Scolaris Content Display Scolaris Content Display

Teriflunomida para la esclerosis múltiple

Collapse all Expand all

Resumen

available in

Antecedentes

Ésta es una actualización de la revisión Cochrane "Teriflunomida para la esclerosis múltiple" (publicada por primera vez en The Cochrane Library 2012, número 12).

La esclerosis múltiple (EM) es una enfermedad crónica del sistema nervioso central mediada por el sistema inmunológico. Se caracteriza clínicamente por recurrencias y remisiones, o progresión, o ambas, lo que a menudo provoca discapacidad neurológica grave y a una disminución importante de la calidad de vida. Los tratamientos modificadores de la enfermedad (TME) para la EM tienen como objetivo prevenir la aparición de las recurrencias y la progresión de la discapacidad. La teriflunomida es un inhibidor de la síntesis de pirimidina autorizado por la Food and Drug Administration (FDA) de los EE.UU. y la European Medicines Agency (EMA) como un TME para adultos con EM recurrente‐remitente (EMRR).

Objetivos

Evaluar la efectividad absoluta y comparativa y la seguridad de la teriflunomida como monoterapia o tratamiento de combinación versus placebo u otros fármacos modificadores de la enfermedad (FME) (interferón beta [IFNβ], acetato de glatirámero, natalizumab, mitoxantrona, fingolimod, fumarato de dimetil, alemtuzumab) para modificar el curso de la enfermedad en los pacientes con EM.

Métodos de búsqueda

Se hicieron búsquedas en el registro especializado del Grupo Cochrane de Esclerosis Múltiple y Enfermedades Raras del Sistema Nervioso Central (Cochrane Multiple Sclerosis and Rare Diseases of the CNS Group Specialised Trials Register) (30 septiembre 2015). Se examinaron las listas de referencias de las revisiones publicadas y los artículos recuperados y se realizaron búsquedas de informes (2004 hasta septiembre 2015) de las sociedades de EM en Europa y América. También se estableció comunicación con investigadores que participaron en los ensayos de teriflunomida y la compañía farmacéutica Sanofi‐Aventis.

Criterios de selección

Se incluyeron los ensayos clínicos controlados aleatorios de grupos paralelos, con una duración del seguimiento de un año o más, que evaluaron la teriflunomida como monoterapia o como tratamiento de combinación, versus placebo u otros TME autorizados para los pacientes con EM, sin restricciones con respecto a la dosis, la frecuencia de administración y la duración del tratamiento.

Obtención y análisis de los datos

Se utilizaron los procedimientos metodológicos estándar Cochrane. Dos autores de la revisión, de forma independiente, evaluaron la calidad de los ensayos y extrajeron los datos. Los desacuerdos se discutieron y resolvieron mediante consenso entre los autores de la revisión. Se estableció contacto con los investigadores principales de los estudios incluidos para obtener datos adicionales o para confirmar datos.

Resultados principales

Cinco estudios que incluyeron a 3231 pacientes evaluaron la eficacia y la seguridad de la teriflunomida 7 mg y 14 mg, sola o con el agregado de IFNβ, versus placebo o IFNβ‐1a en adultos con formas recurrentes de EM y una puntuación inicial en la Expanded Disability Status Scale menor de 5,5.

En general hubo heterogeneidad clínica evidente debido a la diversidad en los diseños de estudio o las intervenciones y heterogeneidad metodológica entre los estudios. Todos los estudios tuvieron alto riesgo de sesgo de detección para la evaluación de las recurrencias y alto riesgo de sesgo debido a conflictos de interés. De ellos, tres estudios tuvieron además alto riesgo de sesgo de desgaste debido a una tasa alta de abandonos y dos estudios tuvieron riesgo incierto de sesgo de desgaste. Los estudios de tratamiento de combinación con IFNβ (650 participantes) y el estudio con IFNβ‐1a como control (324 participantes) también tuvieron alto riesgo de sesgo de realización y falta de poder estadístico debido a la muestra limitada.

Dos estudios evaluaron el efecto beneficioso y la seguridad de la teriflunomida como monoterapia versus placebo durante un año (1169 participantes) o dos años (1088 participantes). No se realizó un metanálisis. Comparada con placebo, la administración de teriflunomida a una dosis de 7 mg/día o 14 mg/día como monoterapia redujo el número de participantes con al menos una recurrencia durante un año (cociente de riesgos [CR] 0,72; intervalo de confianza [IC] del 95%: 0,59 a 0,87; valor de p = 0,001 con 7 mg/día y CR 0,60; IC del 95%: 0,48 a 0,75; valor de p < 0,00001 con 14 mg/día) o dos años (CR 0,85; IC del 95%: 0,74 a 0,98; valor de p = 0,03 con 7 mg/día y CR 0,80; IC del 95%: 0,69 a 0,93; valor de p = 0,004 con 14 días). Solamente la teriflunomida a una dosis de 14 mg/día redujo el número de participantes con progresión de la discapacidad durante un año (CR 0,55; IC del 95%: 0,36 a 0,84; valor de p = 0,006) o dos años (CR 0,74; IC del 95%: 0,56 a 0,96; valor de p = 0,02). Cuando se consideró el efecto de los abandonos, los análisis del escenario de caso probable todavía mostraron un efecto beneficioso en la reducción del número de participantes con al menos una recurrencia, pero no el número de participantes con progresión de la discapacidad. Ambas dosis también redujeron la tasa de recurrencia anualizada y el número de lesiones resaltadas con gadolinio potenciadas en T1 a los dos años. La calidad de las pruebas para los resultados de recurrencia al año o a los dos años fue baja, y fue muy baja para la progresión de la discapacidad al año o a los dos años.

En comparación con IFNβ‐1a, la teriflunomida a una dosis de 14 mg/día tuvo una eficacia similar al IFNβ‐1a para reducir la proporción de participantes con al menos una recurrencia al año, mientras que la teriflunomida a una dosis de 7 mg/día fue inferior al IFNβ‐1a (CR 1,52; IC del 95%: 0,87 a 2,67; valor de p = 0,14; 215 participantes con 14 mg/día y CR 2,74; IC del 95%: 1,66 a 4,53; Valor de P < 0,0001; 213 participantes con 7 mg/día). Sin embargo, la calidad de las pruebas fue muy baja.

En cuanto al perfil de seguridad, los eventos adversos más frecuentes asociados con la teriflunomida fueron diarrea, náuseas, escasez de cabello, elevación de la alanina aminotransferasa, neutropenia y linfopenia. Estos eventos adversos tuvieron efectos relacionados con la dosis y pocas veces provocaron la interrupción del tratamiento.

Conclusiones de los autores

Hubo pruebas de baja calidad para apoyar que la teriflunomida a una dosis de 7 mg/día o 14 mg/día como monoterapia reduce el número de participantes con al menos una recurrencia y la tasa anualizada de recurrencia al año o a los dos años de tratamiento, en comparación con placebo. Solamente la teriflunomida a una dosis de 14 mg/día redujo el número de participantes con progresión de la discapacidad y retardó la progresión de la discapacidad al año o los dos años, pero la calidad de las pruebas fue muy baja. La calidad de los datos disponibles fue demasiado baja para evaluar el efecto beneficioso de teriflunomida como monoterapia versus IFNβ‐1a o como tratamiento de combinación con IFNβ. Los efectos adversos frecuentes fueron diarrea, náuseas, escasez de cabello, elevación de la alanina aminotransferasa, neutropenia y linfopenia. Estos efectos adversos fueron principalmente leves a moderados en cuanto a la gravedad, pero hubo un efecto relacionado con la dosis. Se necesitan estudios nuevos de alta calidad y seguimiento más prolongado para evaluar el efecto beneficioso comparativo de la teriflunomida sobre estos resultados y la seguridad en comparación con otros TME.

PICOs

Population
Intervention
Comparison
Outcome

The PICO model is widely used and taught in evidence-based health care as a strategy for formulating questions and search strategies and for characterizing clinical studies or meta-analyses. PICO stands for four different potential components of a clinical question: Patient, Population or Problem; Intervention; Comparison; Outcome.

See more on using PICO in the Cochrane Handbook.

Resumen en términos sencillos

La teriflunomida modifica el curso de la enfermedad en los pacientes con esclerosis múltiple

Antecedentes

La teriflunomida se utilizó primero en la artritis reumatoide, y se conoce que tiene acciones antiproliferativas (crecimiento inhibidor celular) y antiinflamatorias (contrarresta la respuesta local a la lesión celular). En 2012, la Food and Drug Administration de los EE.UU. autorizó su uso para estas características en los pacientes con formas recurrentes (con exacerbaciones recurrentes de síntomas neurológicos) de esclerosis múltiple (EM) y en 2013 también lo hizo la European Medicines Agency.

Objetivos

Evaluar la efectividad y la seguridad de dos dosis diferentes de teriflunomida, sola o en combinación con otros fármacos, para modificar el curso de la EM en los pacientes con formas recurrentes, con o sin progresión.

Características de los estudios

Los revisores consideraron la efectividad de la teriflunomida principalmente con respecto al número de participantes con al menos una recurrencia, el número de pacientes con progresión de la discapacidad, la tasa de recurrencia anualizada (número de recurrencias por participante‐año) y el tiempo hasta la progresión de la discapacidad. La seguridad se evaluó como el número de participantes con efectos secundarios, el número de participantes con efectos secundarios graves y el número de participantes que se retiraron o abandonaron el estudio debido a los efectos secundarios al año o a los dos años. Entre la literatura pertinente, cinco estudios cumplieron los criterios de inclusión. Se reclutaron 3231 participantes y se evaluó la efectividad y la seguridad de teriflunomida sola o con otro fármaco llamado interferón‐β (IFNβ) versus placebo (un fármaco simulado) o IFNβ‐1a. Las pruebas están actualizadas hasta septiembre 2015.

Resultados clave

Los autores encontraron pruebas de baja calidad de que ambas dosis de teriflunomida redujeron la aparición de recurrencias después de uno o dos años de tratamiento, mientras que hay pruebas muy de baja calidad que mostraron que el fármaco previno la progresión de la discapacidad al año o a los dos años. Las dosis altas, en lugar de las dosis bajas, de teriflunomida tuvieron una eficacia similar al IFNβ‐1a para reducir la recurrencia al año, pero la calidad de las pruebas fue muy baja. Con respecto a la seguridad, los efectos secundarios informados con mayor frecuencia fueron diarrea (heces frecuentes y suaves), náuseas (deseos de vomitar), escasez de cabello, neutropenia (niveles bajos de los leucocitos llamados neutrófilos, que combaten la infección) y linfopenia (niveles bajos de leucocitos llamados linfocitos, que combaten la infección). En general, estos efectos secundarios son leves a moderados y generalmente no provocan la interrupción del tratamiento, pero dosis mayores son más propensas a causar estos efectos secundarios.

Calidad de la evidencia

La calidad baja / muy baja de los resultados se debe principalmente al cegamiento inadecuado de la evaluación de las recurrencias (los evaluadores estaban al tanto de qué tratamiento había recibido el paciente), la alta tasa de abandonos (pacientes que abandonaron el ensayo), la progresión de la discapacidad confirmada en menos de seis meses, el escaso número de participantes y la diferente duración de los tratamientos dentro de los estudios. La duración de los estudios es un punto clave en una enfermedad para toda la vida con probabilidades de tratamientos crónicos como la EM, lo que también indica la necesidad de estudios con períodos más prolongados de monitorización (seguimiento). Los cinco estudios incluidos en esta revisión fueron patrocinados por compañías farmacéuticas, que se conoce es una posible fuente de conflicto de interés y por lo tanto de sesgo.

Conclusiones de los autores

available in

Implicaciones para la práctica

Hubo pruebas de baja calidad para apoyar que la teriflunomida a una dosis de 7 mg y 14 mg por vía oral una vez al día como monoterapia mediante la comparación directa con placebo redujo la tasa de recurrencia anualizada y el número de participantes con recurrencia al año y a los dos años de tratamiento. Solamente la teriflunomida a una dosis de 14 mg/día como monoterapia redujo el número de participantes con progresión de la discapacidad y retrasó la progresión de la discapacidad al año o a los dos años, pero la calidad de las pruebas fue muy baja. La calidad de los datos disponibles fue demasiado baja para evaluar el efecto beneficioso de la teriflunomida como monoterapia versus interferón beta‐1a (IFNβ‐1a) o como tratamiento de combinación con interferón beta (IFNβ). Los efectos adversos frecuentes fueron diarrea, náuseas, escasez de cabello, elevación de la alanina aminotransferasa, neutropenia y linfopenia. Estos efectos adversos fueron principalmente leves a moderados en cuanto a la gravedad, pero hubo un efecto relacionado con la dosis.

Implicaciones para la investigación

El objetivo ideal del tratamiento que modifica la enfermedad para la esclerosis múltiple (EM) es prevenir el empeoramiento de la discapacidad y mejorar la calidad de vida, que son dos aspectos clave generales a considerar cuando se evalúa y decide si un fármaco que modifica la enfermedad tiene efectos beneficiosos superiores. La EM es una enfermedad crónica que dura décadas y requiere de tratamiento a largo plazo. Por lo tanto, se necesitan estudios nuevos de alta calidad y seguimiento más prolongado para evaluar el efecto beneficioso comparativo de la teriflunomida sobre estos resultados y la seguridad en comparación con otros fármacos modificadores de la enfermedad. El objetivo ideal del tratamiento que modifica la enfermedad para la esclerosis múltiple (EM) es prevenir el empeoramiento de la discapacidad y mejorar la calidad de vida, que son dos aspectos clave generales a considerar cuando se evalúa y decide si un fármaco que modifica la enfermedad tiene efectos beneficiosos superiores. La EM es una enfermedad crónica que dura décadas y requiere de tratamiento a largo plazo. Por lo tanto, se necesitan estudios nuevos de alta calidad y seguimiento más prolongado para evaluar el efecto beneficioso comparativo de la teriflunomida sobre estos resultados y la seguridad en comparación con otros fármacos modificadores de la enfermedad.

Summary of findings

Open in table viewer
Summary of findings for the main comparison. Teriflunomide compared to placebo for multiple sclerosis

Teriflunomide compared to placebo for multiple sclerosis

Patient or population: people with relapsing multiple sclerosis
Settings: US, Austria, France, Canada, Germany, UK, Sweden, Netherlands, Turkey, Poland, Chile, Ukraine, China, Italy, Australia, etc.
Intervention: teriflunomide at a dose of 14 mg orally once daily
Comparison: placebo

Outcomes

Illustrative comparative risks* (95% CI)

Relative effect
(95% CI)

No of Participants
(studies)

Quality of the evidence
(GRADE)

Comments

Assumed risk

Corresponding risk

Placebo

Teriflunomide

Proportion of participants with at least 1 relapse at 1 year
Follow‐up: 1 year

394 per 1000

237 per 1000
(189 to 296)

RR 0.60
(0.48 to 0.75)

761
(1 study)

⊕⊕⊝⊝
lowa

This outcome was considered low, because we considered there were very serious limitation in study design and execution. The bias that influenced the validity of the results for this outcome included: the high risks of bias due to unblinded assessments for relapse and conflicts of interest (sensitivity analysis according to a likely‐case scenario showed a robustness for the results of this outcome, we considered that the high attrition bias did not influence the robustness of the results on relapse). Therefore, we downgraded the quality of evidence for this outcome by 2 levels

The proportion of participants with at least 1 relapse at 2 years
Follow‐up: 2 years

545 per 1000

436 per 1000
(376 to 507)

RR 0.80
(0.69 to 0.93)

722
(1 study)

⊕⊕⊝⊝
lowb

This outcome was considered low, because we considered there were very serious limitation in study design and execution. The bias that influenced the validity of the results for this outcome included: the high risks of bias due to unblinded assessments for relapse and conflicts of interest. (Sensitivity analysis according to a likely‐case scenario showed a robustness for the results of this outcome, we considered that the unclear attrition bias did not influence the robustness of the results on relapse.) Therefore, we downgraded the quality of evidence for this outcome by 2 levels

The proportion of participants with disability progression at 1 year
Follow‐up: 1 year

142 per 1000

78 per 1000
(51 to 119)

RR 0.55
(0.36 to 0.84)

761
(1 study)

⊕⊝⊝⊝
very lowc,e

This outcome was considered very low based on the following reasons:

  • we considered there were very serious limitation in study design and execution. The bias that influenced the validity of the results for this outcome included: the high risks of bias due to the high attrition bias and conflicts of interest. Sensitivity analysis according to a likely‐case scenario showed an unsteadiness for the results of this outcome, we considered that the high attrition bias influenced the robustness of the results on progression disability. Therefore, we downgraded the quality of evidence for this outcome by 2 levels

  • This outcome was an indirect outcome because disability progression was confirmed at 3 months of follow‐up. We had serious doubts about directness. Therefore, we downgraded the quality of evidence for this outcome by 1 level

The proportion of participants with disability progression at 2 years
Follow‐up: 2 years

273 per 1000

202 per 1000
(153 to 262)

RR 0.74
(0.56 to 0.96)

722
(1 study)

⊕⊝⊝⊝
very lowd,e

This outcome was considered very low based on the following reasons:

  • We considered there were very serious limitation in study design and execution. The bias that influenced the validity of the results for this outcome included: the high risks of bias due to unclear attrition bias and conflicts of interest. Sensitivity analysis according to a likely‐case scenario showed an unsteadiness for the results of this outcome, we considered that the unclear attrition bias influenced the robustness of the results on progression disability. Therefore, we downgraded the quality of evidence for this outcome by 2 levels

  • This outcome was an indirect outcome because disability progression was confirmed at 3 months of follow‐up. We had serious doubts about directness. Therefore, we downgraded the quality of evidence for this outcome by 1 level

The proportion of participants with diarrhoea at 2 years
Follow‐up: 2 years

89 per 1000

179 per 1000
(120 to 267)

RR 2.01
(1.35 to 3.00)

718
(1 study)

⊕⊕⊕⊝
moderatef

The follow‐up periods were diverse in Confavreux 2014 and O'Connor 2011 (at least 48 weeks (Confavreux 2014) and 108 weeks (O'Connor 2011)). Treatment duration of participants in Confavreux 2014 was variable, ending 48 weeks after the last participant was included (a maximum treatment duration of 173 weeks). Actually, the data on adverse events in Confavreux 2014 were not at 2 years. There was a heterogeneity in follow‐up period between the studies. Therefore, we did not combine the data on adverse events in Confavreux 2014 and O'Connor 2011

The proportion of participants with hair thinning at 2 years
Follow‐up: 2 years

33 per 1000

131 per 1000
(71 to 243)

RR 3.94
(2.13 to 7.30)

718
(1 study)

⊕⊕⊕⊝
moderatef

The follow‐up periods were diverse in Confavreux 2014 and O'Connor 2011 (at least 48 weeks (Confavreux 2014) and 108 weeks (O'Connor 2011)). Treatment duration of participants in Confavreux 2014 was variable, ending 48 weeks after the last participant was included (a maximum treatment duration of 173 weeks). Actually, the data on adverse events in Confavreux 2014 were not at 2 years. There was a heterogeneity in follow‐up period between the studies. Therefore, we did not combine the data on adverse events in Confavreux 2014 and O'Connor 2011

The proportion of participants with elevated ALT levels at 2 years
Follow‐up: 2 years

67 per 1000

143 per 1000
(90 to 226)

RR 2.14
(1.35 to 3.39)

718
(1 study)

⊕⊕⊕⊝
moderatef

The follow‐up periods were diverse in Confavreux 2014 and O'Connor 2011 (at least 48 weeks (Confavreux 2014) and 108 weeks (O'Connor 2011)). Treatment duration of participants in Confavreux 2014 was variable, ending 48 weeks after the last participant was included (a maximum treatment duration of 173 weeks). Actually, the data on adverse events in Confavreux 2014 were not at 2 years. There was a heterogeneity in follow‐up period between the studies. Therefore, we did not combine the data on adverse events in Confavreux 2014 and O'Connor 2011

*The basis for assumed risk is the placebo group risk. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).
ALT: alanine aminotransferase; CI: confidence interval; RR: risk ratio.

The assumed risk was defined as placebo group risk because only one study was evaluated.

GRADE Working Group grades of evidence
High quality: Further research is very unlikely to change our confidence in the estimate of effect.
Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.
Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
Very low quality: We are very uncertain about the estimate.

a High risks of bias existed in Confavreux 2014 due to unblinded assessments for relapse and conflicts of interest.

b High risks of bias existed in O'Connor 2011 due to unblinded assessments for relapse and conflicts of interest.

c High risks of bias existed in Confavreux 2014 due to effects of the high attrition bias on progression disability and conflicts of interest.

d High risk of bias existed in O'Connor 2011 due to effects of the unclear attrition bias on progression disability and conflicts of interest.

e Serious indirectness existed in Confavreux 2014 or in O'Connor 2011 because disability progression was confirmed at 3 months of follow‐up.

f High risk of bias existed in O'Connor 2011 due to an unclear attrition bias and conflicts of interest.

Antecedentes

available in

Descripción de la afección

La esclerosis múltiple (EM) es una enfermedad crónica del sistema nervioso central mediada por el sistema inmunológico. Desde el punto de vista patológico se caracteriza por inflamación, desmielinización y pérdida axonal y neuronal. Clínicamente se caracteriza por recurrencias y remisiones, o progresión, o ambas, y por lo general afecta a los adultos durante la primera etapa productiva de la vida y al final provoca discapacidad neurológica grave.

En 1996, el curso clínico de la EM se caracterizó como recurrente‐remitente, progresivo primario, progresivo secundario o recurrente progresivo. Al inicio, más del 80% de los pacientes con EM presenta un curso de la enfermedad recurrente‐remitente (EMRR) caracterizado por exacerbaciones clínicas de los síntomas neurológicos, seguidas de una remisión completa o incompleta (Lublin 1996). Después de diez a 20 años, o una mediana de edad de 39,1 años, cerca de la mitad de estos pacientes acumulan gradualmente déficits neurológicos irreversibles, con o sin recurrencias clínicas (Confavreux 2006), cuadro que se conoce como EM progresiva secundaria (EMPS). Otro 10% a 20% de los individuos con EM se diagnostica con EM progresiva primaria (EMPP), clínicamente definida como un curso de la enfermedad sin crisis clínicas ni remisión desde su aparición (Lublin 1996). Una forma significativamente menos frecuente es la EM recurrente progresiva (EMRP), que se presenta inicialmente como EMPP, aunque durante el curso de la enfermedad estos pacientes desarrollan verdaderas exacerbaciones neurológicas (Tullman 2004). En 2013 se redefinió el curso clínico de la EM. En las nuevas revisiones, se agregó el síndrome clínicamente aislado y se eliminó la EMRP de las descripciones del curso clínico. Todas las formas de EM se deben subcategorizar de manera adicional como activa o no activa. La EM activa se define como la aparición de recurrencia clínica o la presencia de lesiones T2 nuevas o resaltadas con gadolinio durante un período específico, preferentemente al menos un año. Una subcategoría adicional para los pacientes con EM progresiva establece la diferencia entre los pacientes que han mostrado signos de progresión de la discapacidad durante un período de tiempo determinado y los pacientes que han permanecido estables(Lublin 2014a; Lublin 2014b).

La EM causa una carga socioeconómica importante tanto para el individuo como para la sociedad. El aumento de la carga económica y en la calidad de vida (CdV) se asocia con progresión de la enfermedad y recurrencias (Karampampa 2012; O'Connell 2014; Parisé 2013). Desde la perspectiva del paciente, una recurrencia de la EM se asocia con un aumento significativo de los costos económicos, así como con una disminución de la calidad de vida relacionada con la salud (CdVRS) y la capacidad funcional (Oleen‐Burkey 2012). Un tratamiento efectivo que reduzca la frecuencia de las recurrencias y evite la progresión podría tener repercusión sobre los costos y la CdVRS, y podría ayudar a reducir la carga social de la EM(Karampampa 2012).

Descripción de la intervención

Se conoce que la teriflunomida, el metabolito activo de la leflunomida, tiene acciones antiinflamatorias y antiproliferativas. Los datos de los ensayos en humanos de la leflunomida en la artritis reumatoide mostraron que la teriflunomida demostró una farmacocinética lineal en un rango de dosis de 5 mg/día a 25 mg/día. La vida media en plasma es de 15 días a 18 días y la teriflunomida se une de manera extensa (mayor del 99%) a las proteínas y presenta una unión proteica lineal a concentraciones terapéuticas. La depuración es a través de las vías biliares y renales, por lo que se puede utilizar la administración de colestiramina para facilitar la eliminación rápida de la teriflunomida de la circulación (Tallantyre 2008). La teriflunomida reduce la gravedad de la enfermedad y la inflamación, así como la desmielinización y la pérdida axonal de una manera dependiente de la dosis en el modelo de ratas Dark Agouti de encefalomielitis autoinmunitaria experimental (EAE) (Merrill 2009). La Food and Drug Administration (FDA) de los EE.UU. autorizó en 2012 la teriflunomida (Aubagio®) para los pacientes con formas recurrentes de EM (7 mg o 14 mg por vía oral una vez al día). En 2013 la European Medicines Agency (EMA) la autorizó para los adultos con EMRR (dosis recomendada: 14 mg una vez al día).

De qué manera podría funcionar la intervención

La teriflunomida tiene la capacidad de inhibir de manera no competitiva y reversible la enzima mitocondrial dihidro‐orotato deshidrogenasa (DHODH), una enzima celular clave involucrada en la síntesis de novo de pirimidina (Bruneau 1998; Greene 1995). Al inhibir la DHODH y disminuir la síntesis de ácido desoxirribonucleico (ADN), la teriflunomida tiene un efecto citostático sobre la proliferación de los linfocitos B y T(Cherwinski 1995). La teriflunomida también inhibe la actividad de la tirosinaquinasa (Xu 1996), lo que da lugar a la reducción de la proliferación de linfocitos T, la producción de linfocitos T de interferón gamma (IFN‐γ) e interleucina 2 (IL2), así como de la producción de inmunoglobulina de los linfocitos B (Ig)G1 y la inhibición del factor nuclear kB (NFkB) (Manna 1999; Siemasko 1998; Xu 1995). Además, la teriflunomida disminuye la capacidad de las células que presentan antígenos (CPA) de activar los linfocitos T, y la de los linfocitos T estimulados de activar los monocitos in vitro (Zeyda 2005), e inhibe la interleucina 1 beta, las metaloproteinasas de matriz (Deage 1998), y la actividad de la ciclooxigenasa‐2 (Hamilton 1999). En la EAE, la teriflunomida reduce la activación de los linfocitos T específicos de la proteína básica de mielina (PBM), por lo que reduce la producción de IFN‐γ y la quimiotaxis (Korn 2004).

Por qué es importante realizar esta revisión

Ésta es una actualización de la revisión Cochrane "Teriflunomida para la esclerosis múltiple" (publicada por primera vez en The Cochrane Library 2012, número 12).

Objetivos

available in

Evaluar la efectividad absoluta y comparativa y la seguridad de la teriflunomida como monoterapia o tratamiento de combinación versus placebo u otros fármacos modificadores de la enfermedad (FME) (interferón beta [IFNβ], acetato de glatirámero, natalizumab, mitoxantrona, fingolimod, fumarato de dimetil, alemtuzumab) para modificar el curso de la enfermedad en los pacientes con EM.

Métodos

available in

Criterios de inclusión de estudios para esta revisión

Tipos de estudios

Todos los ensayos clínicos controlados aleatorios (ECA), de grupos paralelos, que evalúan la teriflunomida como monoterapia o tratamiento de combinación, versus placebo o cualquier TME autorizado en pacientes con EM. Se excluyeron los ensayos con una duración de seguimiento inferior a un año.

Tipos de participantes

Se incluyeron participantes de 18 años de edad o más con diagnóstico definitivo de EM según los criterios de Poser(Poser 1983) o McDonald (McDonald 2001; Polman 2005; Polman 2011) , cualquier fenotipo clínico categorizado según la clasificación de Lublin y Reingold (Lublin 1996) y puntuaciones de la Expanded Disability Status Scale (EDSS) de 6,0 o menos.

Tipos de intervenciones

Intervención experimental

Tratamiento con teriflunomida por vía oral, como monoterapia o tratamiento de combinación, sin restricciones con respecto a la dosis, la frecuencia de administración o la duración del tratamiento.

Intervención control

Placebo o TME autorizados.

Tipos de medida de resultado

Resultados primarios
Eficacia

  • Proporción de pacientes con al menos una recurrencia al año o a los dos años. La recurrencia confirmada se definió como la aparición de nuevos síntomas o el empeoramiento de signos y síntomas previamente estables o en mejoría no asociados con fiebre o infección que ocurrió al menos 30 días después de la aparición de una recurrencia previa y duró más de 24 horas. La recurrencia debe ser comprobada por el neurólogo examinador en los siete días posteriores a su aparición y acompañarse de un aumento de al menos la mitad de un punto en la puntuación de la EDSS o al menos un punto en dos sistemas funcionales (con la exclusión de cambios en las funciones de los esfínteres o cerebrales).

  • La proporción de participantes con progresión de la discapacidad evaluada con la EDSS (Kurtzke 1983) al año o a los dos años. El empeoramiento de la discapacidad se definió como un aumento en la puntuación de la EDSS de al menos 1 punto en los pacientes con una puntuación inicial de 1 o mayor o un aumento de al menos 1,5 puntos en los pacientes con una puntuación inicial de 0, con el aumento de la puntuación mantenido durante seis meses. Se utilizaron los datos cuando el empeoramiento de la discapacidad se confirmó en menos de seis meses; sin embargo, se disminuyó la calidad del estudio debido a la falta de direccionalidad de las pruebas cuando se realizó la evaluación GRADE.

Seguridad

  • El número de participantes con eventos adversos (EA), el número de participantes con eventos adversos graves (EAG) y el número de participantes que se retiraron o abandonaron el estudio debido a EA al año o a los dos años.

Resultados secundarios

  • La tasa anual de recurrencia al año o a los dos años, definida como el número medio de recurrencias confirmadas por paciente, ajustadas según la duración del seguimiento para anualizarla.

  • El número de lesiones resaltadas con gadolinio potenciadas en T1 al año o a los dos años. Las lesiones que persistieron durante más de cuatro semanas se contaron más de una vez.

  • El tiempo hasta la progresión de la discapacidad al año o a los dos años.

  • Los cambios en la hipointensidad T1 o el cociente de transferencia de magnetización del daño de la lesión al año o a los dos años.

  • Cambio medio en la CdVRS. Se aceptaron las siguientes escalas: puntuaciones del 36‐item Short Form (SF‐36) (Ware 1992), puntuaciones del cuestionario Multiple Sclerosis Quality of Life (MSQoL‐54) (Vickrey 1995), Multiple Sclerosis Quality of Life Inventory (MSQLI) (Fischer 1999), o la Functional Assessment of Multiple Sclerosis (FAMS) (Cella 1996) al año o a los dos años.

Results

Description of studies

See: Characteristics of included studies; Characteristics of excluded studies and Characteristics of ongoing studies.

Results of the search

In total, the search strategy retrieved 193 records after we removed duplicates. After screening of titles and abstracts, we selected seven studies reported in 42 articles provisionally and obtained the full papers for further assessment for eligibility. We excluded two studies (reported in 14 articles) due to a length of follow‐up shorter than one year or participants without a diagnosis of definite MS (Miller 2014; O'Connor 2006). Five studies met the inclusion criteria (Confavreux 2014; Freedman 2012; NCT01252355; O'Connor 2011; Vermersch 2014) (reported in 28 articles, the results of NCT01252355 were published on clinicaltrials.gov). We included the trials that we classified in ongoing studies in previous versions of this review (NCT00751881 and NCT01252355) in the current review (Confavreux 2014; NCT01252355). See Figure 1.


Study flow diagram.

Study flow diagram.

Included studies

The review included five studies involving 3231 people (Confavreux 2014; Freedman 2012; NCT01252355; O'Connor 2011; Vermersch 2014). Among them, two studies evaluated the efficacy and safety of teriflunomide 7 mg/day or 14 mg/day versus placebo for 2257 adults with relapsing forms of MS (Confavreux 2014; O'Connor 2011). Two studies primarily evaluated the safety and tolerability of teriflunomide 7 mg/day or 14 mg/day with add‐on IFNβ versus placebo in 650 people with relapsing MS (Freedman 2012; NCT01252355). One study evaluated the efficacy, safety and tolerability of teriflunomide 7 mg/day or 14 mg/day in comparison to IFNβ‐1a in 324 people with relapsing MS (Vermersch 2014).

Characteristics of the study design

Confavreux 2014 and O'Connor 2011 were randomized, double‐blind, placebo‐controlled, parallel‐group studies over at least 48 weeks (a maximum of 173 weeks) (Confavreux 2014) and 108 weeks (O'Connor 2011). Freedman 2012 was a randomized, placebo‐controlled, 24‐week double‐blind study followed by a 24‐week blinded extension. Participants completing 24 weeks of treatment who continued to meet the eligibility criteria could select to enter a 24‐week blinded extension during which participants continued to receive their originally assigned treatment regimen. NCT01252355 was a randomized, double‐blind, placebo‐controlled, parallel‐group study over 24 weeks (a maximum of 108 weeks). Vermersch 2014 was an approved DMD‐controlled, parallel‐group, rater‐blinded study over at least 48 weeks (a maximum of 115 weeks).

Characteristics of the participants

All participants had a diagnosis of definite MS according to McDonald's diagnostic criteria (McDonald 2001; Polman 2005), an age ranging from 18 to 55 years and a relapsing clinical course with or without progression (RRMS, SPMS or PRMS). All participants had an entry score of 5.5 or lower on the EDSS and no relapse for at least 30 days before randomization. The participants in Confavreux 2014 and O'Connor 2011 had at least one relapse in the previous year or at least two clinical relapses in the previous two years. The participants in NCT01252355 had disease activity in the one year prior to randomization and after first three months of IFNβ treatment. Baseline demographic and disease characteristics were well balanced among the groups in most studies except for Vermersch 2014, in which DMD use in the past two years in the teriflunomide 14 mg/day group was lower than that in the IFNβ‐1a group.

Characteristics of the interventions

Participants in Confavreux 2014 and O'Connor 2011 received oral teriflunomide 7 mg once daily or oral teriflunomide 14 mg once daily or a matching placebo for at least 48 weeks (core treatment period: 48 weeks to 152 weeks, a maximum of 173 weeks) (Confavreux 2014) and 108 weeks (O'Connor 2011). Participants in Freedman 2012 and NCT01252355 received oral administration of 7 mg/day of teriflunomide added to IFNβ, 14 mg/day of teriflunomide added to IFNβ or matching placebo added to IFNβ for 48 weeks (Freedman 2012) and at least 24 weeks (a maximum of 108 weeks) (NCT01252355). Participants in Vermersch 2014 received oral teriflunomide 7 mg once daily or oral teriflunomide 14 mg once daily or IFNβ‐1a 44 μg by subcutaneous injection three times per week for at least 48 weeks (a maximum of 115 weeks).

Characteristics of the outcome measures

All studies reported the proportion of participants with at least one relapse. Two studies reported sustained disability progression, which was defined as an increase from baseline of at least 1.0 point in the EDSS score (or at least 0.5 points for participants with a baseline EDSS score greater than 5.5) that persisted for at least 12 weeks (Confavreux 2014; O'Connor 2011). All studies reported the number of participants with AEs, number of participants with SAEs and number of participants who withdrew or dropped out from the study because of AEs.

All studies reported the annualized relapse rate. Three trials reported the number of gadolinium‐enhancing T1‐weighted lesions (Freedman 2012; NCT01252355; O'Connor 2011). Three trials reported the time to disability progression (Confavreux 2014; NCT01252355; O'Connor 2011). One trial reported changes in T1 hypointensity of lesion damage (O'Connor 2011). Two trials reported mean change in QoL measured by SF‐36 scores (Confavreux 2014; NCT01252355). None of the studies reported magnetization transfer ratio of lesion damage. One trial did not provide data at one year (O'Connor 2011).

Excluded studies

We excluded two studies (reported in 14 articles) from this review; the reasons for their exclusion are listed in the Characteristics of excluded studies table.

Risk of bias in included studies

Further details of this assessment are available in the Characteristics of included studies table and are also presented in the 'Risk of bias' graph (Figure 2) and 'Risk of bias' summary (Figure 3).


Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.


Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Allocation

In Confavreux 2014 and O'Connor 2011, sequence generation and allocation concealment were adequate. Allocation sequence was generated by randomization number list (Confavreux 2014) or a permuted‐block randomization schedule with stratification (O'Connor 2011). Randomization was done centrally, via an interactive voice recognition system (IVRS) in both studies. In NCT01252355, sequence generation was probably made by software. Assignment to groups was done centrally using an IVRS. In Freedman 2012 and Vermersch 2014, sequence generation was probably made by software, and central randomization was probably used.

Blinding

In Confavreux 2014 and O'Connor 2011, the treating neurologist who recorded adverse events was responsible for assessment of relapses, blinding of relapse assessment was probably not adequate. The risk of detection bias was high. Participants included in Freedman 2012 and NCT01252355 received diverse regimens of IFNβ, they were not truly double‐blind, double‐dummy studies. The control (IFNβ‐1a) group was open‐label in Vermersch 2014, it was not a truly double‐blind study. In addition, the treating neurologist who reported or managed adverse events was responsible for assessment of relapses in Freedman 2012, NCT01252355, and Vermersch 2014, blinding of relapse assessment was probably not adequate. The risks of performance bias and detection bias were high.

Incomplete outcome data

Three studies had a high risk of attrition bias due to a high dropout rate of 29.8% (Confavreux 2014), 36.4% (Freedman 2012), and 100% (NCT01252355). There was an overall dropout rate of 20.1% in O'Connor 2011, but there was no sufficient information to understand the reasons for study discontinuation and their balance among the groups. The risk of attrition bias was unclear. One study did not report the number and reasons of drop‐outs and the incomplete outcome data were unclear (Vermersch 2014).

Selective reporting

All studies reported all listed outcomes adequately.

Other potential sources of bias

All studies were sponsored by Sanofi‐Aventis. In Confavreux 2014 and O'Connor 2011, the sponsor analysed the data and some co‐authors were affiliated to Sanofi‐Aventis. In Vermersch 2014, Sanofi‐Aventis funded editorial support. Conflicts of interest were obvious, and there was a high risk of bias in all studies.

Effects of interventions

See: Summary of findings for the main comparison Teriflunomide compared to placebo for multiple sclerosis

We did not conduct meta‐analyses because of the high risk of bias and clinical diversities of the included studies. The study designs in Confavreux 2014 and O'Connor 2011 were similar, however, the follow‐up periods were diverse (at least 48 weeks (Confavreux 2014) and 108 weeks (O'Connor 2011)). Treatment duration in Confavreux 2014 was variable, ending 48 weeks after the last participant was included (a maximum treatment duration of 173 weeks). Furthermore, the data at one year in O'Connor 2011 were unavailable. The study designs in Freedman 2012 and NCT01252355 were also similar, but the follow‐up periods were diverse (48 weeks (Freedman 2012) and at least 24 weeks (NCT01252355)). Treatment duration in NCT01252355 was variable (24 weeks to 108 weeks). Consequently, we could only calculate the treatment effects of interventions based on the available data in the original studies.

Primary outcomes

Efficacy: proportion of participants with at least one relapse at one year or two years

All studies reported proportion of participants with at least one relapse at one year or two years.

Confavreux 2014 reported the proportion of participants with at least one relapse at one year of follow‐up were 28.10% with low‐dose teriflunomide, 23.70% with high‐dose teriflunomide and 39.40% with placebo, and the RD was 11.30% with low‐dose teriflunomide and 15.70% with high‐dose teriflunomide. Compared to placebo, the results showed low dose of teriflunomide as monotherapy reduced the number of participants with at least one relapse at one year of follow‐up (RR 0.72, 95% CI 0.59 to 0.87, P value = 0.001; 797 participants) and the NNTB was 9, which means that they needed to treat nine participants with low‐dose teriflunomide to prevent one participant relapsing during the one years of follow‐up. Similarly, high dose of teriflunomide as monotherapy also reduced the number of participants with at least one relapse at one year of follow‐up (RR 0.60, 95% CI 0.48 to 0.75, P value < 0.00001; 761 participants) and the NNTB was 6, which means that they needed to treat six participants with high‐dose teriflunomide to prevent one participant relapsing during the one year of follow‐up. Assuming participants who withdrew from study both in experimental groups and control group had a relapse, the likely‐case scenario analyses showed both doses of teriflunomide reduced the number of participants with at least one relapse at one year of follow‐up (low dose: RR 0.83, 95% CI 0.75 to 0.93, P value = 0.0008, 797 participants; high dose: RR 0.79, 95% CI 0.70 to 0.88, P value < 0.0001, 761 participants).

Similarly, at two years of follow‐up in O'Connor 2011, compared to placebo, both doses of teriflunomide as monotherapy reduced the number of participants with at least one relapse at two years of follow‐up (low dose: RR 0.85, 95% CI 0.74 to 0.98, P value = 0.03; 729 participants; high dose: RR 0.80, 95% CI 0.69 to 0.93, P value = 0.004; 722 participants). The proportion of participants with at least one relapse at two years of follow‐up were 46.30% with low‐dose teriflunomide, 43.50% with high‐dose teriflunomide and 54.40% with placebo, and the RD was 8.10% with low‐dose teriflunomide and 10.90% with high‐dose teriflunomide, corresponding to an NNTB of 12 with low‐dose teriflunomide and 9 with high‐dose teriflunomide, which means that they needed to treat 12 participants with low‐dose teriflunomide, and nine participants with high‐dose teriflunomide to prevent one participant relapsing during the two years of follow‐up. When taking the effect of drop‐outs into consideration, the likely‐case scenario analyses still showed a benefit in reducing the number of participants with at least one relapse for both doses of teriflunomide (low dose: RR 0.88, 95% CI 0.80 to 0.97, P value = 0.008; 729 participants; high dose: RR 0.87, 95% CI 0.79 to 0.96, P value = 0.005; 722 participants).

Freedman 2012 showed neither doses of teriflunomide added to IFNβ were superior to placebo added to IFNβ concerning the proportion of participants with at least one relapse at one year of follow‐up (low dose: RR 1.08, 95% CI 0.45 to 2.59, P value = 0.86; 79 participants; high dose: RR 0.79, 95% CI 0.30 to 2.07, P value = 0.63; 80 participants). However, NCT01252355 showed opposite results, both doses of teriflunomide added to IFNβ were superior to placebo added to IFNβ concerning the proportion of participants with at least one relapse at one year of follow‐up (low dose: RR 0.60, 95% CI 0.42 to 0.87, P value = 0.007; 353 participants; high dose: RR 0.58, 95% CI 0.40 to 0.84, P value = 0.004; 354 participants). When administrated as monotherapy for 48 weeks to 115 weeks in Vermersch 2014, low dose of teriflunomide was inferior to IFNβ‐1a on the proportion of participants with at least one relapse (RR 2.74, 95% CI 1.66 to 4.53, P value < 0.0001; 213 participants), but there was no difference in reducing the number of participants with at least one relapse for high dose of teriflunomide (RR 1.52, 95% CI 0.87 to 2.67, P value = 0.14; 215 participants).

Efficacy: proportion of participants with disability progression

Confavreux 2014 reported the proportions of participants with progression of disability at one year of follow‐up were 12.10% with low‐dose teriflunomide, 7.80% with high‐dose teriflunomide and 14.20% with placebo, and the RD was 2.10% with low‐dose teriflunomide and 6.40% with high‐dose teriflunomide. Compared to placebo, the results showed high dose of teriflunomide as monotherapy reduced the number of participants with disability progression at one year of follow‐up (RR 0.55, 95% CI 0.36 to 0.84, P value = 0.006; 761 participants), and the NNTB was 16, which means that they needed to treat 16 participants with high‐dose teriflunomide to prevent one participant having disability progression during the one year of follow‐up. However, there was no difference for low dose of teriflunomide in disability progression at one year of follow‐up (RR 0.85, 95% CI 0.59 to 1.22, P value = 0.37; 797 participants). When taking the effect of drop‐outs into consideration, the likely‐case scenario analysis showed neither dose of teriflunomide reduced the number of participants with disability progression at one year of follow‐up (low dose: RR 0.94, 95% CI 0.80 to 1.11, P value = 0.47; 797 participants; high dose: RR 0.88, 95% CI 0.74 to 1.04, P value = 0.14; 761 participants).

O'Connor 2011 reported the risk of disability progression at two years of follow‐up was 21.70% with low‐dose teriflunomide and 20.20% with high‐dose teriflunomide lower than that in participants receiving placebo (27.3%). The RD was 5.60% with low‐dose teriflunomide and 7.10% with high‐dose teriflunomide. Compared to placebo, the results showed high dose of teriflunomide as monotherapy reduced the proportion of participants with disability progression at two years of follow‐up (RR 0.74, 95% CI 0.56 to 0.96, P value = 0.02; 722 participants), and the NNTB was 14, which means that they needed to treat 14 participants with high‐dose teriflunomide to prevent one participant against disability progression during the two years of follow‐up. However, there was no difference for low dose of teriflunomide (RR 0.79, 95% CI 0.61 to 1.02, P value = 0.08; 729 participants). However, the likely‐case scenario analysis showed neither dose of teriflunomide reduced the number of participants with disability progression at two years of follow‐up (low dose: RR 0.89, 95% CI 0.75 to 1.06, P value = 0.20; 729 participants; high dose: RR 0.92, 95% CI 0.77 to 1.09, P value = 0.32; 722 participants).

Safety

Confavreux 2014 reported the safety of teriflunomide as monotherapy after the core treatment period of 48 weeks to 152 weeks. Compared to placebo, there was no difference for both doses of teriflunomide in the incidence of AEs (low dose: RR 1.01, 95% CI 0.95 to 1.08, P value = 0.71; 794 participants; high dose: RR 1.04, 95% CI 0.98 to 1.10, P value = 0.23; 756 participants) or SAEs (low dose: RR 1.04, 95% CI 0.72 to 1.51, P value = 0.83; high dose: RR 0.97, 95% CI 0.66 to 1.43, P value = 0.88). However, the incidence of AEs leading to discontinuation of the study medication in both teriflunomide groups was higher than that in the placebo group (low dose: RR 2.08, 95% CI 1.31 to 3.30, P value = 0.002; NNTH 15; high dose: RR 2.51, 95% CI 1.59 to 3.95, P value < 0.0001; NNTH 11). The most common AEs with an increased incidence in both teriflunomide groups included hair thinning (low dose: RR 2.33, 95% CI 1.35 to 4.01, P value = 0.002; NNTH 17; high dose: RR 3.05, 95% CI 1.79 to 5.19, P value < 0.0001; NNTH 11), neutropenia (low dose: RR 2.48, 95% CI 1.26 to 4.90, P value = 0.009; NNTH 24; high dose: RR 3.30, 95% CI 1.70 to 6.40, P value = 0.0004; NNTH 15), neutrophil counts less than 1.5 x 109/L (low dose: RR 1.85, 95% CI 1.18 to 2.90, P value = 0.008; NNTH 18; high dose: RR 2.47, 95% CI 1.60 to 3.82, P value < 0.001; NNTH 10), lymphocyte counts less than 0.8 x 109/L (low dose: RR 1.82, 95% CI 1.18 to 2.80, P value = 0.007; NNTH 17; high dose: RR 1.78, 95% CI 1.14 to 2.77, P value = 0.01; NNTH 18), and elevated alanine aminotransferase (ALT) levels greater than one time the upper limit of the normal range (low dose: RR 1.30, 95% CI 1.11 to 1.53, P value = 0.001; NNTH 9; high dose: RR 1.44, 95% CI 1.23 to 1.68, P value < 0.00001; NNTH 6).

There was a similar incidence of elevated ALT levels three times or greater the upper limit of the normal range and neutrophil counts less than 0.5 x 109/L between the placebo group and the teriflunomide groups. Elevated ALT and lymphocyte counts less than 0.5 x 109/L occurred at higher frequency with high‐dose teriflunomide compared to placebo (elevated ALT: RR 1.69, 95% CI 1.11 to 2.56, P value = 0.01; NNTH 18; elevated lymphocyte count: RR 11.42, 95% CI 1.48 to 87.98, P value = 0.02; NNTH 59), but there was no difference for low‐dose teriflunomide. In addition, diarrhoea was more common with low‐dose teriflunomide rather than high‐dose teriflunomide (RR 1.65, 95% CI 1.06 to 2.57, P value = 0.03). The proportion of other AEs most commonly reported in teriflunomide groups, such as headache, fatigue, nausea, nasopharyngitis, upper respiratory tract infection, back pain and urinary tract infection, were not higher than in the placebo group. The AEs leading to treatment discontinuation mainly included elevated ALT levels (3% with low‐dose teriflunomide and 2% with high‐dose teriflunomide), neutropenia (1% with low‐dose teriflunomide and 2% with high‐dose teriflunomide), hair thinning (2% with high‐dose teriflunomide) and diarrhoea (1% in both teriflunomide groups). There were 18 pregnancies in 14 female participants and four female partners of male participants. Of the 14 female participants, 10 elected to have induced abortions and four pregnancies resulted in healthy babies (one in the placebo group, two in the low‐dose teriflunomide group and one in the high‐dose teriflunomide group). Of the four pregnancies in partners of male participants, one woman elected to have an induced abortion and three pregnancies resulted in healthy babies (all in the low‐dose teriflunomide group).

O'Connor 2011 reported the safety of teriflunomide as monotherapy at two years of follow‐up. Compared to placebo, there was no difference for both doses of teriflunomide in the incidence of AEs (low dose: RR 1.02, 95% CI 0.97 to 1.07, P value = 0.49; 728 participants; high dose: RR 1.04, 95% CI 0.99 to 1.09, P value = 0.16; 718 participants), SAEs (low dose: RR 1.11, 95% CI 0.76 to 1.60, P value = 0.59; high dose: RR 1.25, 95% CI 0.87 to 1.79, P value = 0.23) and AEs leading to discontinuation of the study medication (low dose: RR 1.21, 95% CI 0.76 to 1.94, P value = 0.41; high dose: RR 1.35, 95% CI 0.86 to 2.14, P value = 0.20). The most common adverse events with an increased incidence in both teriflunomide groups included diarrhoea (low dose: RR 1.65, 95% CI 1.09 to 2.49, P value = 0.02; NNTH 17; high dose: RR 2.01, 95% CI 1.35 to 3.00, P value = 0.0006; NNTH 11), hair thinning or decreased hair density (low dose: RR 3.10, 95% CI 1.65 to 5.83, P value = 0.0005; NNTH 14; high dose: RR 3.94, 95% CI 2.13 to 7.30, P value < 0.0001; NNTH 10), elevated ALT levels (low dose: RR 1.79, 95% CI 1.11 to 2.89, P value = 0.02; NNTH 19; high dose: RR 2.14, 95% CI 1.35 to 3.39, P value = 0.001; NNTH 13). The incidence of nausea in high‐dose teriflunomide group rather than in low‐dose teriflunomide group was higher than that in placebo group (low dose: RR 1.24, 95% CI 0.76 to 2.03, P value = 0.39; high dose: RR 1.90, 95% CI 1.21 to 2.98, P value = 0.006; NNTH 15). The incidence of elevated ALT levels one times or greater the upper limit of the normal range in both doses was higher than that in placebo group (low dose: RR 2.61, 95% CI 1.23 to 5.53, P value = 0.01; NNTH 6; high dose: RR 3.24, 95% CI 1.56 to 6.75, P value = 0.002; NNTH 5), but there was no difference for both doses of teriflunomide in the incidence of elevated ALT levels three times or greater the upper limit of the normal range. These events rarely led to discontinuation of the study medication: diarrhoea (0.3% in both teriflunomide groups), nausea (0.3% with low‐dose), hair thinning or decreased hair density (0.5% with low‐dose and 1.4% with high‐dose). The proportion of other AEs (10% or greater) most commonly reported in any teriflunomide group, such as nasopharyngitis, headache, fatigue, influenza, back pain and urinary tract infection, occurred with a similar frequency in the placebo group. Mean reductions in neutrophil and lymphocyte counts from baseline values were small in magnitude (1.0 x 109/L or less for neutrophil counts and 0.3 x 109/L or less for lymphocyte counts) but were slightly more marked with high‐dose teriflunomide than with low‐dose teriflunomide or placebo. Moderate neutropenia (defined as a neutrophil count of less than 0.9 x 109/L) developed in three participants receiving teriflunomide. Eleven pregnancies occurred, leading to four spontaneous abortions (one in the placebo group and three in the high‐dose teriflunomide group), six induced abortions (five in the low‐dose teriflunomide group and one in the high‐dose teriflunomide group). One participant in the high‐dose teriflunomide group (treated for 31 days of the pregnancy) delivered a healthy baby with no reported health concerns after two years.

Vermersch 2014 reported the safety of teriflunomide as monotherapy after the core treatment period of 48 weeks to 115 weeks. Compared to IFNβ‐1a, there was no difference for both doses of teriflunomide in the incidence of AEs (low dose: RR 0.97, 95% CI 0.92 to 1.04, P value = 0.43; 211 participants; high dose: RR 0.97, 95% CI 0.90 to 1.03, P value = 0.29; 211 participants) or SAEs (low dose: RR 1.57, 95% CI 0.64 to 3.84, P value = 0.32; high dose: RR 0.79, 95% CI 0.27 to 2.26, P value = 0.66). However, the incidence of AEs leading to discontinuation in the IFNβ group was higher than those in the teriflunomide groups (low dose: RR 0.38, 95% CI 0.18 to 0.78, P value = 0.008; high dose: RR 0.50, 95% CI 0.26 to 0.96, P value = 0.04). The most commonly reported AEs (10% or greater) in either teriflunomide group were nasopharyngitis, headache, paraesthesia, diarrhoea, hair thinning, back pain and elevated ALT levels. Among these AEs, the incidence of diarrhoea in both teriflunomide groups was higher than that in the IFNβ‐1a group (low dose: RR 2.87, 95% CI 1.36 to 6.07, P value = 0.006; high dose: RR 2.64, 95% CI 1.24 to 5.63, P value = 0.01). Compared to IFNβ‐1a, hair thinning was more common with high‐dose teriflunomide rather than low‐dose teriflunomide (RR 20.20, 95% CI 2.77 to 147.14, P value = 0.003). However, elevated ALT levels occurred with a lower frequency in the teriflunomide groups (low dose: RR 0.36, 95% CI 0.19 to 0.65, P value = 0.0009; high dose: RR 0.33, 95% CI 0.17 to 0.61, P value = 0.0005). In addition, influenza‐like illness was reported more frequently with IFNβ‐1a than with teriflunomide (low dose: RR 0.07, 95% CI 0.03 to 0.18, P value < 0.00001; high dose: RR 0.05, 95% CI 0.02 to 0.16, P value < 0.00001). There was a similar incidence of other AEs between the IFNβ‐1a group and teriflunomide groups.

Freedman 2012 reported the safety of teriflunomide added to IFNβ at one year of follow‐up. Compared to placebo added to IFNβ, there was no difference for either dose of teriflunomide in the incidence of AEs (low dose: RR 1.11, 95% CI 0.96 to 1.29, P value = 0.17; 78 participants; high dose: RR 1.02, 95% CI 0.85 to 1.21, P value = 0.85; 79 participants), SAEs (low dose: RR 2.22, 95% CI 0.43 to 11.40, P value = 0.34; high dose: RR 0.54, 95% CI 0.05 to 5.71, P value = 0.61) and AEs leading to discontinuation (low dose: RR 1.66, 95% CI 0.29 to 9.40, P value = 0.57; high dose: RR 1.62, 95% CI 0.29 to 9.16, P value = 0.59). The most commonly reported AEs (10% or greater) in either teriflunomide group were elevated ALT levels, headache, decreased lymphocyte counts, nasopharyngitis, nausea, fatigue, decreased neutrophil counts, hypertension, back pain, vomiting, diarrhoea and urinary tract infection. However, these AEs occurred with a similar frequency in the IFNβ group.

NCT01252355 reported the safety of teriflunomide added to IFNβ after the treatment period of 28 weeks to 108 weeks. Compared to placebo added to IFNβ, the incidences of AEs in both teriflunomide groups were higher than those in the placebo group (low dose: RR 1.15, 95% CI 1.01 to 1.31, P value = 0.03; 354 participants; high dose: RR 1.16, 95% CI 1.02 to 1.31, P value = 0.02; 353 participants). However, there was no difference for either dose of teriflunomide in the incidence of SAEs (low dose: RR 1.59, 95% CI 0.68 to 3.74, P value = 0.29; high dose: RR 1.72, 95% CI 0.74 to 4.00, P value = 0.21). The incidence of AEs leading to discontinuation with high‐dose teriflunomide rather than with low‐dose teriflunomide was higher than that in the placebo group (low dose: RR 1.74, 95% CI 0.79 to 3.83, P value = 0.17; high dose: RR 2.40, 95% CI 1.14 to 5.07, P value = 0.02). There was no difference for either dose of teriflunomide in the incidence of elevated ALT levels three times or greater the upper limit of the normal range (low dose: RR 1.46, 95% CI 0.53 to 4.01, P value = 0.47; high dose: RR 1.47, 95% CI 0.53 to 4.03, P value = 0.46).

Secondary outcomes

Annualized relapse rate

All studies reported the annualized relapse rate. Confavreux 2014 reported annualized relapse rate after the core treatment period of 48 weeks to 152 weeks (low dose: annualized relapse rate 0.39, 95% CI 0.33 to 0.46; 407 participants; high dose: annualized relapse rate 0.32, 95% CI 0.27 to 0.38; 370 participants; placebo: annualized relapse rate 0.50, 95% CI 0.43 to 0.58; 388 participants), but we could not calculate the total number of relapses and standard errors due to the variable duration of follow‐up, consequently we could not calculate the rate ratio. However, the authors reported the RRs on annualized relapse rate, showing both doses of teriflunomide as monotherapy reduced annualized relapse rate during the follow‐up period of 48 weeks to 132 weeks (low dose: RR 0.78, 95% CI 0.63 to 0.96, P value = 0.0183; 797 participants; high dose: RR 0.64, 95% CI 0.51 to 0.79, P value = 0.0001; 761 participants).

There were similar results at two years of follow‐up in O'Connor 2011 (low dose: rate ratio 0.69, 95% CI 0.59 to 0.81, P value < 0.00001; 729 participants; high dose: rate ratio 0.69, 95% CI 0.59 to 0.80, P value < 0.00001; 722 participants).

Freedman 2012 showed neither doses of teriflunomide added to IFNβ were superior to placebo added to IFNβ concerning annualized relapse rate at one year of follow‐up (low dose: rate ratio 0.42, 95% CI 0.15 to 1.16, P value = 0.10; 79 participants; high dose: rate ratio 0.67, 95% CI 0.29 to 1.54, P value = 0.35; 80 participants).

NCT01252355 reported only the data of annualized relapse rate after the treatment duration of 24 weeks to 108 weeks (low dose: annualized relapse rate 0.242, 95% CI 0.152 to 0.386; 178 participants; high dose: annualized relapse rate 0.238, 95% CI 0.162 to 0.351; 179 participants; placebo: annualized relapse rate 0.298, 95% CI 0.206 to 0.432; 175 participants). Therefore, we could not calculate the total number of relapses and the standard error due to the variable duration of follow‐up, consequently we could not calculate the rate ratio.

Vermersch 2014 reported the data of annualized relapse rate after the treatment period of 48 weeks to 115 weeks (low dose: annualized relapse rate 0.41, 95% CI 0.27 to 0.64; 109 participants; high dose: annualized relapse rate 0.26, 95% CI 0.15 to 0.44; 111 participants; IFNβ‐1a: annualized relapse rate 0.22, 95% CI 0.11 to 0.42; 104 participants). However, we could not calculate the total number of relapses and the standard error due to the variable duration of follow‐up, consequently we could not calculate the rate ratio. However, the authors reported the RR on annualized relapse rate, showing that low‐dose teriflunomide was inferior to IFNβ‐1a on annualized relapse rate (RR 1.90, 95% CI 1.05 to 3.43, P value = 0.03; 213 participants), but there was no difference in reducing annualized relapse rate for high‐dose teriflunomide (RR 1.20, 95% CI 0.62 to 2.30, P value = 0.59; 215 participants).

Number of gadolinium‐enhancing T1‐weighted lesions

Three studies reported the number of gadolinium‐enhancing T1‐weighted lesions (Freedman 2012; NCT01252355; O'Connor 2011).

Compared to placebo, the results of O'Connor 2011 showed both doses of teriflunomide as monotherapy reduced the number of gadolinium‐enhancing T1‐weighted lesions at two years of follow‐up (low dose: rate ratio 0.43, 95% CI 0.37 to 0.51, P value < 0.00001; 729 participants; high dose: rate ratio 0.19, 95% CI 0.15 to 0.24, P value < 0.00001; 722 participants).

Freedman 2012 showed neither dose of teriflunomide added to IF‐β was superior to placebo added to IFNβ concerning the number of gadolinium‐enhancing T1‐weighted lesions at one year of follow‐up (low dose: rate ratio 0.67, 95% CI 0.29 to 1.55, P value = 0.35; 79 participants; high dose: rate ratio 0.42, 95% CI 0.16 to 1.09, P value = 0.08; 80 participants).

NCT01252355 reported only the data of the number of gadolinium‐enhancing T1‐weighted lesions after the treatment period of 24 weeks to 108 weeks (low dose: 0.257, 95% CI 0.127 to 0.523; 142 participants; high dose: 0.158, 95% CI 0.070 to 0.360; 151 participants; placebo: 0.542, 95% CI 0.344 to 0.855; 151 participants). We could not calculate the annualized relapse rate due to the variable duration of follow‐up, consequently we could not calculate the rate ratio.

Time to disability progression

Three studies reported the time to disability progression (Confavreux 2014; NCT01252355; O'Connor 2011).

Compared to placebo, the results of Confavreux 2014 showed high‐dose teriflunomide as monotherapy delayed the progression of disability after the core treatment period of 48 weeks to 152 weeks (HR 0.68, 95% CI 0.47 to 1.00, P value = 0.04; 758 participants), but there was no difference in delaying the progression of disability for low‐dose teriflunomide (HR 0.95, 95% CI 0.68 to 1.35, P value = 0.76; 795 participants).

The results of O'Connor 2011 showed high‐dose teriflunomide as monotherapy delayed the progression of disability at two years of follow‐up (HR 0.70, 95% CI 0.51 to 0.96, P value = 0.03; 721 participants), but there was no difference in delaying the progression of disability for low‐dose teriflunomide (HR 0.76, 95% CI 0.56 to 1.05, P value = 0.08; 728 participants).

Data of the time to disability progression in NCT01252355 were insufficient because of early study termination and were not reported in the original publication.

Changes in T1 hypointensity or magnetization transfer ratio of lesion damage

One study reported changes in T1 hypointensity lesion damage (O'Connor 2011). The results showed high‐dose teriflunomide as monotherapy, compared to placebo, reduced the volume of hypointense lesions on T1‐weighted images at two years (MD ‐0.20, 95% CI ‐0.35 to ‐0.05, P value = 0.009, 728 participants). However, there was no difference for low‐dose teriflunomide (MD ‐0.03, 95% CI ‐0.19 to 0.13, P value = 0.71; 721 participants).

None of the studies reported magnetization transfer ratio of lesion damage.

Change in health‐related quality of life

Two studies reported change in QoL measured by SF‐36 scores (Confavreux 2014; NCT01252355).

Confavreux 2014 found that compared to placebo, there was no difference for teriflunomide as monotherapy in change of SF‐36 physical health summary score and in SF‐36 mental health summary score at 48 weeks (low dose: physical health: MD 0.68, 95% CI ‐0.44 to 1.80, P value = 0.24 and mental health: MD 0.88, 95% CI ‐0.72 to 2.48, P value = 0.28; 797 participants; high dose: physical health: MD 0.97, 95% CI ‐0.18 to 2.12, P value = 0.10 and mental health: MD 1.48, 95% CI ‐0.18 to 3.14, P value = 0.08; 761 participants).

Data of change in QoL measured by SF‐36 scores in NCT01252355 were insufficient because of early study termination and were not reported in the original publication.

Discusión

available in

Resumen de los resultados principales

Esta revisión sistemática incluyó cinco ECA con 3231 adultos con EM recurrente. Todos los participantes tenían una puntuación menor de 5,5 en la EDSS y un curso clínico recurrente con o sin progresión (EMRR, EMPS o EMRP). Dos estudios fueron ECA a gran escala en los que los participantes tenían actividad de la enfermedad con al menos una recurrencia en el año anterior o al menos dos recurrencias clínicas en los dos años anteriores. Estos dos estudios evaluaron principalmente el efecto beneficioso de la teriflunomida a una dosis de 7 mg/día o 14 mg/día como monoterapia versus placebo con respecto a la recurrencia, el empeoramiento de la discapacidad y seguridad durante al menos 48 semanas (máximo 173 semanas) (Confavreux 2014) o dos años (O'Connor 2011). Los otros tres estudios evaluaron principalmente la eficacia sobre la recurrencia y la seguridad y la tolerabilidad de la teriflunomida 7 mg/día o 14 mg/día con el agregado de IFNβ versus placebo durante 48 semanas(Freedman 2012) o por lo menos 24 semanas (un máximo de 108 semanas) (NCT01252355), o teriflunomida 7 mg/día o 14 mg/día sola versus IFNβ‐1a (Vermersch 2014) por al menos 48 semanas (un máximo de 115 semanas). El diseño del estudio y las intervenciones de los cinco estudios fueron diversos. Hubo heterogeneidad clínica evidente debido a la diversidad en el diseño de los estudios o las intervenciones y heterogeneidad metodológica entre los estudios. Todos los estudios tuvieron alto riesgo de sesgo de detección para la evaluación de las recurrencias y alto riesgo de sesgo debido a conflictos de interés. Entre ellos, Confavreux 2014, Freedman 2012, y NCT01252355 tuvieron alto riesgo de sesgo de desgaste debido a una alta tasa de abandonos (29,8% [Confavreux 2014], 36,4% [Freedman 2012] y 100% (NCT01252355). O'Connor 2011y Vermersch 2014 tuvieron riesgo incierto de sesgo de desgaste. Freedman 2012NCT01252355,y Vermersch 2014tuvo alto riesgo de sesgo de realización y falta de poder estadístico debido a la muestra limitada. Los datos al año en O'Connor 2011 no estuvieron disponibles. Como resultado, no se pudo realizar un metanálisis. Los efectos del tratamiento de las intervenciones se calcularon según los datos disponibles en los estudios originales.

En comparación con placebo, la administración de teriflunomida a una dosis de 7 mg/día o 14 mg/día como monoterapia redujo el número de participantes con recurrencia al año o a los dos años, así como la tasa de recurrencia anualizada a los dos años. Ambas dosis de teriflunomida como monoterapia redujeron el número de lesiones resaltadas con gadolinio potenciadas en T1 a los dos años, aunque solamente la teriflunomida a una dosis de 14 mg/día como monoterapia redujo significativamente el número de participantes con progresión de la discapacidad y retardó la progresión de la discapacidad al año y a los dos años. Las dosis altas, en lugar de las dosis bajas, de teriflunomida como monoterapia redujeron el volumen de las lesiones hipointensas en las imágenes potenciadas en T1 a los dos años. Ninguna dosis de teriflunomida mejoró la CdV medida por las puntuaciones del SF‐36 al año. Cuando se consideró el efecto de los abandonos, los análisis del escenario de caso probable todavía mostraron un efecto beneficioso para reducir el número de participantes con recurrencia, pero no el número de participantes con progresión de la discapacidad. Cuando se administró como tratamiento de combinación con IFNβ durante un año, ninguna dosis de teriflunomida agregada a IFNβ fue superior a placebo agregado a IFNβ en cuanto a la tasa de recurrencia anualizada y el número de lesiones resaltadas con gadolinio potenciadas en T1. En comparación con IFNβ‐1a, la teriflunomida a dosis bajas fue inferior a IFNβ‐1a con respecto a la tasa de recurrencia anualizada y al número de participantes con recurrencia, pero no hubo diferencias para la teriflunomida a dosis altas.

En general, los riesgos de EA y EAG en los participantes que recibieron teriflunomida fueron similares a los de los participantes que recibieron placebo al año y a los dos años de seguimiento. Sin embargo, los riesgos de interrupción del fármaco de estudio debido a EA aumentaron con ambas dosis de teriflunomida al año de seguimiento, pero no a los dos años de seguimiento. Los EA más frecuentes
asociados con la teriflunomida incluyeron diarrea, náuseas, escasez de cabello, niveles elevados de ALT, neutropenia y linfopenia. Estos EA pocas veces provocaron la interrupción de la medicación de estudio, pero tuvieron un efecto relacionado con la dosis.

Compleción y aplicabilidad general de las pruebas

En esta revisión, se excluyó un ECA debido a la duración del seguimiento, inferior a un año. En general, el TME para la EM necesita una duración de la administración y un seguimiento adecuados para determinar con exactitud los resultados de los efectos beneficiosos y la seguridad. Una duración mínima de la administración de un año, predefinida en los criterios de los tipos de intervenciones, fue una duración razonable del tratamiento que en parte evitó la inclusión de pruebas erróneas. No se realizaron metanálisis debido a la diversidad en el diseño de los estudios e intervenciones. Dos ECA a gran escala contribuyeron a las pruebas principales para esta revisión. Las pruebas solamente fueron aplicables a adultos con EM recurrente que tuvieron una puntuación menor de 5,5 en la EDSS y actividad de la enfermedad, con al menos una recurrencia en el año anterior o al menos dos recurrencias clínicas en los dos años anteriores.

Calidad de la evidencia

En esta revisión se incluyeron cinco ECA con 3231 adultos con EM recurrente para evaluar principalmente el efecto beneficioso y la seguridad de dos dosis de teriflunomida (7 mg/día y 14 mg/día) como monoterapia o como tratamiento de combinación con IFNβ mediante la comparación directa con placebo o IFNβ‐1a. En general hubo heterogeneidad clínica evidente debido a la diversidad en el diseño de los estudios o en las intervenciones y heterogeneidad metodológica entre los estudios. Todos los estudios tuvieron alto riesgo de sesgo de detección para la evaluación de las recurrencias y alto riesgo de sesgo debido a conflictos de interés. De ellos, tres estudios también tuvieron alto riesgo de sesgo de desgaste debido a una alta tasa de abandonos y dos estudios tuvieron riesgo incierto de sesgo de desgaste. En general, mientras mayor es el cociente entre participantes con datos faltantes y participantes con eventos, mayor es la posibilidad de sesgo, especialmente para la alta frecuencia de eventos. La posible repercusión de los resultados continuos faltantes aumenta con la proporción de participantes con datos faltantes. Además, los estudios de tratamiento de combinación con IFNβ y el estudio con IFNβ‐1a como control también tuvieron alto riesgo de sesgo de realización y falta de poder estadístico debido a la muestra limitada. Las pruebas de esta revisión se derivaron principalmente de dos ECA a gran escala, en los que el alto riesgo de sesgo dio lugar a pruebas de baja calidad para los resultados de recurrencia. Los resultados de empeoramiento de la discapacidad estuvieron sujetos además a la falta de direccionalidad de las pruebas debido a que el empeoramiento de la discapacidad se confirmó en menos de seis meses en ambos estudios. La calidad de las pruebas de la progresión de la discapacidad fue muy baja.

Sesgos potenciales en el proceso de revisión

Se realizó una investigación extensa y completa para limitar el sesgo en el proceso de revisión. En esta revisión dos revisores evaluaron de forma independiente la elegibilidad de los estudios para la inclusión y realizaron la extracción de los datos, lo que redujo la posibilidad de sesgo adicional más allá del detallado en las tablas de "Riesgo de sesgo". Los autores de la revisión no tenían ningún conflicto de interés.

Acuerdos y desacuerdos con otros estudios o revisiones

Hay tres metanálisis de redes que compararon el efecto beneficioso o la aceptabilidad de la teriflunomida y otros TME mediante la comparación de tratamientos mixtos (Hadjigeorgiou 2013; Tramacere 2015; Zagmutt 2015). No se han encontrado otras revisiones sistemáticas sobre teriflunomida para la EM que solamente utilizaran comparaciones directas. En esta revisión sistemática la búsqueda extensa y exhaustiva solamente encontró un ECA que comparó teriflunomida con otros TME, y fue de calidad muy baja. Hubo falta de pruebas que mostraran el efecto beneficioso comparativo y la seguridad de la teriflunomida en comparación con otros TME. A igual que los resultados de los metanálisis de redes, esta revisión sistemática también recalcó la necesidad de ensayos aleatorios de comparaciones directas entre teriflunomida y otros agentes activos.

Study flow diagram.
Figures and Tables -
Figure 1

Study flow diagram.

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.
Figures and Tables -
Figure 2

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.
Figures and Tables -
Figure 3

Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Summary of findings for the main comparison. Teriflunomide compared to placebo for multiple sclerosis

Teriflunomide compared to placebo for multiple sclerosis

Patient or population: people with relapsing multiple sclerosis
Settings: US, Austria, France, Canada, Germany, UK, Sweden, Netherlands, Turkey, Poland, Chile, Ukraine, China, Italy, Australia, etc.
Intervention: teriflunomide at a dose of 14 mg orally once daily
Comparison: placebo

Outcomes

Illustrative comparative risks* (95% CI)

Relative effect
(95% CI)

No of Participants
(studies)

Quality of the evidence
(GRADE)

Comments

Assumed risk

Corresponding risk

Placebo

Teriflunomide

Proportion of participants with at least 1 relapse at 1 year
Follow‐up: 1 year

394 per 1000

237 per 1000
(189 to 296)

RR 0.60
(0.48 to 0.75)

761
(1 study)

⊕⊕⊝⊝
lowa

This outcome was considered low, because we considered there were very serious limitation in study design and execution. The bias that influenced the validity of the results for this outcome included: the high risks of bias due to unblinded assessments for relapse and conflicts of interest (sensitivity analysis according to a likely‐case scenario showed a robustness for the results of this outcome, we considered that the high attrition bias did not influence the robustness of the results on relapse). Therefore, we downgraded the quality of evidence for this outcome by 2 levels

The proportion of participants with at least 1 relapse at 2 years
Follow‐up: 2 years

545 per 1000

436 per 1000
(376 to 507)

RR 0.80
(0.69 to 0.93)

722
(1 study)

⊕⊕⊝⊝
lowb

This outcome was considered low, because we considered there were very serious limitation in study design and execution. The bias that influenced the validity of the results for this outcome included: the high risks of bias due to unblinded assessments for relapse and conflicts of interest. (Sensitivity analysis according to a likely‐case scenario showed a robustness for the results of this outcome, we considered that the unclear attrition bias did not influence the robustness of the results on relapse.) Therefore, we downgraded the quality of evidence for this outcome by 2 levels

The proportion of participants with disability progression at 1 year
Follow‐up: 1 year

142 per 1000

78 per 1000
(51 to 119)

RR 0.55
(0.36 to 0.84)

761
(1 study)

⊕⊝⊝⊝
very lowc,e

This outcome was considered very low based on the following reasons:

  • we considered there were very serious limitation in study design and execution. The bias that influenced the validity of the results for this outcome included: the high risks of bias due to the high attrition bias and conflicts of interest. Sensitivity analysis according to a likely‐case scenario showed an unsteadiness for the results of this outcome, we considered that the high attrition bias influenced the robustness of the results on progression disability. Therefore, we downgraded the quality of evidence for this outcome by 2 levels

  • This outcome was an indirect outcome because disability progression was confirmed at 3 months of follow‐up. We had serious doubts about directness. Therefore, we downgraded the quality of evidence for this outcome by 1 level

The proportion of participants with disability progression at 2 years
Follow‐up: 2 years

273 per 1000

202 per 1000
(153 to 262)

RR 0.74
(0.56 to 0.96)

722
(1 study)

⊕⊝⊝⊝
very lowd,e

This outcome was considered very low based on the following reasons:

  • We considered there were very serious limitation in study design and execution. The bias that influenced the validity of the results for this outcome included: the high risks of bias due to unclear attrition bias and conflicts of interest. Sensitivity analysis according to a likely‐case scenario showed an unsteadiness for the results of this outcome, we considered that the unclear attrition bias influenced the robustness of the results on progression disability. Therefore, we downgraded the quality of evidence for this outcome by 2 levels

  • This outcome was an indirect outcome because disability progression was confirmed at 3 months of follow‐up. We had serious doubts about directness. Therefore, we downgraded the quality of evidence for this outcome by 1 level

The proportion of participants with diarrhoea at 2 years
Follow‐up: 2 years

89 per 1000

179 per 1000
(120 to 267)

RR 2.01
(1.35 to 3.00)

718
(1 study)

⊕⊕⊕⊝
moderatef

The follow‐up periods were diverse in Confavreux 2014 and O'Connor 2011 (at least 48 weeks (Confavreux 2014) and 108 weeks (O'Connor 2011)). Treatment duration of participants in Confavreux 2014 was variable, ending 48 weeks after the last participant was included (a maximum treatment duration of 173 weeks). Actually, the data on adverse events in Confavreux 2014 were not at 2 years. There was a heterogeneity in follow‐up period between the studies. Therefore, we did not combine the data on adverse events in Confavreux 2014 and O'Connor 2011

The proportion of participants with hair thinning at 2 years
Follow‐up: 2 years

33 per 1000

131 per 1000
(71 to 243)

RR 3.94
(2.13 to 7.30)

718
(1 study)

⊕⊕⊕⊝
moderatef

The follow‐up periods were diverse in Confavreux 2014 and O'Connor 2011 (at least 48 weeks (Confavreux 2014) and 108 weeks (O'Connor 2011)). Treatment duration of participants in Confavreux 2014 was variable, ending 48 weeks after the last participant was included (a maximum treatment duration of 173 weeks). Actually, the data on adverse events in Confavreux 2014 were not at 2 years. There was a heterogeneity in follow‐up period between the studies. Therefore, we did not combine the data on adverse events in Confavreux 2014 and O'Connor 2011

The proportion of participants with elevated ALT levels at 2 years
Follow‐up: 2 years

67 per 1000

143 per 1000
(90 to 226)

RR 2.14
(1.35 to 3.39)

718
(1 study)

⊕⊕⊕⊝
moderatef

The follow‐up periods were diverse in Confavreux 2014 and O'Connor 2011 (at least 48 weeks (Confavreux 2014) and 108 weeks (O'Connor 2011)). Treatment duration of participants in Confavreux 2014 was variable, ending 48 weeks after the last participant was included (a maximum treatment duration of 173 weeks). Actually, the data on adverse events in Confavreux 2014 were not at 2 years. There was a heterogeneity in follow‐up period between the studies. Therefore, we did not combine the data on adverse events in Confavreux 2014 and O'Connor 2011

*The basis for assumed risk is the placebo group risk. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).
ALT: alanine aminotransferase; CI: confidence interval; RR: risk ratio.

The assumed risk was defined as placebo group risk because only one study was evaluated.

GRADE Working Group grades of evidence
High quality: Further research is very unlikely to change our confidence in the estimate of effect.
Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.
Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
Very low quality: We are very uncertain about the estimate.

a High risks of bias existed in Confavreux 2014 due to unblinded assessments for relapse and conflicts of interest.

b High risks of bias existed in O'Connor 2011 due to unblinded assessments for relapse and conflicts of interest.

c High risks of bias existed in Confavreux 2014 due to effects of the high attrition bias on progression disability and conflicts of interest.

d High risk of bias existed in O'Connor 2011 due to effects of the unclear attrition bias on progression disability and conflicts of interest.

e Serious indirectness existed in Confavreux 2014 or in O'Connor 2011 because disability progression was confirmed at 3 months of follow‐up.

f High risk of bias existed in O'Connor 2011 due to an unclear attrition bias and conflicts of interest.

Figures and Tables -
Summary of findings for the main comparison. Teriflunomide compared to placebo for multiple sclerosis