder 2002; Vieira 2014; Vivodtzev 2006). Meta‐analysis of these studies demonstrated a significant effect (MD ‐1.12 units, 95% CI ‐1.81 to ‐0.43; participants = 55; Analysis 1.10). These studies were undertaken in participants who were clinically stable at the time of recruitment.

Two studies compared NMES plus conventional exercise training with conventional exercise training alone (Tasdemir 2015; Vivodtzev 2006), and reported on measures of dyspnoea reported on completion of an exercise test. Meta‐analysis of these studies produced an uncertain effect (MD ‐0.44 units, 95% CI ‐2.27 to 1.38; participants = 44; very low‐quality evidence; Analysis 2.8). This analysis had high statistical heterogeneity (I2 = 69%). Both studies were undertaken in participants who were clinically stable at the time of recruitment. Two studies compared NMES plus conventional exercise training with conventional exercise training alone on measures of dyspnoea during daily life (Dang 2011; Vivodtzev 2006). However, for one study, it was unclear whether the improvement in this measure was different between the groups (Dang 2011), and the between‐group difference reported in the other study was of borderline significance (P = 0.05) (Vivodtzev 2006). The one study that compared NMES plus conventional exercise training with conventional exercise training alone and reported on measures of leg fatigue on completion of an exercise test and general fatigue during daily life using the Fatigue Severity Scale demonstrated no between‐group differences in either of these outcomes (Tasdemir 2015).

Health‐related quality of life

Two studies compared NMES with usual care, and reported on measures of HRQoL measured using the SGRQ (Maddocks 2016; Vieira 2014). Meta‐analysis of these studies produced an uncertain effect (MD ‐4.12 %points, 95% CI ‐12.60 to 4.35; participants = 72; very low‐quality evidence; Analysis 1.11). This analysis had high statistical heterogeneity (I2 = 74%). One of these studies also demonstrated no between‐group difference in HRQoL assessed using the CRDQ (Maddocks 2016). These studies were undertaken in participants who were clinically stable at the time of recruitment.

Of the five studies that compared NMES plus conventional exercise training with conventional exercise training alone and reported on measures of HRQoL, three used the SGRQ (Akinlabi 2013; Tardif 2015; Tasdemir 2015), one used the CRDQ (Dang 2011), and one used the MRF‐28 (Vivodtzev 2006). Data from one study was reported as median and minimum and maximum and therefore were not included in the meta‐analysis (Tasdemir 2015). Meta‐analysis of the remaining four studies produced an uncertain effect (SMD ‐0.56, 95% CI ‐1.27 to 0.15; participants = 95; very low‐quality evidence; Analysis 2.9). This analysis had high statistical heterogeneity (I2 = 55%). These studies were undertaken in participants who were clinically stable at the time of recruitment.

Minor adverse events

Five studies compared NMES with usual care, and reported data on minor adverse events related to the intervention (Bourjeily‐Habr 2002; Latimer 2013; Maddocks 2016; Neder 2002; Vivodtzev 2012). Meta‐analysis of these studies demonstrated no risk difference between groups; however, there was inconsistency between individual studies (RD 0.00, 95% CI ‐0.07 to 0.07; participants = 139; low‐quality evidence; Analysis 1.12).

Six studies compared NMES plus conventional exercise training with conventional exercise training alone and reported data on minor adverse events related to the intervention (Abdellaoui 2011; Akinlabi 2013; Dang 2011; Tardif 2015; Tasdemir 2015; Zanotti 2003). Meta‐analysis of these studies demonstrated no risk difference between groups (RD 0.00, 95% CI ‐0.05 to 0.05; participants = 144; low‐quality evidence; Analysis 2.10). Of the six studies that compared NMES plus conventional exercise training with conventional exercise training alone, only one recruited participants during a period of exacerbation (Abdellaoui 2011).

Discusión

available in

Resumen de los resultados principales

Esta revisión demostró un aumento en la fuerza del cuádriceps después de un programa de EENM aplicado solo, con una DME de 0,34 (IC del 95%: 0,02 a 0,65), lo que indica un efecto de pequeño a moderado (Cohen 1988). En términos reales, con el uso de los datos disponibles en un estudio que informó cambios en la fuerza del cuádriceps en kilogramos (Maddocks 2016), una DME de 0,34 fue equivalente a una diferencia en la fuerza de 3,1 kg (a partir de una fuerza media inicial de 23,1 kg). Los análisis de sensibilidad tuvieron una influencia mínima en el tamaño de la DME.

No hubo un aumento en la fuerza de los músculos periféricos en los estudios que aplicaron EENM más entrenamiento convencional con ejercicios (DME 0,47; IC del 95%: ‐0,10 a 1,04). Los análisis de subgrupos indicaron que el tamaño de la DME no estuvo influenciado por el método utilizado para cuantificar la fuerza de los músculos periféricos. Los análisis de sensibilidad indicaron que el efecto de la EENM sobre la fuerza de los músculos periféricos puede haber estado influenciado por la dosis de entrenamiento aplicada. Lo anterior se debe a que la eliminación del único estudio (Tasdemir 2015) que proporcionó menos de diez sesiones de entrenamiento durante cuatro semanas dio lugar a un aumento significativo de la DME a 0,73 (IC del 95%: 0,19 a 1,28).

Esta revisión demostró que un programa de EENM aplicado solo produce un aumento grande en la resistencia del músculo cuádriceps, pero no produce cambios en el tamaño muscular del muslo. No hubo datos suficientes para realizar un metanálisis de los estudios que exploraron el efecto de aplicar EENM más entrenamiento convencional con ejercicios sobre la resistencia de los músculos periféricos o el tamaño muscular del muslo.

Con respecto a los eventos adversos, no hubo una diferencia de riesgos en la mortalidad en los participantes que recibieron EENM sola o junto con entrenamiento convencional con ejercicios. En los estudios que informaron datos sobre la mortalidad, de los 314 participantes solo hubo una muerte y ocurrió en un participante del grupo control que no recibió EENM (Maddocks 2016).

Con respecto a la capacidad de ejercicio, los estudios que aplicaron EENM sola demostraron un aumento pequeño en el VO2 máximo que fue de significación marginal (DM 0,10 l/min; IC del 95%: 0,00 a 0,19). Sin embargo, estos estudios demostraron un aumento en la 6MWD que fue estadísticamente significativo y excedió el umbral de importancia clínica indicado por Holland 2010 (DM 39,26 m; IC del 95%: 16,31 a 62,22). Además, también se observó un aumento en el tiempo transcurrido hasta los síntomas de limitación con los ejercicios a una intensidad submáxima (es decir, tiempo de resistencia). En los estudios que aplicaron EENM más entrenamiento convencional con ejercicios, se produjo un aumento pequeño en la 6MWD, que fue equivalente al umbral de importancia clínica (DM 25,87 m; IC del 95%: 1,06 a 50,69). Este efecto sobre la 6MWD dejó de ser significativo cuando se excluyó del metanálisis el estudio que reclutó a los participantes durante un período de exacerbación (Abdellaoui 2011).

Con respecto al rendimiento funcional, no hubo datos suficientes para realizar un metanálisis de los estudios que exploraron el efecto de aplicar EENM sola. Los estudios que aplicaron EENM más entrenamiento convencional con ejercicios en pacientes muy debilitados (es decir, en una UCI o en una unidad respiratoria de alta dependencia después de un ingreso prolongado en una UCI), demostraron una reducción en el tiempo transcurrido hasta que los participantes se sentaron por primera vez fuera de la cama de 4,98 días (IC del 95%: ‐8,55 a ‐1,41). Sin embargo, la confianza en este resultado se redujo debido al nivel alto de heterogeneidad en este análisis (I2 = 60%). Además de las ganancias en la función de los músculos periféricos, las mejorías en la capacidad de ejercicio y el rendimiento funcional después de la EENM también se pueden relacionar con posibles efectos sistémicos de esta intervención, como un aumento en la microcirculación y en la respuesta de la frecuencia cardíaca (Gerovasili 2009), así como la facilitación de los músculos de la pierna contralateral (Hortobágyi 1999). Con respecto a los síntomas medidos al completar una prueba de ejercicios, los estudios que aplicaron EENM sola no demostraron diferencias en la gravedad de la disnea (DM ‐1,03; IC del 95%: ‐2,13 a 0,06). Sin embargo, este análisis tuvo heterogeneidad estadística alta (I2 = 59%). Estos estudios demostraron una disminución en la gravedad de la fatiga de la pierna al completar una prueba de ejercicios (DM ‐1,12 unidades; IC del 95%: ‐1,81 a ‐0,43). En los estudios que aplicaron EENM más entrenamiento convencional con ejercicios no hubo evidencia de una disminución en la gravedad de la disnea al completar una prueba de ejercicios (DM ‐0,44; IC del 95%: ‐2,27 a 1,38). Este análisis tuvo una heterogeneidad estadística alta (I2 = 69%).

Con respecto a la CdVRS, los estudios que aplicaron EENM sola no demostraron diferencias en la CdVRS medida mediante el SGRQ. Este análisis tuvo una heterogeneidad estadística alta (I2 = 74%). De igual manera, los estudios que aplicaron EENM más entrenamiento convencional con ejercicios no demostraron diferencias en la CdVRS medida mediante el SGRQ, el CRDQ y el MRF‐28.

Con respecto a los eventos adversos leves relacionados con la tolerancia de la EENM, no hubo una diferencia de riesgo para la EENM cuando se aplicó sola o junto con entrenamiento convencional con ejercicios. En los estudios que informaron eventos adversos leves, hubo datos disponibles de 283 participantes. De estos participantes, seis que recibieron EENM y cuatro que recibieron EENM simulada informaron eventos leves.

Muchos de los análisis de subgrupos planificados no fueron posibles debido al número limitado de estudios disponibles para inclusión en esta revisión.

Compleción y aplicabilidad general de las pruebas

Los estudios incluidos en esta revisión se realizaron en centros únicos y reclutaron tamaños de la muestra modestos (menos de 30 por grupo). De los 16 estudios incluidos en los metanálisis, cuatro se publicaron solo en forma de resumen. Varios estudios proporcionaron EENM en el domicilio con muy poca supervisión, de haber alguna. Por lo tanto, el cumplimiento deficiente con la EENM puede haber moderado la estimación del efecto de esta intervención. No obstante, en la práctica clínica es probable que ofrecer la EENM en el domicilio sea el enfoque más factible y de bajo costo y la inclusión de estudios que describan la EENM en el domicilio aumenta la probabilidad de que los resultados de esta revisión reflejen los efectos "reales" de la intervención. A diferencia de las revisiones anteriores, en esta revisión se separaron los estudios que exploraron el efecto de la EENM aplicada sola (es decir, versus atención habitual) y los que exploraron el efecto de agregar la EENM a un programa de entrenamiento convencional con ejercicios. De esta forma, los resultados de esta revisión ayudarán a los médicos a apreciar los posibles efectos de la EENM aplicada de forma independiente de otras estrategias de rehabilitación, así como ofreciéndola como complemento al entrenamiento convencional con ejercicios.

Calidad de la evidencia

Mediante el enfoque GRADE, la calidad de la evidencia para la mayoría de los resultados fue baja o muy baja. Lo anterior se debió, al menos en parte, al riesgo de sesgo, especialmente al sesgo de detección y de realización en la mayoría de los estudios. Es de señalar que solo un estudio describió los procedimientos de cegamiento de los participantes y los evaluadores de resultado para cada resultado (Maddocks 2016). Aunque en los estudios de intervenciones como la EENM no es posible cegar a la persona que administra la intervención, la administración de estimulación simulada en el grupo control es fundamental para reducir el riesgo de sesgo de realización, especialmente al considerar que la mayoría de los resultados informados en estos estudios fueron dependientes del esfuerzo o informados por el participante. En muchos de los metanálisis realizados en esta revisión, se combinaron los datos de solo dos o tres estudios y sus resultados no fueron consistentes, lo que dio lugar a bajos niveles de precisión en la estimación del efecto. Para los resultados relacionados con el rendimiento funcional, los síntomas y la CdVRS, la mayoría de los metanálisis mostraron niveles altos de heterogeneidad. Finalmente, es posible que los resultados de esta revisión estuvieran influenciados por la sobrerepresentación de los hombres en cinco estudios (Abdellaoui 2011; Kucio 2016; Tardif 2015; Tasdemir 2015; Vieira 2014). Trabajos anteriores han demostrado que los hombres toleran niveles altos de estimulación en comparación con las mujeres (Giavedoni 2012; Maffiuletti 2008), lo que puede optimizar las ganancias obtenidas como respuesta a la EENM (Vivodtzev 2012).

Sesgos potenciales en el proceso de revisión

Es posible que la estimación del efecto de la EENM sobre la fuerza de los músculos periféricos en esta revisión esté influenciada por la inclusión del estudio que midió la "fuerza de los músculos periféricos" mediante la prueba de los músculos de la mano (Zanotti 2003). Este estudio se incluyó porque esta revisión se planificó a priori para explorar el efecto de la EENM sobre la fuerza de los músculos periféricos. Además, aunque no estuvo claro qué músculos se analizaron en este estudio, pareció razonable suponer que estas evaluaciones incluyeron la fuerza del cuádriceps, ya que este fue el músculo que se estimuló. Finalmente, los protocolos de estimulación descritos en los estudios incluidos variaron de manera considerable. Por ejemplo, el contexto varió de estudios realizados en el domicilio a realizados en la UCI. El número de músculos estimulados varió de solo el cuádriceps a tres músculos de los miembros inferiores por separado. La frecuencia utilizada para la estimulación varió de 35 Hz a 50 Hz. La exposición a la estimulación varió de dos veces al día a dos veces a la semana, de 30 a 60 minutos por sesión, durante tres a diez semanas. No hubo estudios suficientes para intentar determinar el protocolo más efectivo. No fue posible establecer contacto con los autores de algunos estudios que se publicaron como resúmenes, por lo que no se pudieron incluir los datos de estos estudios en la revisión.

Acuerdos y desacuerdos con otros estudios o revisiones

Los datos que demuestran que la EENM aumenta la fuerza de los músculos periféricos cuando se aplicó sola fueron consistentes con revisiones anteriores en esta área (Chen 2016; Jones 2016; Roig 2009). Aunque una revisión informó ningún efecto de la EENM sobre la fuerza máxima del músculo cuádriceps, la estimación del efecto fue de magnitud similar a la informada en el estudio actual (DME 0,38) y fue probable que no alcanzara significación estadística, ya que esta revisión anterior incluyó menos estudios en el metanálisis (Pan 2014).

Los datos de la presente revisión que demuestran un aumento en la resistencia de los cuádriceps fueron consistentes con el único informe anterior que extrajo datos sobre este resultado (Jones 2016). El resultado de la presente revisión de ningún cambio en el tamaño muscular del muslo fue consistente con un estudio anterior que describió evidencia contradictoria del efecto de la EENM sobre este resultado (Roig 2009). No obstante, lo anterior se contradice con otra revisión que demostró un efecto sobre masa muscular medida mediante ecografía o tomografía computarizada (Jones 2016). Las razones de esta disparidad parecieron relacionarse con el hecho de que esta revisión anterior analizó estudios agrupados según el método utilizado para cuantificar el tamaño muscular del muslo, y también incluyó datos de un estudio realizado en pacientes adultos con insuficiencia cardíaca crónica grave (Quittan 2001). Además, a diferencia de la revisión actual que utilizó solo medidas de la DE al inicio en el cálculo de la DME, la revisión anterior utilizó la DE del cambio dentro del grupo para calcular la DME. Este hecho redujo la variabilidad de la estimación de la DME y aumentó la probabilidad de un resultado "significativo".

Con respecto a los eventos adversos, los datos que demostraron ninguna diferencia de riesgos entre los grupos en los eventos adversos graves o leves fueron consistentes con informes anteriores (Jones 2016; Roig 2009).

De forma consistente con los resultados de esta revisión del efecto de la EENM sobre la capacidad de ejercicio, las revisiones anteriores informaron cambios en algunas medidas, pero no en todas (Jones 2016; Chen 2016). Aunque consistentes con revisiones anteriores que demostraron un aumento significativo en la 6MWD (Chen 2016; Jones 2016), los datos de la presente revisión ampliaron este resultado al indicar que el efecto de la EENM sobre la 6MWD se redujo cuando esta intervención se combinó con el entrenamiento convencional con ejercicios. Una revisión informó un aumento significativo en la distancia de caminata que fue mayor que el observado en la revisión actual o en una revisión anterior (DM 47,55 m) (Roig 2009). Sin embargo, la revisión anterior combinó los datos sobre la capacidad de ejercicio medidos mediante la 6MWT y la ISWT (Roig 2009). Una revisión anterior no informó diferencias en la 6MWD (Pan 2014), pero incluyó menos estudios y estudios diferentes a los de otras revisiones. Con respecto a otras medidas de capacidad de ejercicio, al contrario de la revisión actual, una revisión anterior no demostró un aumento del VO2 máximo (Jones 2016). La razón de esta disparidad está relacionada con la inclusión de estudios diferentes en los metanálisis. Específicamente, la revisión anterior incluyó datos de un estudio cruzado aleatorio que se excluyó de la revisión actual (Napolis 2006). Además, en la presente revisión se incluyeron medidas de VO2 máximo al finalizar la ISWT (Vivodtzev 2012) porque, en los pacientes con EPOC, el VO2 máximo logrado al finalizar la ISWT es similar al logrado al finalizar una prueba ergométrica con bicicleta en el laboratorio (Hill 2012). Finalmente, el resultado de la presente revisión de un aumento en el tiempo de resistencia es consistente con un trabajo anterior (Chen 2016).

Ninguna revisión anterior ha explorado el efecto de la EENM sobre resultados funcionales, por lo que no fue posible hacer observaciones sobre las semejanzas o diferencias con respecto a este resultado.

Con respecto al efecto sobre los síntomas, los datos de la presente revisión indicaron que la EENM aplicada sola redujo la gravedad de la fatiga de las piernas al final de una prueba de ejercicio. Un trabajo anterior indicó que la EENM reduce la disnea, pero no separó los estudios que aplicaron EENM sola de los que aplicaron EENM más entrenamiento convencional con ejercicios (Pan 2014). Una revisión anterior no realizó un metanálisis de los datos sobre los síntomas, pero señaló que los datos sobre este resultado fueron contradictorios (Jones 2016).

Con respecto a los cambios en la CdVRS, el hallazgo de esta revisión de ningún efecto fue consistente con un metanálisis anterior sobre este resultado (Chen 2016) y apoyó la conclusión de evidencia contradictoria sobre la base de un resumen narrativo de estos datos (Jones 2016).

Se reconoce que los criterios de los estudios para esta revisión hicieron que no fuera posible incluir los datos informados en uno de los ensayos más grandes de EENM en pacientes con EPOC (Sillen 2014). Como este estudio comparó dos protocolos de estimulación con un programa de entrenamiento de resistencia, no tuvo un grupo control apropiado para considerar su inclusión en esta revisión.

Study flow diagram.
Figures and Tables -
Figure 1

Study flow diagram.

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.
Figures and Tables -
Figure 2

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.
Figures and Tables -
Figure 3

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Forest plot of comparison: 1 Neuromuscular electrostimulation (NMES) versus usual care, outcome: 1.1 Peripheral muscle force.
Figures and Tables -
Figure 4

Forest plot of comparison: 1 Neuromuscular electrostimulation (NMES) versus usual care, outcome: 1.1 Peripheral muscle force.

Forest plot of comparison: 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, outcome: 2.1 Peripheral muscle force.
Figures and Tables -
Figure 5

Forest plot of comparison: 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, outcome: 2.1 Peripheral muscle force.

Forest plot of comparison: 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, outcome: 2.2 Peripheral muscle force with subgroups based on methods used to assess muscle force.
Figures and Tables -
Figure 6

Forest plot of comparison: 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, outcome: 2.2 Peripheral muscle force with subgroups based on methods used to assess muscle force.

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 1 Peripheral muscle force.
Figures and Tables -
Analysis 1.1

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 1 Peripheral muscle force.

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 2 Peripheral muscle endurance/fatigability.
Figures and Tables -
Analysis 1.2

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 2 Peripheral muscle endurance/fatigability.

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 3 Thigh muscle size.
Figures and Tables -
Analysis 1.3

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 3 Thigh muscle size.

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 4 Mortality.
Figures and Tables -
Analysis 1.4

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 4 Mortality.

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 5 Exercise capacity: 6‐minute walking distance (6MWD) (m).
Figures and Tables -
Analysis 1.5

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 5 Exercise capacity: 6‐minute walking distance (6MWD) (m).

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 6 Exercise capacity: VO2peak (L/min).
Figures and Tables -
Analysis 1.6

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 6 Exercise capacity: VO2peak (L/min).

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 7 Exercise capacity: peak power (W).
Figures and Tables -
Analysis 1.7

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 7 Exercise capacity: peak power (W).

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 8 Exercise capacity: endurance time (min).
Figures and Tables -
Analysis 1.8

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 8 Exercise capacity: endurance time (min).

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 9 Symptoms: dyspnoea reported at end exercise.
Figures and Tables -
Analysis 1.9

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 9 Symptoms: dyspnoea reported at end exercise.

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 10 Symptoms: leg fatigue reported at end exercise.
Figures and Tables -
Analysis 1.10

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 10 Symptoms: leg fatigue reported at end exercise.

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 11 Health‐related quality of life: SGRQ.
Figures and Tables -
Analysis 1.11

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 11 Health‐related quality of life: SGRQ.

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 12 Minor adverse events: related to intervention.
Figures and Tables -
Analysis 1.12

Comparison 1 Neuromuscular electrostimulation (NMES) versus usual care, Outcome 12 Minor adverse events: related to intervention.

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 1 Peripheral muscle force.
Figures and Tables -
Analysis 2.1

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 1 Peripheral muscle force.

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 2 Peripheral muscle force with subgroups based on methods used to assess muscle force.
Figures and Tables -
Analysis 2.2

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 2 Peripheral muscle force with subgroups based on methods used to assess muscle force.

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 3 Peripheral muscle force: sensitivity analysis.
Figures and Tables -
Analysis 2.3

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 3 Peripheral muscle force: sensitivity analysis.

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 4 Mortality.
Figures and Tables -
Analysis 2.4

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 4 Mortality.

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 5 Exercise capacity: 6‐minute walking distance (6MWD) (m).
Figures and Tables -
Analysis 2.5

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 5 Exercise capacity: 6‐minute walking distance (6MWD) (m).

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 6 Exercise capacity: 6MWD (m): sensitivity analysis.
Figures and Tables -
Analysis 2.6

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 6 Exercise capacity: 6MWD (m): sensitivity analysis.

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 7 Functional performance: days to first transfer out of bed.
Figures and Tables -
Analysis 2.7

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 7 Functional performance: days to first transfer out of bed.

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 8 Symptoms: dyspnoea reported at end exercise.
Figures and Tables -
Analysis 2.8

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 8 Symptoms: dyspnoea reported at end exercise.

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 9 Health‐related quality of life.
Figures and Tables -
Analysis 2.9

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 9 Health‐related quality of life.

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 10 Minor adverse events related to intervention.
Figures and Tables -
Analysis 2.10

Comparison 2 Neuromuscular electrostimulation (NMES) plus exercise versus exercise only, Outcome 10 Minor adverse events related to intervention.

Summary of findings for the main comparison. NMES compared to usual care (with or without sham NMES) for COPD

NMES compared to usual care (with or without sham NMES) for COPD

Patient or population: COPD

Setting: generally outpatient or home

Intervention: NMES

Comparison: usual care (with or without sham NMES)

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

№ of participants
(studies)

Quality of the evidence
(GRADE)

Comments

Risk with usual care (with or without sham NMES)

Risk with NMES

Peripheral muscle force

assessed with: any method

SMD 0.34 SD higher
(0.02 higher to 0.65 higher)

159
(6 RCTs)

⊕⊕⊝⊝
Lowa

In real terms, using data available in 1 study that reported changes in quadriceps force in kg (Maddocks 2016), an SMD of 0.34 was equivalent to a difference in force of 3.1 kg (from a baseline mean force of 23.1 kg).

Peripheral muscle endurance/fatigability

assessed with: any method

SMD 1.36 SD higher
(0.59 higher to 2.12 higher)

35
(2 RCTs)

⊕⊕⊝⊝
Lowb

Thigh muscle size assessed with: any method

SMD 0.25 SD higher
(0.11 lower to 0.61 higher)

124
(4 RCTs)

⊕⊕⊝⊝
Lowc

Exercise capacity

assessed with: 6MWD (m)

The mean change in 6MWD in the control group ranged from ‐5.70 m to 0.80 m

MD 39.26 m more
(16.31 more to 62.22 more)

72
(2 RCTs)

⊕⊕⊝⊝
Lowd

Functional performance

assessed with: time (days) until first sit out of bed

None of the studies reported on functional performance.

Symptoms of dyspnoea reported on completion of an exercise test

assessed with: Borg score

The mean change in dyspnoea reported on completion of an exercise test ranged from ‐0.50 to 0.40

MD 1.03 less dyspnoea
(2.13 less to 0.06 more)

55
(3 RCTs)

⊕⊝⊝⊝
Very lowe

Health‐related quality of life

assessed with: SGRQ

The mean change in HRQoL ranged from ‐2.00 to 0.07

MD 4.12 better
(12.60 better to 4.35 worse)

72
(2 RCTs)

⊕⊝⊝⊝
Very lowf

Minor adverse events

assessed: related to intervention only (e.g. redness)

5970 per 100,000

0 per 100,000
(‐418 to 418)

RD 0.00
(‐0.07 to 0.07)

139
(5 RCTs)

⊕⊕⊝⊝
Lowg

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

6MWD: 6‐minute walk distance; CI: confidence interval; COPD: chronic obstructive pulmonary disease; MD: mean difference; NMES: neuromuscular electrical stimulation; RCT: randomised controlled trials; RD: risk difference; SD: standard deviation; SGRQ: Saint George's Respiratory Questionnaire; SMD: standardised mean difference.

GRADE Working Group grades of evidence
High quality: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate quality: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low quality: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low quality: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aDowngraded one level due to risk of bias (three studies did not use sham stimulation) and one level due to imprecision (wide confidence intervals).

bDowngraded one level due to risk of bias (one study did not use sham stimulation) and one level due to small number of studies available for analyses.

cDowngraded one level due to risk of bias (one study did not use sham stimulation) and one level due imprecision (wide confidence intervals).

dDowngraded one level due to small number of studies available for analyses and one level due imprecision (wide confidence intervals).

eDowngraded one level due to risk of bias (one study did not use sham stimulation), one level for imprecision (wide confidence intervals) and one level for inconsistency.

fDowngraded one level due to small number of studies available for analyses, one level for imprecision (wide confidence intervals) and one level due to inconsistent findings.

gDowngraded one level due to risk of bias (two studies did not use sham stimulation) and one level for inconsistent findings.

Figures and Tables -
Summary of findings for the main comparison. NMES compared to usual care (with or without sham NMES) for COPD
Summary of findings 2. NMES and exercise compared to exercise (with or without sham NMES) for COPD

NMES and exercise compared to exercise (with or without sham NMES) for COPD

Patient or population: COPD

Setting: intensive care unit, inpatient rehabilitation, outpatient or home

Intervention: NMES + exercise

Comparison: exercise (with or without sham NMES)

Outcomes

Anticipated absolute effects* (95% CI)

Relative effect
(95% CI)

№ of participants
(studies)

Quality of the evidence
(GRADE)

Comments

Risk with exercise (with or without sham NMES)

Risk with NMES and exercise

Peripheral muscle force

assessed with: any method

SMD 0.47 SD higher
(‐0.10 higher to 1.04 higher)

84
(4 RCTs)

⊕⊝⊝⊝
Very lowa

Peripheral muscle endurance/fatigability

assessed with: any method

None of the studies reported peripheral muscle endurance/fatigability.

Thigh muscle size assessed with: any method

None of the studies reported thigh muscle size.

Exercise capacity

assessed with: 6MWD (m)

The mean change in 6MWD ranged from 10.30 m to 94.00 m

MD 25.87 m more
(1.06 more to 50.69 more)

138
(6 RCTs)

⊕⊝⊝⊝
Very lowb

Functional performance

assessed with: time (days) until first sit out of bed

The mean time until first sit out of bed ranged from 12.60 to 14.33 days

MD 4.98 fewer days
(8.55 to 1.41 fewer)

44
(2 RCTs)

⊕⊝⊝⊝
Very lowc

Symptoms of dyspnoea reported on completion of an exercise test

assessed with: Borg score

The mean change in dyspnoea reported on completion of an exercise test ranged from ‐0.62 units to 1.00 units

MD 0.44 less dyspnoea
(2.27 less to 1.38 more)

44
(2 RCTs)

⊕⊝⊝⊝
Very lowd

Health‐related quality of life

assessed with: any validated questionnaire

SMD 0.56 SD better
(1.27 better to 0.15 worse)

122
(5 RCTs)

⊕⊝⊝⊝
Very lowe

Minor adverse events
assessed: related to intervention only (e.g. redness)

0 per 1000

0 per 1000
(0 to 0)

Not estimable

144
(6 RCTs)

⊕⊕⊝⊝

Lowf

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

6MWD: 6‐minute walk distance; CI: confidence interval;COPD: chronic obstructive pulmonary disease; MD: mean difference; NMES: neuromuscular electrical stimulation; RCT: randomised controlled trials; SD: standard deviation; SMD: standardised mean difference.

GRADE Working Group grades of evidence
High quality: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate quality: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low quality: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low quality: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aDowngraded one level due to risk of bias (three studies did not use sham stimulation), one level due to imprecision (wide confidence intervals) and one level due to inconsistent findings.

bDowngraded one level due to risk of bias (five studies did not use sham stimulation), one level due to imprecision (wide confidence intervals) and one level due to inconsistent findings.

cDowngraded one level due to risk of bias (neither study used sham stimulation), one level due imprecision (wide confidence intervals) and one level due to small number of studies available for analyses.

dDowngraded one level due to risk of bias (one study did not use sham stimulation), one level due imprecision (wide confidence intervals) and small number of studies available for analyses, and one level for inconsistent findings.

eDowngraded one level due to risk of bias (four studies did not use sham stimulation), one level for imprecision (wide confidence intervals) and one level for inconsistency.

fDowngraded one level due to risk of bias (four studies did not use sham stimulation) and one level for imprecision (wide confidence intervals).

Figures and Tables -
Summary of findings 2. NMES and exercise compared to exercise (with or without sham NMES) for COPD
Table 1. Characteristics of studies that contributed data to meta‐analyses (NMES versus usual care)

Study

Setting

Lower limb stimulation

Clinical stability

Dose

Frequency (Hz)

Intervention received by control group

Bourjeily‐Habr 2002

Outpatient

Bilateral quadriceps, hamstrings and calf

Stable

20 min per day, 3 days per week for 6 weeks at an intensity that elicited a muscle contraction, and increasing by 5 mA per week

50

Sham stimulation

Giavedoni 2012

Hospital ward then at home

Unilateral quadriceps

Acute exacerbation

30 min per day, once per day for 14 days at maximum tolerated current

50

Nil

Latimer 2013

Combination of supervised and unsupervised home training

Unilateral quadriceps

Stable

30 min per session,
5 times per week, for 6 weeks at maximum tolerated current

50

Nil

Maddocks 2016

Home

Bilateral quadriceps

Stable

30 min per day, 7 days per
week for 6 weeks with current set to elicit a contraction equivalent to 15‐25% of a maximum voluntary contraction

50

Sham stimulation

Neder 2002

First week as outpatient then home

Bilateral quadriceps

Stable

15 min (to each leg) in the first
week which increased to 30 min thereafter, for 5 days per week for 6 weeks at maximum tolerated current

50

Nil

Vieira 2014

Presumably home

Bilateral quadriceps

Stable

60 min per session, 2 times per day, 5 days per week, for 8 weeks at maximum tolerated current

50

Both groups received respiratory physical therapy (i.e. airway clearance) as indicated as well as stretching exercises for the upper limbs, lower limbs and back (control group also received sham stimulation).

Vivodtzev 2012

Home

Bilateral quadriceps and calf

Stable

60 minutes per session, 5 days per week for 6 weeks at maximum tolerated current

50

Sham stimulation

min: minute; NMES: neuromuscular electrostimulation.

Figures and Tables -
Table 1. Characteristics of studies that contributed data to meta‐analyses (NMES versus usual care)
Table 2. Characteristics of studies that contributed data to meta‐analyses (NMES + exercise versus exercise alone)

Study

Setting

Lower limb stimulation

Clinical stability

Dose

Frequency (Hz)

Exercise intervention received by control group

Abdellaoui 2011

Intensive care unit

Bilateral quadriceps and hamstrings

Acute exacerbation

1 hour per day, 5 days per week for 6 weeks at maximum tolerated current

35

Both groups received education (once per week) and daily active‐passive mobilisation (control group also received sham stimulation).

Akar 2017

Intensive care unit

Bilateral quadriceps

Respiratory failure

5 days per week (total of 20 sessions) at maximum tolerated current

50

Both groups received active exercise, which comprised active joint range of motion exercise for upper and lower limbs. Participants who could not manage active exercise received active‐assisted or passive range of motion exercise.

Akinlabi 2013

Home

Bilateral quadriceps and hamstrings

Stable

2 days per week for 8 weeks (total of 16 sessions)

10‐50

Low‐intensity symptom‐limited exercise

Dang 2011

Outpatient

Bilateral quadriceps

Stable

36 min, 3 sessions per week for 12 weeks (total of 36 sessions) at maximum tolerated current

8‐45

Usual respiratory rehabilitation (no other details given)

Kucio 2016

Inpatient rehabilitation

Bilateral quadriceps and calf

Stable

36 min, presumably 6 supervised
sessions per week for 3 weeks, intensity not specified

35

Both groups received breathing exercises, treadmill walking and resistance exercise.

Tardif 2015

Home

Bilateral quadriceps

Stable

Presumably 30 min per day, 5 days per week, presumably for 8 weeks at maximum tolerated current

35

Both groups received pulmonary rehabilitation.

Tasdemir 2015

Outpatient

Bilateral quadriceps

Stable

20 min, 2 days per week for 10 weeks at maximum tolerated current

50

Both groups received pulmonary rehabilitation (control group also received sham stimulation).

Vivodtzev 2006

Inpatient rehabilitation

Bilateral quadriceps

Stable, but shortly following acute illness

> 30 min per session, 4 times per week, for 4 weeks at maximum tolerated current

5‐35

Both groups received active limb exercises. The strongest participants also performed walking on a treadmill together with 5‐10 min of resistance arm exercises. They also completed health education sessions 1 day per week.

Zanotti 2003

Respiratory high dependency unit for inpatient rehabilitation

Bilateral quadriceps and gluteals

Stable, but shortly following acute illness

Up to 30 min per session, 2 times per day, 5 days per week for 4 weeks presumably at maximum tolerated current

8‐35

Both groups received rehabilitation that comprised active limb exercises.

min: minute; NMES: neuromuscular electrostimulation.

Figures and Tables -
Table 2. Characteristics of studies that contributed data to meta‐analyses (NMES + exercise versus exercise alone)
Comparison 1. Neuromuscular electrostimulation (NMES) versus usual care

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Peripheral muscle force Show forest plot

6

159

Std. Mean Difference (IV, Random, 95% CI)

0.34 [0.02, 0.65]

2 Peripheral muscle endurance/fatigability Show forest plot

2

35

Std. Mean Difference (IV, Random, 95% CI)

1.36 [0.59, 2.12]

3 Thigh muscle size Show forest plot

4

124

Std. Mean Difference (IV, Random, 95% CI)

0.25 [‐0.11, 0.61]

4 Mortality Show forest plot

5

131

Risk Difference (M‐H, Random, 95% CI)

‐0.02 [‐0.08, 0.05]

5 Exercise capacity: 6‐minute walking distance (6MWD) (m) Show forest plot

2

72

Mean Difference (IV, Random, 95% CI)

39.26 [16.31, 62.22]

6 Exercise capacity: VO2peak (L/min) Show forest plot

4

73

Mean Difference (IV, Random, 95% CI)

0.10 [0.00, 0.19]

7 Exercise capacity: peak power (W) Show forest plot

2

33

Mean Difference (IV, Random, 95% CI)

5.77 [‐4.00, 17.53]

8 Exercise capacity: endurance time (min) Show forest plot

3

55

Mean Difference (IV, Random, 95% CI)

3.62 [2.33, 4.91]

9 Symptoms: dyspnoea reported at end exercise Show forest plot

3

55

Mean Difference (IV, Random, 95% CI)

‐1.03 [‐2.13, 0.06]

10 Symptoms: leg fatigue reported at end exercise Show forest plot

3

55

Mean Difference (IV, Random, 95% CI)

‐1.12 [‐1.81, ‐0.43]

11 Health‐related quality of life: SGRQ Show forest plot

2

72

Mean Difference (IV, Random, 95% CI)

‐4.12 [‐12.60, 4.35]

12 Minor adverse events: related to intervention Show forest plot

5

139

Risk Difference (M‐H, Random, 95% CI)

0.00 [‐0.07, 0.07]

Figures and Tables -
Comparison 1. Neuromuscular electrostimulation (NMES) versus usual care
Comparison 2. Neuromuscular electrostimulation (NMES) plus exercise versus exercise only

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Peripheral muscle force Show forest plot

4

84

Std. Mean Difference (IV, Random, 95% CI)

0.47 [‐0.10, 1.04]

2 Peripheral muscle force with subgroups based on methods used to assess muscle force Show forest plot

4

84

Std. Mean Difference (IV, Random, 95% CI)

0.47 [‐0.10, 1.04]

2.1 Robust strength measure

2

33

Std. Mean Difference (IV, Random, 95% CI)

0.44 [‐0.25, 1.14]

2.2 Less robust strength measures

2

51

Std. Mean Difference (IV, Random, 95% CI)

0.53 [‐0.74, 1.80]

3 Peripheral muscle force: sensitivity analysis Show forest plot

3

57

Std. Mean Difference (IV, Random, 95% CI)

0.73 [0.19, 1.28]

4 Mortality Show forest plot

7

183

Risk Difference (M‐H, Random, 95% CI)

0.0 [‐0.05, 0.05]

5 Exercise capacity: 6‐minute walking distance (6MWD) (m) Show forest plot

6

138

Mean Difference (IV, Random, 95% CI)

25.87 [1.06, 50.69]

6 Exercise capacity: 6MWD (m): sensitivity analysis Show forest plot

5

128

Mean Difference (IV, Random, 95% CI)

25.86 [‐3.17, 54.89]

7 Functional performance: days to first transfer out of bed Show forest plot

2

44

Mean Difference (IV, Random, 95% CI)

‐4.98 [‐8.55, ‐1.41]

8 Symptoms: dyspnoea reported at end exercise Show forest plot

2

44

Mean Difference (IV, Random, 95% CI)

‐0.44 [‐2.27, 1.38]

9 Health‐related quality of life Show forest plot

4

95

Std. Mean Difference (IV, Random, 95% CI)

‐0.56 [‐1.27, 0.15]

10 Minor adverse events related to intervention Show forest plot

6

144

Risk Difference (M‐H, Random, 95% CI)

0.0 [‐0.05, 0.05]

Figures and Tables -
Comparison 2. Neuromuscular electrostimulation (NMES) plus exercise versus exercise only