Scolaris Content Display Scolaris Content Display

Entrenamiento con ejercicios físicos para pacientes con accidente cerebrovascular

Contraer todo Desplegar todo

Antecedentes

Los niveles de actividad física y el estado físico son bajos después de un accidente cerebrovascular. Las intervenciones para aumentar el estado físico podrían reducir la mortalidad y disminuir la discapacidad mediante el aumento de la funcionalidad.

Objetivos

Los objetivos primarios de esta revisión actualizada fueron determinar si el entrenamiento con ejercicios físicos después de un accidente cerebrovascular reduce la muerte, la muerte o la dependencia y la discapacidad. Los objetivos secundarios fueron determinar los efectos del entrenamiento sobre los eventos adversos, los factores de riesgo, el estado físico, la movilidad, la funcionalidad física, el estado de salud y la calidad de vida, el estado de ánimo y la función cognitiva.

Métodos de búsqueda

En julio 2018 se hicieron búsquedas en el Registro de Ensayos del Grupo Cochrane de Accidentes Cerebrales Vasculares (Cochrane Stroke Trials Register), CENTRAL, MEDLINE, Embase, CINAHL, SPORTDiscus, PsycINFO y en cuatro bases de datos adicionales. También se realizaron búsquedas en los registros de ensayos en curso y en las actas de conferencias, se examinaron las listas de referencias y se estableció contacto con expertos en el área.

Criterios de selección

Ensayos aleatorizados que compararan el entrenamiento cardiorrespiratorio o el entrenamiento de resistencia, o ambos (entrenamiento mixto), con atención habitual, ninguna intervención o una intervención sin ejercicios en supervivientes de un accidente cerebrovascular.

Obtención y análisis de los datos

Dos autores de la revisión, de forma independiente, seleccionaron los estudios, evaluaron la calidad de los ensayos y el riesgo de sesgo, y extrajeron los datos. Se analizaron los datos mediante metanálisis de efectos aleatorios y se evaluó la calidad de la evidencia mediante los criterios GRADE. La diversidad en las medidas de resultado limitó los análisis planificados.

Resultados principales

Se incluyeron 75 estudios, con 3017 participantes que en su mayoría podían deambular, que comprendían intervenciones de entrenamiento cardiorrespiratorio (32 estudios, 1631 participantes), de resistencia (20 estudios, 779 participantes) y mixto (23 estudios, 1207 participantes).

La muerte no se vio influenciada por ninguna intervención; las diferencias de riesgos fueron todas de 0,00 (evidencia de certeza baja). Hubo pocas muertes en general (19/3017 al final de la intervención y 19/1469 al final del seguimiento). Ninguno de los estudios evaluó la muerte o la dependencia como un resultado compuesto. Las puntuaciones de discapacidad mejoraron al final de la intervención con el entrenamiento cardiorrespiratorio (diferencia de medias estandarizada [DME] 0,52; IC del 95%: 0,19 a 0,84; 8 estudios, 462 participantes; p = 0,002; evidencia de certeza moderada) y con el entrenamiento mixto (DME 0,23; IC del 95%: 0,03 a 0,42; 9 estudios, 604 participantes; p = 0,02; evidencia de certeza baja). Los datos fueron demasiado escasos para evaluar los efectos del entrenamiento de resistencia sobre la discapacidad.

Los resultados secundarios mostraron beneficios múltiples para el estado físico (VO2 máximo y fuerza), la movilidad (velocidad al caminar) y la funcionalidad física (equilibrio). Estos efectos físicos tendieron a ser específicos de la intervención y la evidencia en su mayoría fue de certeza baja o moderada. Los datos sobre los factores de riesgo fueron limitados o no mostraron efectos, aparte del estado cardiorrespiratorio (VO2 máximo), que aumentó después del entrenamiento cardiorrespiratorio (diferencia de medias [DM] 3,40 mL/kg/min, IC del 95%: 2,98 a 3,83; 9 estudios, 438 participantes; evidencia de certeza moderada). No hubo evidencia de ningún evento adverso grave. La falta de datos da lugar a que no sea posible establecer conclusiones sobre los efectos del entrenamiento en el estado de ánimo, la calidad de vida y la cognición. La falta de datos también significó que los beneficios al momento del seguimiento (es decir, después de la interrupción del entrenamiento) no fuesen claros, aunque algunos beneficios de movilidad persistieron. El riesgo de sesgo varió entre los estudios, pero el desequilibrio en las cantidades de exposición en los grupos de control e intervención fue una cuestión común que afectó a muchas comparaciones.

Conclusiones de los autores

En general, el hecho de que haya habido pocas muertes sugiere que el ejercicio es una intervención segura, pero significa que no se puede determinar si el ejercicio reduce la mortalidad o la posibilidad de muerte o dependencia. El entrenamiento cardiorrespiratorio y, en menor medida, el entrenamiento mixto, reducen la discapacidad durante o después de la atención habitual de los accidentes cerebrovasculares; lo cual podría ser mediado por una mejoría de la movilidad y el equilibrio. Hay evidencia suficiente para incorporar el entrenamiento cardiorrespiratorio y mixto, que incluye caminata, en los programas de rehabilitación posteriores al accidente cerebrovascular para mejorar el estado físico, el equilibrio, la velocidad y la capacidad de caminata. Se ha sugerido que la magnitud del aumento del VO2máximo después del entrenamiento cardiorrespiratorio reduce el riesgo de hospitalización por accidente cerebrovascular en ˜7%. La función cognitiva no se ha investigado de forma suficiente a pesar de ser un resultado clave de interés para los pacientes. Se necesitan más ensayos aleatorizados bien diseñados para determinar la prescripción óptima de ejercicio, el rango de beneficios y cualquier beneficio a largo plazo.

PICO

Population
Intervention
Comparison
Outcome

El uso y la enseñanza del modelo PICO están muy extendidos en el ámbito de la atención sanitaria basada en la evidencia para formular preguntas y estrategias de búsqueda y para caracterizar estudios o metanálisis clínicos. PICO son las siglas en inglés de cuatro posibles componentes de una pregunta de investigación: paciente, población o problema; intervención; comparación; desenlace (outcome).

Para saber más sobre el uso del modelo PICO, puede consultar el Manual Cochrane.

Entrenamiento con ejercicios físicos para supervivientes de un accidente cerebrovascular

Pregunta de la revisión
Se revisó la evidencia que examina si el entrenamiento con ejercicios físicos es beneficioso para la salud y la función en pacientes que han sufrido un accidente cerebrovascular.

Antecedentes
El estado físico es importante para que los pacientes puedan realizar actividades cotidianas como caminar y subir escaleras. El estado físico varía entre los pacientes. Por ejemplo, el estado físico en los hombres tiende para ser un poco mayor que en las mujeres y el estado físico de todas las personas se reduce a medida que envejecen y si se vuelven menos activas físicamente. En particular, en los supervivientes de accidentes cerebrovasculares el estado físico suele ser bajo. Puede limitar su capacidad de realizar las actividades cotidianas y también empeorar cualquier discapacidad relacionada con el accidente cerebrovascular. Por este motivo, el entrenamiento con ejercicios se ha propuesto como un enfoque beneficioso para los pacientes con un accidente cerebrovascular. Sin embargo, la participación en el entrenamiento con ejercicios podría tener una variedad de otros efectos beneficiosos importantes en los pacientes con accidente cerebrovascular como la mejoría de la función cognitiva (habilidades de pensamiento), la mejoría del estado de ánimo y la calidad de vida, y podría disminuir las posibilidades de presentar otro accidente cerebrovascular.

Características de los estudios
En julio 2018 se identificaron 75 estudios para la inclusión en la revisión. Los ensayos incluyeron a un total de 3617 participantes en todas las etapas de atención que incluyen la hospitalización o la vida posterior en el domicilio. La mayoría de los pacientes que participaron podían caminar por sí mismos. Los estudios evaluaron diferentes formas de entrenamiento físico; las mismas incluían entrenamiento cardiorrespiratorio o de «resistencia», entrenamiento de resistencia o de «fuerza», o entrenamiento mixto, que es una combinación de entrenamiento cardiorrespiratorio más entrenamiento de resistencia.

Resultados clave
Se encontró que el entrenamiento cardiorrespiratorio con ejercicios, en particular con caminata, puede mejorar el estado físico, el equilibrio y la caminata después del accidente cerebrovascular. Las mejorías en el estado cardiorrespiratorio pueden reducir la posibilidad de hospitalización por accidente cerebrovascular en un 7%. El entrenamiento mixto mejora la capacidad para caminar y mejora el equilibrio. El entrenamiento de fuerza puede contribuir a mejorar el equilibrio. Por lo tanto, en general, parece probable que los pacientes con accidente cerebrovascular obtengan más beneficios a parir de un entrenamiento que implique un entrenamiento cardiorrespiratorio y que implique algo de caminata. Sin embargo, no hubo información suficiente para establecer conclusiones fiables acerca del impacto del entrenamiento con ejercicios en otras áreas como la calidad de vida, el estado de ánimo o la función cognitiva. La función cognitiva no se ha investigado lo suficiente, a pesar de que es un resultado clave de interés para los supervivientes de un accidente cerebrovascular. No hubo evidencia de que ninguno de los diferentes tipos de entrenamiento físico causara lesiones u otros problemas de salud; el ejercicio parece ser seguro. Se necesitan más estudios para examinar los efectos beneficiosos que son más importantes para los supervivientes de un accidente cerebrovascular, en particular en los pacientes con un accidente cerebrovascular más grave que no pueden caminar.

Calidad de la evidencia
Los estudios del entrenamiento con ejercicios pueden ser difíciles de realizar. Se tiene la mayor confianza en las estimaciones de los beneficios del entrenamiento cardiorrespiratorio (moderada/alta). La evidencia de otros tipos de entrenamiento es de moderada a baja. Sin embargo, se obtuvieron algunos hallazgos coherentes con diferentes estudios que tendían a mostrar efectos similares en diferentes grupos de participantes.

Conclusiones de los autores

disponible en

Implicaciones para la práctica

El entrenamiento cardiorrespiratorio por sí solo puede mejorar el estado cardiorrespiratorio. Además de beneficiar la capacidad funcional, el mismo puede tener un efecto de reducción del riesgo de eventos secundarios.

El entrenamiento cardiorrespiratorio solo o combinado con un elemento de entrenamiento de resistencia (entrenamiento mixto) mejora la velocidad y la capacidad de caminata cuando se utiliza una modalidad de ejercicio de caminata; algunos de estos efectos se mantienen

El entrenamiento cardiorrespiratorio o de resistencia, solo o en combinación (entrenamiento mixto), mejora los índices de equilibrio. Los mayores efectos se relacionan con el entrenamiento de resistencia. Estos efectos pueden reducir el riesgo de caídas.

Por lo tanto, para los pacientes con accidente cerebrovascular que pueden participar en el ejercicio hay buenas razones para querer combinar diferentes tipos de entrenamiento a fin de maximizar los beneficios relacionados directamente con el estado físico y la movilidad, e indirectamente con la reducción del riesgo de caídas y la prevención secundaria.

En todo el mundo se han elaborado diversas iniciativas, como el entrenamiento de profesionales, guías sobre prácticas óptimas y recomendaciones, que ayudan a facilitar el flujo de información de las investigaciones a la práctica. Por ejemplo:

Estas iniciativas se basan en la evidencia existente acerca de los efectos beneficiosos del ejercicio después del accidente cerebrovascular, así como en las necesidades de los supervivientes de un accidente cerebrovascular de tener acceso continuo a la rehabilitación después del alta hospitalaria; pueden informar sobre la provisión de servicios.

En la actualidad existen diversos modelos de prestación de servicios en diferentes países del mundo (Australia, Brasil, Canadá, India, Nigeria, Singapur, Suecia, Reino Unido y Estados Unidos; Van Wijck 2019). El European Stroke Action Plan 2018‐2030 proporciona un mandato claro para la aplicación de servicios que incluyen el entrenamiento físico, estableciendo como objetivo para 2030 «Ofrecer programas de entrenamiento físico a todos los supervivientes de accidentes cerebrovasculares que viven en la comunidad» (Norrving 2018).

Los hallazgos de esta actualización de la revisión sistemática contribuirán a las vías basadas en evidencia que tienen como objetivo mejorar la vida después de un accidente cerebrovascular.

Implicaciones para la investigación

Se necesitan estudios grandes bien diseñados para evaluar los efectos del entrenamiento con ejercicios físicos después del accidente cerebrovascular y determinar el régimen óptimo para mejorar el estado físico.

Los futuros estudios deberían:

  • cumplir con las guías CONSORT actuales para el informe de ensayos clínicos aleatorizados (CONSORT 2010);

  • informar sobre las intervenciones de ejercicio y de control con mayor claridad; existen guías para informar sobre las intervenciones (TIDiER; Hoffmann 2014), incluidas algunas específicas para el ejercicio (CERT Consensus Exercise Reporting Template; Slade 2014);

  • incluir a una población más amplia de supervivientes de un accidente cerebrovascular (que incluya a supervivientes de un accidente cerebrovascular que no pueden deambular) para permitir la estratificación por género, nivel de deficiencia y capacidad funcional;

  • evaluar los efectos del entrenamiento con ejercicios físicos en pacientes con problemas específicos posteriores al accidente cerebrovascular, por ejemplo, pacientes con depresión o fatiga posterior al accidente cerebrovascular;

  • tener una duración más larga (12 semanas o más);

  • tener un seguimiento a largo plazo; y

  • tener algún tipo de control de atención para reducir los factores de confusión.

Summary of findings

Open in table viewer
Summary of findings for the main comparison. Cardiorespiratory training compared to control for people with stroke: end of intervention

Cardiorespiratory training compared to control for people with stroke: end of intervention

Patient or population: people with stroke
Setting: during and after usual care
Intervention: cardiorespiratory training
Comparison: control; end of intervention

Outcomes

Relative effect
(95% CI)

Number of participants
(studies)

Certainty of the evidence
(GRADE)

Comments

Death

Analysis 1.1

Risk difference 0.00
(−0.01 to 0.01)

1631
(32 RCTs)

⊕⊕⊝⊝
Lowa

Death is very uncommon, with only 4 deaths; 2 deaths in the control group and 2 in the intervention group of a single study (Gordon 2013).

Dead or dependent

0 (0 RCTs)

No studies reported the composite outcome of death or dependency.

Disability

Pooled functional scales

Analysis 1.5

SMD 0.52 higher
(0.19 higher to 0.84 higher)

462
(8 RCTs)

⊕⊕⊕⊝
Moderateb

A SMD of global scales of disability is difficult to interpret. The magnitude of increase observed (> 0.5) can generally be categorised as a 'moderate' effect. Any improvement may be reflecting improved mobility since mobility items are commonly included in these assessment tools.

Physical fitness

VO2 peak (mL/kg/min)

Analysis 1.9

MD 3.4 mL/kg/min higher
(2.98 higher to 3.83 higher)

438
(9 RCTs)

⊕⊕⊕⊝
Moderatec

An increase of 1 MET (3.3 mL/kg/min) is associated with a 7% risk reduction in stroke hospitalisation (Pandey 2016). The effect here is of similar magnitude and suggests secondary prevention targets could be achieved within short periods of training.

Muscle strength

No data; specificity of training gives little rationale to investigate

Mobility

Preferred gait speed (m/min)

Analysis 1.13

MD 4.47 m/min faster
(2.07 faster to 6.87 faster)

588
(12 RCTs)

⊕⊕⊕⊕
Highd

These increases in preferred walking speed and walking capacity are relevant to community ambulation. The interventions are mostly those with a walking mode of exercise. These functional benefits are also maintained after the end of the training interventions. Maximal speed and other indices of gait also improve.

Gait endurance (6‐MWT metres)

Analysis 1.14

MD 33.41 m further
(19.04 further to 47.78 further)

882
(16 RCTs)

⊕⊕⊕⊕
Highe

Physical function

Berg Balance Scale

(0 to 56, best balance = 56)

Analysis 1.17

MD 1.92 units higher
(0.16 higher to 3.68 higher)

471
(8 RCTs)

⊕⊕⊕⊝
Moderatef

Both of these outcomes are indices of balance.

3‐metre Timed Up and Go (seconds)

Analysis 1.18

MD 3.42 s faster
(2.05 faster to 4.78 faster)

223
(5 RCTs)

⊕⊕⊕⊝
Moderateg

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

6‐MWT: 6‐Minute Walk Test; CI: confidence interval; MD: mean difference; MET: metabolic equivalent; RCT: randomised controlled trial; RR: risk ratio; SMD: standardised mean difference

GRADE Working Group grades of evidence
High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aMost participants were high‐functioning; risk of death was low among this group. There is some risk of bias from imbalanced exposure in 13 of the 20 included studies and some reporting uncertainties concerning reasons for dropouts in six of the 32 studies.
bThere is some heterogeneity (I2 = 61%); other issues with individual studies account for this heterogeneity.
cThere are some 'Risk of bias' items recorded as 'high' but these are among studies with a low weighting. There is uncertainty in the data of one study (Jin 2013). If we exclude this study, a clear effect is still present (MD 2.80 mL/kg/min higher (1.66 higher to 3.95 higher) with high‐certainty evidence).
dAlthough five out of 13 studies are confounded for exposure time the effect is still apparent when these are excluded.
eSome heterogeneity is present (I2 = 30%) but sensitivity analysis of confounded studies and those using non‐walking (cycling) exercise modes reduces this and a similar beneficial effect remains.
fThere is some heterogeneity (I2 = 57%).
gThree out of five studies are confounded for exposure time.

Open in table viewer
Summary of findings 2. Resistance training compared to control for people with stroke: end of intervention

Resistance training compared to control for people with stroke: end of intervention

Patient or population: people with stroke
Setting: during and after usual care
Intervention: resistance training
Comparison: control; end of intervention

Outcomes

Relative effect
(95% CI)

Number of participants
(studies)

Certainty of the evidence
(GRADE)

Comments

Death

Analysis 3.1

Risk difference 0.00
(−0.02 to 0.02)

803
(20 RCTs)

⊕⊕⊝⊝
Lowa

Death is very uncommon, with only 2 deaths; 1 in the control group and 1 in the intervention group of a single study (Knox 2018).

Dead or dependent

0 (0 RCTs)

No studies reported the composite outcome of death or dependency.

Disability

Pooled functional scales

Too few data reporting global indices of disability to establish any consensus effects.

Physical Fitness

VO2 peak (mL/kg/min)

The rationale for resistance training is to increase muscle strength and not cardiorespiratory fitness therefore there is little rationale to investigate this outcome. Only 1 study measured VO2 peak and this indicated a 6% improvement.

Muscle strength ‐ composite measure

Analysis 3.2

SMD 0.58 higher (0.06 higher to 1.1 higher)

60 (2 RCTs)

⊕⊕⊝⊝
Lowb

Overall, 11 RCTs reported muscle strength outcomes. 10/11 studies, mostly examining lower limb fitness, demonstrated that resistance training can improve muscle strength and some studies also indicated that indices such as local muscular endurance and power output can be improved.

Variation in the method for measuring strength restricts the pooling of data however three small groups of outcomes could be pooled. These show medium‐sized effects (SMD > 0.5) only for one outcome, a composite measure of strength.

Muscle strength ‐ paretic knee flexion

Analysis 3.3

SMD 0.72 higher (0.10 higher to 1.34 higher)

93 (3 RCTs)

⊕⊕⊕⊝
Moderatec

Muscle strength ‐ paretic knee extension

Analysis 3.4

SMD 1.09 higher (0.23 lower to 2.41 higher)

93 (3 RCTs)

⊕⊕⊝⊝
Lowd

Mobility

Preferred gait speed (m/min)

Analysis 3.6

MD 2.15 m/min faster
(3.57 slower to 7.87 faster)

203
(5 RCTs)

⊕⊕⊕⊝
Moderatee

There was no statistically significant effect of training on preferred walking speed or on other indices of gait such as maximal walking speed. Only 6‐MWT data showed a benefit but this and all other gait measures showed no statistically significant effect after a follow‐up period. These training interventions were not based on a walking mode of exercise.

Gait endurance (6‐MWT metres)

Analysis 3.7

MD 24.98 m further
(11.98 further to 37.98 further)

238
(5 RCTs)

⊕⊕⊝⊝
Lowf

Physical Function

Berg Balance Scale

(0 to 56, best balance = 56)

Analysis 3.8

MD 3.27 higher
(2.15 higher to 4.38 higher)

220
(5 RCTs)

⊕⊕⊝⊝
Lowg

Both of these outcomes are indices of balance.

The training only showed a statistically significant improvement in balance measured with the Berg Balance Scale.

3‐metre Timed Up and Go (seconds)

Analysis 3.10

MD 3.46 s faster
(0.02 slower to 6.94 faster)

224
(5 RCTs)

⊕⊕⊝⊝
Lowh

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

6‐MWT: 6‐Minute Walk Test; CI: confidence interval; MD: mean difference; RCT: randomised controlled trial; SMD: standardised mean difference

GRADE Working Group grades of evidence
High certainty: We are very confident that the true effect lies close to that of the estimate of the effect
Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

aMost participants were high‐functioning; risk of death was low among this group. There is serious risk of bias from imbalanced exposure in 12 of the 20 included studies.
bOne of the two included studies has major risk of bias issues and the composite measure of muscle strength is indirect in nature.
cOne of the three included studies has risk of bias issues. There is some heterogeneity (I2 = 47%).
dOne of the three included studies has risk of bias issues. There is high heterogeneity (I2 = 87%).
eHigh degree of heterogeneity (I2 = 76%).
fVery serious risk of bias including three out of five studies confounded for exposure time; key 'Risk of bias' items affecting highest weighted studies.
gVery serious risk of bias including three out of five studies confounded for exposure time.
hHigh degree of heterogeneity (I2 = 89%) and four out of five studies confounded for exposure time.

Open in table viewer
Summary of findings 3. Mixed training compared to control for people with stroke: end of intervention

Mixed training compared to control for people with stroke: end of intervention

Patient or population: people with stroke
Setting: during and after usual care
Intervention: mixed training
Comparison: control; end of intervention

Outcomes

Relative effect
(95% CI)

Number of participants
(studies)

Certainty of the evidence
(GRADE)

Comments

Death

Analysis 5.1

Risk difference 0.00

(−0.02 to 0.01)

1231
(23 RCTs)

⊕⊕⊝⊝
Lowa

Although there were more deaths in the control group there was no statistically significant difference between the groups.

Dead or dependent

0 (0 RCTs)

No studies reported the composite outcome of death or dependency.

Disability

Pooled functional scales

Analysis 5.5

SMD 0.23 higher
(0.03 higher to 0.42 higher)

604
(9 RCTs)

⊕⊕⊝⊝
Lowb

A SMD of global scales of disability is difficult to interpret. The magnitude of increase observed (0.2 to 0.5) can generally be categorised as a 'small' effect. Any improvement may be reflecting improved mobility since mobility items are commonly included in these assessment tools. 7/9 studies were confounded for exposure time so any effects may be exaggerated. Any improvement may be connected to improved mobility since mobility items are a common feature of these scales.

Physical fitness

VO2 peak (mL/kg/min)

Analysis 5.8

MD 1.4 mL/kg/min higher
(‐0.19 lower to 2.99 higher)

140
(2 RCTs)

⊕⊕⊝⊝
Lowc

There were too few cardiorespiratory fitness data reported to establish any consensus effects for mixed training.

Muscle strength ‐ ankle dorsiflexion

Analysis 5.10

SMD 0.8 stronger (‐0.82 weaker to 2.41 stronger)

148 (2 RCTs)

⊕⊝⊝⊝
Very lowd

Overall 6 RCTs reported muscle strength outcomes.

Variation in the method for measuring strength restricted the pooling of data; however, 3 groups of strength outcomes could be pooled.

Only knee extensor strength showed a small (> 0.2) beneficial effect on knee extension strength.

Muscle strength ‐ knee extension

Analysis 5.11

SMD 0.33 stronger (0.05 stronger to 0.61 stronger)

202 (3 RCTs)

⊕⊕⊝⊝
Lowe

Muscle strength ‐ paretic grip strength (kg)

Analysis 5.12

MD 0.32 Kg stronger (‐0.88 weaker to 1.52 stronger)

147 (3 RCTs)

⊕⊕⊝⊝
Lowf

Mobility

Preferred gait speed (m/min)

Analysis 5.14

MD 4.71 m/min faster
(1.32 faster to 8.1 faster)

738
(10 RCTs)

⊕⊕⊕⊝
Moderateg

These increases in preferred walking speed and walking capacity are relevant to community ambulation. The interventions are mostly those with a walking mode of exercise. These functional benefits in the 6‐MWT were also maintained after the end of the training interventions.

Gait endurance (6‐MWT metres)

Analysis 5.15

MD 35 m further
(15.91 further to 54.09 further)

720
(10 RCTs)

⊕⊕⊝⊝
Lowh

Physical function

Berg Balance Scale

(0 to 56, best balance = 56)

Analysis 5.17

MD 2.12 higher
(0.82 higher to 3.41 higher)

419
(9 RCTs)

⊕⊕⊝⊝
Lowi

Both of these outcomes are indices of balance, only the Berg Balance Scale demonstrated a statistically significant improvement.

3‐metre Timed Up and Go (seconds)

Analysis 5.20

MD 2.21 sec faster
(0.02 slower to 4.43 faster)

586
(7 RCTs)

⊕⊕⊝⊝
Lowj

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

6‐MWT: 6‐Minute Walk Test; CI: confidence interval; MD: mean difference; OR: odds ratio; RCT: randomised controlled trial; RR: risk ratio; SMD: standardised mean difference

GRADE Working Group grades of evidence
High certainty: We are very confident that the true effect lies close to that of the estimate of the effect
Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

aMost participants were high‐functioning; risk of death was low among this group. There is serious risk of bias from imbalanced exposure in 16 of the 23 included studies.
bThere is heterogeneity (I2 = 21%) in addition to very serious risk of bias from imbalanced exposure in seven of the nine included studies.
cThere is heterogeneity (I2 = 35%) in addition to very serious risk of bias from imbalanced exposure in the study weighted 79.6%.
dSubstantial heterogeneity (I2 = 76%); very serious risk of bias; both studies with imbalanced exposure.
eVery serious risk of bias; all three studies with imbalanced exposure.
fVery serious risk of bias with 3/3 studies with imbalanced exposure.
gSubstantial heterogeneity (I2 = 76%).
hVery serious risk of bias with nine out of 10 studies with imbalanced exposure times.
iVery serious risk of bias with five out of nine studies with imbalanced exposure; there is no beneficial effect if these five studies are excluded.
jThere is heterogeneity (I2 = 45%) in addition to serious risk of bias from imbalanced exposure in seven of the nine included studies.

Antecedentes

disponible en

Existen recomendaciones de actividad física y ejercicio para una gama amplia de poblaciones sanas, mayores y de pacientes (O'Donovan 2010; Powell 2019), incluidas las que tienen problemas de salud específicos como los accidentes cerebrovasculares (Billinger 2014). El ejercicio y la actividad física se promueven ampliamente durante la vida después de un accidente cerebrovascular. La evidencia actual de la versión anterior de esta revisión indica que el ejercicio puede reducir la discapacidad y mejorar el estado físico y aspectos de la funcionalidad física (Saunders 2016). Se necesita más evidencia para examinar los efectos de los diferentes tipos y dosis de ejercicio y para examinar los efectos en un amplio espectro de medidas de resultado.

¿Qué es el entrenamiento con ejercicios físicos?

El término ejercicio se refiere a un subgrupo de actividades físicas que son planificadas, estructuradas, repetitivas y realizadas de forma intencional para entrenar (mejorar) uno o más componentes del estado físico, la funcionalidad física o la salud (USDHHS 2018). Debido a que el término «ejercicio» se utiliza más genéricamente dentro de la atención del accidente cerebrovascular, esta revisión se referirá al ejercicio como «entrenamiento con ejercicios físicos».

¿Qué es el estado físico?

El estado físico puede definirse como «la capacidad de llevar a cabo las tareas diarias con vigor y alerta, sin fatiga indebida y con amplia energía para disfrutar de las actividades de ocio y hacer frente a emergencias imprevistas» (USDHHS 2018). Los componentes más importantes del estado físico son los que están directamente relacionados con el gasto de energía y el trabajo muscular.

  • El estado cardiorrespiratorio es la capacidad de transportar y utilizar el oxígeno y con frecuencia se expresa como la captación máxima de oxígeno (VO2 max). El estado cardiorrespiratorio confiere «resistencia», que es la capacidad de un individuo de realizar actividad física durante un período prolongado.

  • La capacidad músculo‐esquelética es la capacidad para generar fuerza que puede expresarse en términos de fuerza y potencia. La fuerza muscular se refiere a la capacidad de un músculo específico o un grupo muscular de ejercer fuerza. La fuerza se asocia con la capacidad de realizar movimientos vigorosos como empujar o levantar. La potencia muscular se refiere a la tasa a la cual el trabajo muscular se puede realizar durante una única contracción explosiva. La potencia se asocia con la capacidad de realizar movimientos vigorosos, en particular los que son dinámicos.

Además, otros componentes del estado físico pueden influir en la capacidad de realizar actividades físicas, como la flexibilidad (amplitud de movimiento de una articulación específica), el equilibrio (capacidad para mantener la estabilidad y la postura) y la composición corporal (por ejemplo cantidades relativas de grasa y masa magra).

Determinantes del estado físico

El sexo tiene una influencia directa en los índices del estado físico, que tiende a ser menor en las mujeres que en los hombres. Por ejemplo, en las mujeres el estado cardiorrespiratorio es alrededor de un 27% más bajo que en los hombres de la misma edad a lo largo de la vida (Kaminsky 2015).

El aumento de la edad provoca un deterioro del estado físico; es una consecuencia normal del envejecimiento saludable. Por ejemplo, el estado cardiorrespiratorio muestra una disminución lineal de aproximadamente el 1% anual a lo largo de la edad adulta (20 a 80 años de edad; Kaminsky 2015). La fuerza muscular se conserva bien hasta alrededor de los 50 a 60 años de edad, y después se deteriora rápidamente a un ritmo aproximado del 1,6% anual (Kemmler 2018).

La inactividad física causa una pérdida rápida del estado físico músculo‐esquelético y del estado cardiorrespiratorio. Por ejemplo, solo 10 días de reposo en cama causan una pérdida rápida de fuerza muscular (‐13,2%), de potencia muscular (‐14%) y del estado cardiorrespiratorio (‐12%) (Kortebein 2008).

Las consecuencias secundarias de las enfermedades crónicas, como la inflamación, también se asocian con la pérdida de fuerza y masa muscular (Degens 2006; Westbury 2018).

Importancia funcional del estado físico

Cuando el nivel del estado físico es deficiente (independientemente del motivo) las actividades físicas pueden verse limitadas por la fatiga o ser imposibles de realizar (Young 2001). Los niveles de estado físico por debajo del nivel necesario para realizar las actividades cotidianas (AC) instrumentales pueden significar que éstas se vuelvan imposibles, lo cual puede dar lugar al riesgo de pérdida de independencia. Por ejemplo, un estado cardiorrespiratorio inferior a 15 a 18 mL/kg/min está asociado con la pérdida de la independencia (Shephard 2009). Del mismo modo, la fuerza muscular de varios músculos de las extremidades inferiores por debajo de los valores umbral impide que los pacientes mayores realicen las AC (Hasegawa 2008). Incluso sin descender por debajo de dichos valores umbral, la reducción del estado físico se asocia con una reducción de la función. Por ejemplo, la baja potencia muscular en los pacientes mayores está asociada con la reducción de la movilidad y un mayor riesgo de caídas (McKinnon 2017).

Descripción de la afección

La definición clásica de accidente cerebrovascular es «signos clínicos de alteraciones de la función cerebral de desarrollo rápido, que se prolongan por más de 24 horas o que dan lugar a la muerte, sin otra causa aparente que una causa de origen vascular» (Hatano 1976). Un accidente cerebrovascular es causado por una interrupción de la circulación del cerebro, ya sea por un coágulo (accidente cerebrovascular isquémico) o una hemorragia (accidente cerebrovascular hemorrágico). El accidente cerebrovascular puede provocar la muerte o causar discapacidad; puede afectar la forma en que los pacientes se mueven, piensan, sienten y cómo se comportan. A nivel mundial, en 2016 el accidente cerebrovascular fue la segunda causa principal de muerte y la segunda causa principal de años de vida ajustados en función de la discapacidad (OMS 2018), y alrededor del 50% de los supervivientes de accidentes cerebrovasculares experimentaban discapacidad a largo plazo (Mackay 2004).

Una consecuencia neurológica común del accidente cerebrovascular es la pérdida o limitación unilateral de la función muscular; la consecuencia directa puede ser la limitación o la pérdida de movimiento, de la movilidad y de la capacidad funcional. Además, después de un accidente cerebrovascular se produce toda una serie de complicaciones físicas y psicológicas indirectas (Indredavik 2008; Langhorne 2000). Los niveles de actividad física son bajos en los pacientes con accidente cerebrovascular tanto en los pacientes hospitalizados (Bernhardt 2004; Bernhardt 2007), como en los supervivientes de accidentes cerebrovasculares que viven en la comunidad (English 2014). En los pacientes con accidente cerebrovascular que viven en la comunidad, el estado físico cardiorrespiratorio varía del 26% al 87% del valor esperado en pacientes sanos pareados por edad y sexo (Smith 2012). La fuerza muscular (Gerrits 2009; Horstman 2008), y la potencia muscular (Saunders 2008), también se ven afectadas por los déficits bilaterales, lo que sugiere la influencia de la inactividad física además de la hemiparesia.

El nivel del estado físico después del accidente cerebrovascular puede ser deficiente debido a varios factores conectados directa e indirectamente con el accidente cerebrovascular.

  • Los niveles del estado físico antes del accidente cerebrovascular pueden ser deficientes ya que la inactividad física (Lee 2002) y los niveles deficientes del estado físico (Kurl 2003) son factores de riesgo de accidente cerebrovascular. El accidente cerebrovascular no es una enfermedad restringida a los pacientes de edad muy avanzada; dos tercios de los accidentes cerebrovasculares se producen en pacientes menores de 70 años de edad (Feigin 2017); sin embargo, los efectos del aumento de la edad tendrán un papel importante, así como la presencia de afecciones comórbidas.

  • Los efectos neurológicos directos del accidente cerebrovascular reducen la masa muscular disponible para la activación (p.ej. hemiparesia).

  • La inactividad física posterior al accidente cerebrovascular causará una pérdida longitudinal del estado físico junto a los efectos de las enfermedades concomitantes y al aumento de la edad. La limitación o la pérdida de las capacidades funcionales después del accidente cerebrovascular (p.ej. caminar, subir escaleras, pararse de una silla) se asocian con niveles deficientes del estado cardiorrespiratorio, la fuerza muscular y la potencia muscular (Flansbjer 2006; Patterson 2007; Saunders 2008).

Por lo tanto, cuando los niveles del estado físico son bajos después de un accidente cerebrovascular (por cualquier razón) este hecho puede exacerbar o causar algunas limitaciones físicas comunes posteriores al accidente cerebrovascular (Saunders 2013a). La restauración de la función motora para mejorar la capacidad funcional es un aspecto clave dentro de la rehabilitación del accidente cerebrovascular y se han investigado varias intervenciones que incluyen actividades físicas y entrenamiento con ejercicios físicos (Langhorne 2009).

Descripción de la intervención

La estructura básica y el contenido de todas las intervenciones de entrenamiento con ejercicios físicos son guiados por un conjunto común de principios bien establecidos (ACSM 2011). El diseño de las intervenciones de entrenamiento con ejercicios físicos varía entre las personas sanas, las personas mayores y los diferentes grupos de pacientes.

Tipo de entrenamiento

La mayoría de los programas de entrenamiento con ejercicios físicos se clasifican como:

  • entrenamiento cardiorrespiratorio (para mejorar el estado cardiorrespiratorio);

  • entrenamiento de resistencia (para mejorar la fuerza muscular y la potencia muscular); o

  • entrenamiento mixto, que combina entrenamiento cardiorrespiratorio y de resistencia.

Con respecto a otros aspectos del estado físico, todos los tipos de programas de entrenamiento tienen el potencial de influir en la composición corporal (aumentar la masa magra y reducir la adiposidad) y algunos también pueden incorporar elementos que mejoran la flexibilidad (ejercicios de estiramiento) y el equilibrio.

Modalidades de entrenamiento

El tipo de entrenamiento con ejercicios influye en la/s modalidad/es del ejercicio. Por ejemplo, el entrenamiento cardiorrespiratorio habitualmente emplea la caminata y el ciclismo, mientras que el entrenamiento de resistencia emplea actividades que incluyen contracciones musculares contrarrestadas por pesos, la masa corporal o dispositivos elásticos.

Dosis de entrenamiento

La dosis de entrenamiento se controla influyendo, en primer lugar, en la cantidad de entrenamiento (por ejemplo, la duración del programa [semanas, meses], la frecuencia [días/semana] y la duración [minutos] de las sesiones) y, en segundo lugar, en la intensidad del entrenamiento (ritmo de trabajo o esfuerzo realizado).

Es la manipulación del tipo, la modalidad y la dosis lo que define una prescripción de ejercicio; sin embargo, la efectividad también se ve influenciada por algunos otros principios de importancia crítica del entrenamiento (ACSM 2011), entre ellos la progresión del entrenamiento, si el mismo está relacionado con una tarea (específica) y el hecho de que los efectos del entrenamiento son reversibles si el mismo se reduce o se interrumpe.

Por lo tanto, el entrenamiento con ejercicios físicos es una intervención muy compleja con numerosas partes componentes y puede dar lugar a variaciones en los efectos beneficiosos posibles.

De qué manera podría funcionar la intervención

En la actualidad se recomienda la actividad física regular cuando sea posible para las personas de todas las edades, incluidas las que presentan discapacidades, para promover y mantener la salud (Haskell 2007; USDHHS 2018). La relación dosis respuesta significa que existen efectos beneficiosos adicionales si se emplea el entrenamiento con ejercicios físicos, en particular con respecto a la funcionalidad física. Las intervenciones de entrenamiento con ejercicios físicos mejoran la funcionalidad física de las personas mayores sanas (Bangsbo 2019; Chodzko‐Zajko 2009).

Los niveles de actividad física y del estado físico posterior al accidente cerebrovascular son deficientes y se asocian con limitaciones funcionales frecuentes posteriores al accidente cerebrovascular. El aumento del estado físico y la funcionalidad física podría otorgar beneficios relacionados a otros varios problemas frecuentes después del accidente cerebrovascular, como reducir la fatiga, reducir la incidencia de caídas y fracturas, compensar el aumento del coste energético de una marcha hemiparética, reducir la discapacidad y mejorar la independencia, la calidad de vida y el estado de ánimo.

Se conoce que las fisioterapias promueven la remodelación estructural cerebral (Gauthier 2008) y pueden influir en los déficit motores posteriores al accidente cerebrovascular. Hay evidencia de revisiones sistemáticas de que la práctica repetitiva de algunas actividades cotidianas comunes produce algunas mejorías moderadas en la movilidad y las AC en los pacientes con accidente cerebrovascular (French 2016). El entrenamiento físico es de carácter repetitivo y suele estar relacionado con las tareas, por lo que la participación en el mismo puede dar lugar a beneficios funcionales incluso cuando no se observa una mejoría en el estado físico.

La participación en actividades de entrenamiento en grupo puede tener algunos beneficios psicosociales en los pacientes que sufren un accidente cerebrovascular (Carin‐Levy 2009; Mead 2005; Patterson 2009). El entrenamiento físico se suele impartir en grupo; por lo tanto, en estos casos, la mera participación en el entrenamiento con ejercicios físicos puede ser beneficiosa, en particular cuando las actividades grupales se realizan en un entorno no médico (Young 2019).

Los deterioros en la función cognitiva son frecuentes después del accidente cerebrovascular y los índices bajos del estado físico son factores pronósticos (Lee 2014). En los pacientes de mayor edad (de más de 65 años de edad) con deterioro cognitivo las intervenciones con ejercicios han mostrado una mejoría en la función cognitiva (Heyn 2004). Además, en los pacientes con accidente cerebrovascular y lesión cerebral traumática, la evidencia de revisiones sistemáticas indica que el ejercicio ejerce un efecto positivo sobre la función cognitiva global, aunque se necesitan más estudios (Vanderbeken 2017). Por lo tanto, hay cierta justificación de que las intervenciones de entrenamiento con ejercicios podrían beneficiar la cognición en los pacientes con accidente cerebrovascular.

Se conoce que el entrenamiento con ejercicios físicos es beneficioso para los pacientes con varias afecciones que son afecciones concomitantes o factores de riesgo de accidente cerebrovascular. La evidencia de revisiones sistemáticas muestra que las intervenciones con ejercicio pueden reducir la presión arterial (Cornelissen 2013; Smart 2019); mejorar los factores de riesgo vascular en la obesidad (Shaw 2006) y la diabetes de tipo II (Thomas 2006); mejorar la mortalidad cardiovascular (Anderson 2016); y mejorar los síntomas depresivos independientemente del estado de salud (Gordon 2018). Por lo tanto, el entrenamiento cardiorrespiratorio y de resistencia posterior al accidente cerebrovascular podría reducir la morbilidad y la mortalidad mediante la prevención secundaria del accidente cerebrovascular y de las enfermedades concomitantes

En resumen, el entrenamiento con ejercicios físicos no proporciona solo un mecanismo para aumentar el estado físico, sino que tiene mecanismos múltiples de acción y un espectro de efectos beneficiosos verosímiles que son relevantes para muchos pacientes con accidente cerebrovascular. Sin embargo, además de los beneficios, también puede haber riesgos asociados con el entrenamiento físico, como lesiones de los tejidos blandos inducidas por el entrenamiento, alteración del tono muscular, caídas y eventos vasculares.

Por qué es importante realizar esta revisión

El entrenamiento con ejercicios físicos para los supervivientes de un accidente cerebrovascular se ha investigado poco en tres áreas clave.

  • El rango de efectos beneficiosos posibles no se ha explorado por completo. Una asociación de pacientes, cuidadores y médicos (Pollock 2012) ha definido las diez prioridades de investigación más importantes para «la vida después del accidente cerebrovascular». Las mismas incluyen, en orden de prioridad, la necesidad de identificar intervenciones para 1) la cognición, 2) la superación de las consecuencias a largo plazo, 3) la afasia, 4) la función del brazo, 5) la visión, 6) la fatiga, 7) el equilibrio, la marcha y la movilidad, 8) el habla, 9) la confianza, y 10) las intervenciones de ejercicio para la función, la calidad de vida y la prevención secundaria. Las intervenciones de ejercicio pueden tener un papel beneficioso en al menos cuatro de estos dominios (1, 4, 7 y 10; Saunders 2014a).

  • En segundo lugar, aunque hay evidencia suficiente disponible para implementar el entrenamiento con ejercicios para el accidente cerebrovascular, aún debe definirse la prescripción óptima de ejercicios (Mead 2011).

  • El entrenamiento físico tiene un beneficio plausible para la prevención de los accidentes cerebrovasculares secundarios, pero todavía hay una falta de evidencia directa sobre los accidentes cerebrovasculares secundarios y el riesgo cardiovascular.

Ha habido un interés sostenido en las intervenciones para el estado físico para el accidente cerebrovascular observado en los estudios incluidos en las actualizaciones anteriores de esta revisión: Saunders 2004a (12 estudios), Saunders 2009 (24 estudios), Brazzelli 2011b (32 estudios), Saunders 2013b (45 estudios), and Saunders 2016 (58 estudios). Si se considera el grado de conocimiento incompleto, el nivel alto de interés y la relevancia clínica de esta revisión para mejorar la atención de los pacientes, se cree que es fundamental mantener actualizada la versión anterior de esta revisión.

Objetivos

disponible en

Los objetivos primarios de esta revisión actualizada fueron determinar si el entrenamiento con ejercicios físicos después de un accidente cerebrovascular reduce la muerte, la muerte o la dependencia y la discapacidad.

Los objetivos secundarios fueron determinar los efectos del entrenamiento sobre los eventos adversos, los factores de riesgo, el estado físico, la movilidad, la funcionalidad física, el estado de salud y la calidad de vida, el estado de ánimo y la función cognitiva.

Métodos

disponible en

Criterios de inclusión de estudios para esta revisión

Tipos de estudios

Todos los estudios descritos como ensayos controlados aleatorizados (ECA) con cegamiento simple o abiertos, que examinaron los efectos del entrenamiento cardiorrespiratorio, de resistencia o mixto mediante cualquiera de las siguientes seis comparaciones:

  • entrenamiento cardiorrespiratorio versus control: (1) al final de la intervención, (2) al final del seguimiento;

  • entrenamiento de resistencia versus control: (3) al final de la intervención, (4) al final del seguimiento;

  • entrenamiento mixto (entrenamiento cardiorrespiratorio más de resistencia) versus control: 5) al final de la intervención, 6) al final del seguimiento.

En esta revisión, «al final de la intervención» se refiere al momento en que termina un programa de entrenamiento; «al final del seguimiento» se refiere a cualquier momento que se produzca después de la finalización de la intervención. Las medidas al final del seguimiento permiten examinar si los efectos del entrenamiento (de haber alguno) se mantienen una vez completado el entrenamiento. En los estudios con fases de seguimiento múltiples se analizaron los datos del período de seguimiento más largo.

Se incluyeron los estudios en los cuales los controles estuvieron expuestos a actividad física que ocurría durante la atención habitual o a ningún entrenamiento después de la atención habitual. «Ningún entrenamiento» incluyó ninguna intervención o una intervención sin ejercicios (por ejemplo, tareas cognitivas o entrenamiento simulado). Por lo tanto, se consideraron apropiadas para inclusión las comparaciones siguientes en las que la «atención habitual» se refiere a la atención hospitalaria u otra rehabilitación estándar proporcionada a todos los pacientes con accidente cerebrovascular administrada como una parte normal de la atención del accidente cerebrovascular en la región en la que se realizaron los ensayos:

  • entrenamiento más atención habitual versus atención habitual (durante la atención habitual);

  • entrenamiento versus ningún entrenamiento (después de la atención habitual).

Se incluyeron los informes completos de los estudios publicados y no publicados. Los estudios comunicados únicamente a través de las actas de conferencias o mediante resúmenes solo proporcionan datos limitados y no permiten una evaluación completa de la calidad del estudio. Por lo tanto, no se excluyó ningún estudio que fuera potencialmente pertinente, pero se los mantuvo como «en espera de clasificación» a la espera de más información o de una publicación completa. No se excluyeron estudios sobre la base del tamaño de la muestra. Se incluyeron los estudios publicados en idiomas diferentes del inglés solo cuando se pudo coordinar la traducción. Cuando los investigadores publicaron varios informes basados en los datos de una única población de estudio, se seleccionó el informe más reciente o más completo para la extracción de los datos y los otros informes se enumeraron como publicaciones adicionales.

Tipos de participantes

Supervivientes adultos de accidentes cerebrovasculares que fueron considerados aptos para el entrenamiento con ejercicio físico por parte de los autores de los estudios; se utilizó la definición de accidente cerebrovascular de los autores del estudio. Los participantes se consideraron elegibles independientemente del tiempo desde la ocurrencia del accidente cerebrovascular.

Tipos de intervenciones

Se incluyeron las siguientes intervenciones.

Intervenciones con entrenamiento cardiorrespiratorio

El objetivo de este tipo de entrenamiento es mejorar el componente cardiorrespiratorio del estado físico. Se realiza habitualmente durante períodos prolongados en aparatos o ergómetros (p.ej., cinta rodante, bicicleta, remo), o con otras modalidades de actividad como caminar o subir escaleras.

Intervenciones de entrenamiento de resistencia

Este tipo de entrenamiento se realiza principalmente para mejorar la fuerza muscular y la resistencia muscular o la potencia muscular, o ambas. Habitualmente se realiza mediante contracciones repetidas del músculo con la oposición del peso corporal, aparatos elásticos, masas, pesos libres o pesos de máquinas especializadas, o aparatos isocinéticos.

Intervenciones de entrenamiento mixto

Son intervenciones de entrenamiento que comprenden diferentes componentes de actividades, algunas con el objeto de mejorar el estado cardiorrespiratorio y otras para mejorar la fuerza, la potencia o la resistencia muscular, por ejemplo, un programa de entrenamiento que comprende ciclismo y entrenamiento con peso.

Solo se incluyeron los estudios dirigidos al entrenamiento de los supervivientes de un accidente cerebrovascular. «Entrenamiento» se definió como un aumento sistemático y progresivo de la intensidad o la resistencia, la frecuencia o la duración, o ambas, de la actividad física en el transcurso de un programa de ejercicios. Se buscaron las medidas de la adherencia al entrenamiento ya que pueden modificar la dosis de entrenamiento recibida por los participantes del estudio. Para los objetivos de esta revisión el cumplimiento incluyó: 1) asistencia a las sesiones de entrenamiento, y (2) cumplimiento de las instrucciones de ejercicios durante las sesiones de entrenamiento.

Se excluyeron los estudios que se centraron en diferentes tipos de técnicas estándar de rehabilitación pero que no incluyeron un componente de entrenamiento con ejercicios físicos. También se excluyeron los ensayos que combinaron el entrenamiento con ejercicios con tecnologías asistidas, como aparatos de entrenamiento para la marcha robotizados y asistidos de forma electromecánica durante el entrenamiento locomotor corporal apoyado con peso, así como los estudios que investigaron enfoques de realidad virtual.

Se excluyeron los estudios que compararon el entrenamiento de la parte superior e inferior del cuerpo cuando no se consideró un grupo de control adicional sin ejercicios.

Si alguna de las descripciones de los regímenes de entrenamiento estaba poco clara, entonces se estableció contacto con los autores a fin de solicitarles información adicional.

Intervenciones de control

Las intervenciones de control incluyeron: 1) atención habitual; 2) ninguna intervención o control en lista de espera; o 3) control de atención, intervención simulada o intervención complementaria. Los tipos de comparación son los siguientes:

  • Intervenciones de entrenamiento con ejercicios físicos versus ninguna intervención o control en lista de espera

  • Intervenciones de entrenamiento con ejercicios físicos versus control de atención, intervención simulada o intervención complementaria

  • Intervenciones de entrenamiento con ejercicios físicos más atención habitual versus ninguna intervención o control en lista de espera más atención habitual

  • Intervenciones de entrenamiento con ejercicios físicos más atención habitual versus control de atención, intervención simulada o intervención complementaria más atención habitual

Tipos de medida de resultado

Se previó que los estudios existentes en la literatura utilizarían diferentes medidas para evaluar los resultados pertinentes a esta revisión; en particular, utilizarían una variedad de escalas de calificación. Por lo tanto, para cada resultado de interés se intentó enumerar las medidas o herramientas más frecuentes y relevantes. Solo se incluyeron las escalas de calificación que se habían descrito en revistas revisadas por pares.

Resultados primarios

  • Muerte: número de muertes por todas las causas

  • Muerte o dependencia: resultado compuesto donde la dependencia se clasifica como una puntuación del Barthel Index menor que 20 o una puntuación en la Rankin Scale modificada de 3; 4 ó 5 (Lindley 1994).

  • Discapacidad: evaluada mediante escalas funcionales como la Functional Independence Measure (Hamilton 1994); el Barthel Index (Collin 1988); el Rivermead Mobility Index (Collen 1991); la Nottingham Extended Activities of Daily Living Scale (Wade 1992); el Lawton Index of Activities of Daily Living (Lawton 1969); y la Stroke Impact Scale (Duncan 1999).

En la clasificación International Classification of Functional Disability and Handicap (ICF), el término «discapacidad» es un término general para las deficiencias y limitaciones de la actividad (OMS 2001). En esta revisión, el resultado primario «discapacidad» se refiere a «índices globales de limitación de la actividad». Las medidas de resultado secundarias de la movilidad y la funcionalidad física se refieren a «limitaciones específicas de la actividad».

Resultados secundarios

  • Efectos adversos: eventos recurrentes no mortales cardiovasculares o cerebrovasculares, tono muscular alterado, lesión inducida por el entrenamiento, incidencia de caídas, incidencia de fracturas

  • Factores de riesgo vascular: presión arterial sistólica y diastólica en reposo; frecuencia cardíaca en reposo; colesterol total; tolerancia a la glucosa; índice de masa corporal (IMC)

  • Estado físico: captación máxima de oxígeno (VO2); fuerza muscular y potencia muscular

  • Movilidad: velocidad de la marcha (velocidad máxima o preferida); capacidad de marcha (por ejemplo, Six‐Minute Walk Test [6‐MWT]); Functional Ambulation Categories

  • Funcionalidad física: equilibrio; subir escaleras; levantar peso; prueba Timed Up and Go

  • Estado de salud y calidad de vida: cualquier escala relevante como el Short Form 36 Health Survey Questionnaire (Ware 1992),y el Nottingham Health Profile (Hunt 1980)

  • Estado de ánimo: cualquier escala relevante como la Hospital Anxiety and Depression Scale (HADS; Zigmond 1983); el Beck Depression Index (Beck 1961)

  • Función cognitiva: cualquier subescala de resultados de discapacidad o estado de salud que se relacione con la función cognitiva, o cualquier instrumento de cognición específico, por ejemplo, la Repeatable Battery for the Assessment of Neuropsychological Status (Randolph 1998); la Montreal Cognitive Assessment (MOCA; Nasreddine 2005).

Métodos de búsqueda para la identificación de los estudios

See the methods for the Cochrane Stroke Specialised Register. We searched for relevant studies in all languages and arranged translation of relevant papers where necessary.

Búsquedas electrónicas

The search strategies used for this review have been significantly revised and updated to account for newly identified relevant terms and to improve sensitivity and specificity. All discontinued versions of search strategies used are still available in the previous version of this review (Saunders 2016).

We searched the Cochrane Stroke Specialised Register and the following electronic databases.

  • Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 1; Appendix 1) in the Cochrane Library;

  • MEDLINE Ovid (from 1946 to July 2018; Appendix 2);

  • Embase Ovid (from 1974 to July 2018; Appendix 3);

  • CINAHL EBSCO (Cumulative Index to Nursing and Allied Health Literature; from 1937 to July 2018; Appendix 4);

  • SPORTDiscus EBSCO (from 1949 to July 2018; Appendix 5);

  • PsycINFO Ovid (from 1806 to July 2018; Appendix 6);

  • Conference Proceedings Citation Index‐ Science (Web of Science; from 1990 to July 2018; Appendix 7);

  • PEDro (Physiotherapy Evidence database (www.pedro.fhs.usyd.edu.au/index.html) July 2018; Appendix 8).

The search strategy includes Cochrane Highly Sensitive Search Strategies for identification of RCTs, as described in the Cochrane Handbook for Systematic Reviews of Interventions (Lefebvre 2011), and Cochrane Stroke's search strategies for the identification of 'stroke' studies in respective databases and other resources. These are supplemented with strategies to identify exercise interventions. We have added PsycINFO to the search resources in this update in recognition of the increasing interest in cognition outcomes.

In order to identify other published, unpublished, and ongoing studies we searched for ongoing studies using the following registries.

Búsqueda de otros recursos

We searched for theses in the following (using the search terms in Appendix 9):

We searched grey literature using:

  • Google Scholar

We checked the bibliographies of included studies and performed forward citation tracking of all included studies (and other relevant studies) using Google Scholar (scholar.google.co.uk/) for further references to relevant studies.

We contacted researchers in the field to obtain additional information on relevant studies and contacted original authors for clarification and further data if study reports were unclear.

Obtención y análisis de los datos

Selección de los estudios

Two review authors (DS or MS or SH or DC or SK or LJ or HJ) independently screened titles and abstracts of the unique references obtained as a result of our searching activities. We excluded studies that two review authors classified as 'exclude'; we retained all other studies for full‐text screening.

We retrieved the full‐text articles for the remaining references and two review authors (DS or MS or SH or DC or SK or LJ or HJ) independently screened the full‐text articles to identify studies for inclusion, and identify and record reasons for exclusion of the ineligible studies. We resolved any disagreements through discussion or, if required, we consulted a third review author (GM or MB). We collated multiple reports of the same study so that each study, not each reference, was the unit of interest in this review.

We used the Covidence tool to carry out the selection process and to record this in sufficient detail to complete a PRISMA flow chart (Moher 2009; Figure 1), and the 'Characteristics of excluded studies' table.

We included studies irrespective of publication status providing available reports had sufficient detail to apply eligibility criteria and perform quality assessment.

We retained potentially relevant studies with insufficient information to either include or exclude in the 'Characteristics of studies awaiting classification' table.

Extracción y manejo de los datos

One review author (DS or MS or SH or DC or SK or LJ or HJ) extracted data from each included study and entered the outcome data directly into Review Manager 5 (Review Manager 2014). A second review author (DS or MS or SH or DC or SK or LJ or HJ) then cross‐checked all entered data. We contacted study authors to obtain any missing data if required.

The domains for data extraction for each study included but were not limited to:

  • publication details: authors, year of publication, publication status (published, unpublished, or ongoing), citation of other relevant studies;

  • details of study conduct: study design, method of recruitment, inclusion and exclusion criteria, number of participants enrolled, number of participants excluded, number of participants assessed, losses to follow‐up, geographical location of the study, setting in which the study was conducted (e.g. hospital, community);

  • characteristics of participants: total number, age, gender, stage of care, severity of stroke, time since stroke onset, co‐morbidity, walking ability;

  • details of intervention: total number of intervention groups, type of training (i.e. cardiorespiratory, resistance, or mixed), training mode (e.g. treadmill walking, weight training), dose (i.e. intensity, frequency of delivery), timing (i.e. during or after usual care), length of training (i.e. duration and programme length), adherence to intervention (i.e. attendance, compliance);

  • details of outcome measures: choice of outcomes (i.e. death, dependence, disability, physical fitness measures, gait assessment, physical function measures, health status and quality of life, mood, adverse events, risk factors), outcome data, reported outcomes, missing outcomes.

We classified all outcome data as being from time points at either the end of intervention or the end of follow‐up, which we defined as any period of time after the training intervention was completed. We resolved any disagreement by consensus or arbitration.

Evaluación del riesgo de sesgo de los estudios incluidos

Two review authors (DS, MS, SH and either LJ, SH, MK, HJ) independently assessed each study using Cochrane's tool for assessing risk of bias (Higgins 2017). We resolved any disagreements by discussion or by involving another review author (GM or MB). We assessed the risk of bias for each of the standard domains in the Cochrane 'Risk of bias' tool with the following exceptions and amendments.

Blinding of participants (performance bias and detection bias)

Participant blinding is often impossible to achieve in behavioural interventions. However, we considered studies to be at low risk of bias if the study authors described some attempt to disguise the true purpose of the comparisons being made (e.g. describing a study as a comparison of two different interventions or some kind of 'sham' intervention). We considered studies to be at high risk of bias if there was an imbalanced exposure such as would occur with no control intervention or a waiting‐list control.

Incomplete outcome data (attrition bias)

We assessed this domain twice, once at the end of intervention and once at the end of follow‐up. We considered studies to be at high risk of bias where we judged imbalanced losses to have occurred coupled with a per‐protocol analysis. If overall participant attrition was 20% or greater of those randomised, we considered a study at high risk of bias (Schulz 2002), irrespective of distribution of losses, reasons given or analytical approach (e.g. imputations, intention‐to‐treat).

Other bias

We considered 'Risk of bias' items relevant to cluster‐RCTs in this domain.

Imbalanced exposures

We included this additional 'Risk of bias' item because an imbalanced exposure could exaggerate benefits (or harms) in a way where it is impossible to separate the effects of the intervention content from the effects of attention. Therefore, strictly speaking, this is a confounding effect rather than a bias effect, but it is appropriate to record it and analyse it in the same way as other bias items. We considered studies to be at low risk of bias if a 'dose' of exposure or attention was provided in the control group that matched that in the intervention groups (e.g. attention control or sham intervention). We considered studies to be at high risk of bias if the control group received no control intervention including being allocated to a waiting‐list control.

In all categories when there was insufficient information to assign either a 'low risk' or 'high risk' of bias, we contacted the study authors and asked them for clarification. Where we could not obtain missing supplementary information, we recorded an 'unclear' risk of bias. We recorded 'high', 'low' or 'unclear' risk of bias along with a descriptive justification for our judgment in the 'Risk of bias' tables. We presented the data in 'Risk of bias' summary graphs.

Medidas del efecto del tratamiento

Dichotomous data

For dichotomous outcome data we calculated odds ratios (OR) and 95% confidence intervals (CIs).

Continuous data

Where possible, we presented the effects of interventions on all continuous outcome data as a mean difference (MD) and 95% CIs. In instances where studies used different scales to measure the same clinical outcome, we presented the data as standardised mean difference (SMD) and 95% CIs.

Cuestiones relativas a la unidad de análisis

Cluster‐RCTs: if clustering as a unit of allocation was not controlled by the study authors, we implemented this, where appropriate, during meta‐analysis using the methods described in the Cochrane Handbook for Systematic Reviews of Interventions (Deeks 2017).

Cross‐over studies: the data can be truncated after the first iteration of a cross‐over study and treated as an RCT. We ignored subsequent iterations because of the risk of carry‐over effects.

Lag‐control or waiting‐list studies: we dealt with these in the same way as cross‐over studies. We ignored the delayed or waiting‐list iteration of the study because of the risk of carry‐over effects.

In studies with more than one relevant control group, we used only one control group within a meta‐analysis. We performed sensitivity analysis to examine the relative influence of selecting each group on meta‐analysis results. Where data from multiple control groups were similar we considered combining the control group data using the methods described in section 16.5.4 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011).

In studies with more than one relevant intervention group, we included all intervention groups as separate comparisons within a meta‐analysis, with the control group data replicated across all comparisons, but with the control group sample size divided evenly across among the comparisons to prevent inflation of overall sample size.

The principal time points for outcome measurement were: 1) at the end of intervention, and 2) at the end of follow‐up.

Manejo de los datos faltantes

Missing participants: we account for the nature and extent of missing participant data (e.g. losses to follow‐up) and how the study authors dealt with this (e.g. intention‐to‐treat analysis) via one of the 'Risk of bias' assessments (Assessment of risk of bias in included studies; incomplete outcome data).

Incomplete reporting: if RCTs had missing information we contacted the study authors to request this. Where there was insufficient information to include or exclude a potentially relevant study and this could not be retrieved we retained the study in the 'Characteristics of studies awaiting classification' section in case the information emerges at a later date.

Evaluación de la heterogeneidad

We assessed heterogeneity using the I2 statistic (Higgins 2003), presented as part of the forest plots in Review Manager 2014. We interpreted values of I2 statistic exceeding 50% as indicating substantial heterogeneity. In these cases we investigated potential causes of variation by inspecting study effects and by using subgroup and sensitivity analysis if appropriate.

Evaluación de los sesgos de notificación

The comprehensive search strategy helped ameliorate reporting biases.

When meta‐analyses included a minimum of 10 studies, we used a funnel plot (treatment effect versus study size).

Síntesis de los datos

Where we considered studies to be sufficiently similar, we conducted a meta‐analysis by pooling the appropriate data using Review Manager 2014.

We used random‐effects meta‐analysis models to calculate measures of effect and 95% CIs at the end of intervention and the end of follow‐up for each outcome measure with sufficient suitable data to pool.

Summary of findings and assessment of the certainty of the evidence

We used GRADE to assess the evidence for the primary outcomes death, death or dependence, and disability, plus the secondary outcomes relating to physical fitness (cardiorespiratory fitness, muscle strength), mobility (preferred walking speed, gait endurance), and physical function (Berg balance scores, three‐metre Timed Up and Go). We performed these analyses and presented the results in a 'Summary of findings' table generated using GRADEpro GDT software.

Análisis de subgrupos e investigación de la heterogeneidad

When sufficient data were available, we planned to investigate heterogeneity between included studies (both clinical and statistical) by means of subgroup analyses. We attempted to compare effect estimates for all outcomes in the following main subgroups:

  • type of training (cardiorespiratory versus resistance training versus mixed training);

  • time of training (during usual care versus after usual care).

The complexity of exercise interventions and low numbers of studies in the meta‐analyses meant that subgroup analyses were difficult to perform and difficult to interpret.

Análisis de sensibilidad

We planned to explore for all outcomes the influence of studies that were confounded by increased training time.

Results

Description of studies

Results of the search

The previous version of this review included 58 studies, involving 2797 participants (Saunders 2016). In this updated version we used the updated electronic searches and other relevant searches in July 2018. We screened a total of 16,704 citations; this includes duplicates.

We identified 29 new systematic reviews of exercise interventions and screened these for relevant studies (Abbasian 2018; Ammann 2014; Austin 2014; Baldwin 2016; Bonini‐Rocha 2018; Boyne 2017; Chen 2016; Crozier 2018; D'Isabella 2017; Dorsch 2018; English 2017; Hasan 2016; Iatridou 2018; Ilunga Tshiswaka 2018; Jeon 2015; Kendall 2016; Mehrholz 2017; Oberlin 2017; Plummer 2018; Salter 2016; Saltychev 2016; Tally 2017; Van Criekinge 2019; Van Duijnhoven 2016; Vanderbeken 2017; Vloothuis 2016; Wang 2018; Wist 2016; Zheng 2016).

The results of our searching activities are summarised in Figure 1. We applied the eligibility criteria, with the following results.

  • We excluded 86 studies that did not meet the eligibility criteria (see Characteristics of excluded studies table).

  • We identified 56 new ongoing studies (see Characteristics of ongoing studies table).

  • We identified 35 studies for which we require more information to establish eligibility, including those for which only the abstract is currently available (see Characteristics of studies awaiting classification table).

  • We identified one study that was a secondary analysis of two studies already included in the previous update. These two previously included studies, authored by Aidar in 2012 and in 2014, have since been recognised as the being same trial and are now conflated along with their more recent publication to be collectively referred to as Aidar 2016.

  • We identified one study that was a secondary analysis of a study included in the previous update (Aidar 2018).

  • We identified 17 new studies that met the eligibility criteria.

With regard to ongoing studies and those awaiting classification in the previous version of this review:

  • of the 13 ongoing studies, four have been completed and met the eligibility criteria and we have added them to the included studies (Dean 2018; Ivey 2017; Sandberg 2016; Vanroy 2017). The remainder either completed but we excluded them as irrelevant, were terminated, or the data were never published or made available;

  • of the nine abstract‐only studies awaiting classification, one is now included (Buyukvural 2015). The remainder have been excluded or have no full‐text paper published or made available;

  • of the three full publication studies awaiting classification that need further information to include or exclude, only one author team responded and we were able to exclude the data.

Included studies

We included 17 new studies in this update (Arabzadeh 2018; Buyukvural 2015; Coroian 2018; Dean 2018; Fernandez‐Gonzalo 2016; Furnari 2014; Ivey 2017; Kim 2016a; Kim 2017a; Knox 2018; Mao 2015; Moore 2015; Sandberg 2016; Taylor‐Pilliae 2014; Topcuoglu 2015; Vanroy 2017; Zou 2015).

Two separate studies in the previous update (Saunders 2016), have emerged as being the same study. These have now been conflated with a further recent publication and together these now form Aidar 2016.

One of the 17 included studies (Knox 2018), includes a strength training intervention group and a mixed training intervention group, both of which we included and analysed as two separate studies each sharing the same control group (effectively giving 18 new studies). For clarity, we counted the control group (n = 48) once to calculate the total number of unique participants in the review (n = 3617). We split the control participants across the resistance training (n = 24) and mixed training (n = 24) groups where we were comparing them in a meta‐analysis. In other meta‐analyses, we used all 48 control participants; we ensured that there was no double counting at any point.

In summary, when these adjustments are reconciled, this update includes a total of 75 studies comprising 3617 participants (see Characteristics of included studies table).

Participants
Characteristics

A total of 3617 stroke survivors (sample range 13 to 250 individuals) were randomised to physical fitness training or control interventions in the 75 included clinical studies. The mean age of the participants was approximately 62 years. The mean time since onset of symptoms ranged from 8.8 days in studies assessing participants before discharge from hospital (Richards 1993), to 7.7 years in studies assessing participants after hospital discharge (Teixeira 1999).

Two studies recruited non‐ambulatory stroke survivors (Richards 1993; Wang 2014), three studies recruited both ambulatory and non‐ambulatory participants (Bateman 2001; Cooke 2010; Lennon 2008), six studies did not report this information (Donaldson 2009; Lee 2013a; Verheyden 2009; Winstein 2004; Topcuoglu 2015; Zou 2015), and all the remaining studies recruited ambulatory stroke survivors.

Sample size

Of the 75 included studies:

Interventions
Cardiorespiratory training

Thirty‐two studies with a total of 1631 randomised participants (range 15 to 128 individuals) examined cardiorespiratory training (Ada 2013; Aidar 2018; Bateman 2001; Cuviello‐Palmer 1988; da Cunha 2002; Eich 2004; Glasser 1986; Globas 2012; Gordon 2013; Ivey 2010; Ivey 2011; Jin 2013; Kang 2012; Katz‐Leurer 2003; Kim 2014; Kuys 2011; Lennon 2008; MacKay‐Lyons 2013; Mao 2015; Moore 2010; Mudge 2009; Park 2011; Pohl 2002; Potempa 1995; Salbach 2004; Sandberg 2016; Smith 2008; Takami 2010; Topcuoglu 2015; Vanroy 2017; Wang 2014; Yang 2014). Details of the nature and dose of the cardiorespiratory interventions are summarised in Table 1.

Open in table viewer
Table 1. Outline of the studies that focused on cardiorespiratory training interventions

Study ID

Mode of training

During or after usual care

Upper or lower body

Specific training

Intensity

Duration
(minutes)

Frequency
(days)

Programme length (weeks)

Ada 2013

Treadmill + overground walking

After

Lower body

Yes

Unknown

30 min

3

Group 1 = 16

Group 2 = 8

Aidar 2018

Water training

After

Both

Yes

Unknown

45‐60

2

12

Bateman 2001

Cycle ergometer

During

Lower body

No

60%‐80% age‐related heart rate maximum

≤ 30

3

12

Cuviello‐Palmer 1988

Kinetron

During

Lower body

No

Heart rate < resting + 20 beats/min

7‐17

5

3

da Cunha 2002

Treadmill gait training with body weight support

During

Lower body

Yes

Unknown

20

5

2‐3

Eich 2004

Treadmill gait training

During

Lower body

Yes

60% heart rate reserve

30

5

6

Glasser 1986

Kinetron

During

Lower body

No

Unknown

20‐60

5

3

Globas 2012

Treadmill

After

Lower body

Yes

40%‐50% progressing to 60%‐80% heart rate reserve

10‐20 min increasing to 30‐50 min

3

12

Gordon 2013

Overground community‐based walking

After

Lower body

Yes

Target heart rate was 60%‐85% of age‐predicted maximum heart rate (220‐age).

15min progressing by +5 min per week

3

12

Ivey 2010

Treadmill

After

Lower body

Yes

40%‐50% progressing to 60%‐70% heart rate reserve

10‐20 min increasing to 40 min

3

24

(6 months)

Ivey 2011

Treadmill

After

Lower body

Yes

40%‐50% progressing to 60%‐70% heart rate reserve

10‐20 min increasing to 40 min

3

24

(6 months)

Jin 2013

Cycle ergometry

During

Lower

No

Commencing at 40%‐50% heart rate reserve progressing 5% heart rate reserve every 2 weeks up to 70% heart rate reserve

40

5

12

Kang 2012

Treadmill

After

Lower body

Yes

Unknown

30

3

4

Katz‐Leurer 2003

Cycle ergometer

After

Lower body

No

≤ 60% heart rate reserve

20 then 30

5 then 3

2 then 6
(total 8)

Kim 2014

Community walking programme

During

Lower

Yes

Unclear

The walking environment was made more challenging with increased exposure to uneven ground, gradients and stairs

60

5

4

Kuys 2011

Treadmill

After

Lower body

Yes

40% progressing to 60% heart rate reserve

30

3

6

Lennon 2008

Cycle ergometer (cardiac rehabilitation programme)

After

Both

No

50%‐60% maximum heart rate

30

2

10

MacKay‐Lyons 2013

Body weight supported treadmill training

During

Both

Yes

Target heart rates corresponding to 60%‐75% of baseline VO2peak

Initially treadmill speed 80%‐90% of self‐paced overground speed with 20%‐30% body weight supported for ambulatory independent participants and 70%‐80% of overground speed with 40% body weight supported for ambulatory dependent participants

60

5/week for 6 weeks then 3/week for 6 weeks

12

Mao 2015

Body weight supported treadmill training

During

Lower

Yes

Treadmill walking with 30%‐40% body weight support. Body support was decreased and treadmill speed increased. No further detail for percentage assisted body support was provided. Speed initially 0.5 miles/h (0.8 km/h) for 20 min progressing to 2.5 miles/h (4.0 km/h) for 40 min

20 up to 40

5

3

Moore 2010

Treadmill gait training with overhead harness

After

Lower body

Yes

80%‐85% age‐predicted maximum heart rate

Unknown

2‐5

4

Mudge 2009

Circuit training

After

Lower body

Yes

Unknown

30

3

4

Park 2011

Overground community‐based walking

During

Lower

Yes

Unknown

60

3

4

Pohl 2002

Treadmill gait training

Group 1: structured speed‐dependent treadmill training

Group 2: limited progressive treadmill training

During

Lower body

Yes

Unknown

30

3

4

Potempa 1995

Cycle ergometer

After

Lower body

No

30%‐50% maximum effort

30

3

10

Salbach 2004

Circuit training

After

Lower body

Yes

Unknown

55

3

6

Sandberg 2016

Cycling (main exercise element)

After

Lower

No

Class included 2 x 8‐min periods of high‐intensity exercise (14‐15 RPE; 75% maximum oxygen consumption; 80% maximum heart rate)

60

2

12

Smith 2008

Treadmill gait training

After

Lower body

Yes

RPE ≤ 13

20

3

4

Takami 2010

Treadmill gait training with body weight support

Group 1: backward walking group

Group 2: forward walking group

During

Lower body

Yes

Unknown

10

6

3

Topcuoglu 2015

Arm‐cranking ergometer

During

Upper

No

Intensity 10 watts/minute

30

5

4

Vanroy 2017

MOTOmed seated cycling ergometer

Commenced during (some discharged home)

Lower

No

Intensity progressed from 60%‐75% heart rate reserve

30

(Total session 51 min reducing to 40 min)

3

12 (3 months)

Wang 2014

Wheelchair‐seated pedaling ergometry

During

Lower

Yes

Cycling training consisted of 30‐min sessions including: 5‐min warm‐up; 30‐min active pedaling at an intensity based on an incremental graded exercise test (2.5 W ramp every 3 min maintaining 50 rpm until exhaustion); followed by 5‐min cool down. Target heart rate was calculated as ((peak heart rate in graded exercise test – resting heart rate) x 50%‐70%) + resting heart rate

30

3

6

Yang 2014

Cycle ergometer

During

Lower

Yes

Cycling training consisted of 15‐min sessions each of forward and backward cycling including: 150‐s passive warm‐up; 10‐min active pedaling at 50‐70 rpm at an intensity of stage 13 of the Borg scale; 150 s of passive cool‐down

30

5

4

mph: miles per hour; RPE: rate of perceived exertion;RPM: revolutions per minute

Two of these studies assessed circuit training (Mudge 2009; Salbach 2004).

One study assessed aquatic training (Aidar 2018).

Twelve studies used some form of ergometry: seven assessed cycle ergometry (Bateman 2001; Jin 2013; Katz‐Leurer 2003; Lennon 2008; Potempa 1995; Sandberg 2016; Yang 2014), two assessed seated/recumbent cycle ergometry (Vanroy 2017; Wang 2014), two assessed a 'Kinetron' ergometer (Cuviello‐Palmer 1988; Glasser 1986), and one assessed arm cranking ergometer (Topcuoglu 2015).

Seventeen studies focused on walking using treadmills (da Cunha 2002; Eich 2004; Globas 2012; Ivey 2010; Ivey 2011; Kang 2012; Kuys 2011; MacKay‐Lyons 2013; Mao 2015; Moore 2010; Pohl 2002; Smith 2008; Takami 2010), overground walking (Gordon 2013; Kim 2014; Park 2011), or a combination of treadmill and overground walking (Ada 2013).

The training programmes comprised regular weekly sessions of sufficient duration (usually longer than 20 minutes), the exercise intensity was clearly described in 20 of the 32 included studies. In 16 studies the cardiorespiratory training started after usual care, while in 16 studies it started during usual care. In five of these studies participants were recruited in the acute phase of stroke, less than one month post‐stroke (Cuviello‐Palmer 1988; da Cunha 2002; MacKay‐Lyons 2013; Sandberg 2016; Takami 2010).

Three of the included cardiorespiratory training studies had more than one intervention group that met the eligibility criteria; these compare two different durations, intensities, and modes of training. Each of these studies therefore has two entries when included in any meta‐analyses, each sharing 50% of the number of participants in the single control group from each study.

  • Ada 2013: Group 1 ‐ duration four months' training; Group 2 ‐ duration two months' training

  • Pohl 2002: Group 1 ‐ intensity high due to rapid progression; Group 2 ‐ intensity lower due to limited progression

  • Takami 2010: Group 1 ‐ mode: backward walking on treadmill; Group 2 ‐ mode: forward walking on treadmill

Resistance training

Twenty studies with a total of 779 randomised participants (range 18 to 93 individuals) assessed the effects of resistance training (Aidar 2016; Arabzadeh 2018; Bale 2008; Buyukvural 2015; Coroian 2018; Fernandez‐Gonzalo 2016; Flansbjer 2008; Inaba 1973; Ivey 2017; Kim 2001; Knox 2018; Lee 2013a; Lee 2013b; Ouellette 2004; Sims 2009; Son 2014; Taylor‐Pilliae 2014; Verheyden 2009; Winstein 2004; Zou 2015). Details of the nature and dose of the resistance training intervention studies are summarised in Table 2.

Open in table viewer
Table 2. Outline of the studies that focused on resistance training interventions

Study ID

Mode of training

During/after usual care

Upper or lower body

Specific training

Intensity

Duration (minutes)

Frequency (days)

Programme length
(weeks)

Aidar 2016

Resistance training; machine weights

After

Both

No

OMNI Resistance Exercise Scale

45‐60

3

12

Arabzadeh 2018

Task‐oriented circuit with added weights and some balance activities

During

Lower

Yes

Unknown; tailored to individual capacity

50

3

4

Bale 2008

Resistance training; weights

During

Lower body

No

10‐15 repetitions to achieve moderate fatigue

50

3

4

Buyukvural 2015

Isokinetic dynamometer training

During

Lower

No

Unclear

Unclear

5

3

Coroian 2018

Isokinetic dynamometer training

During

Upper

No

6 sets of 8 repetitions increasing from 40%‐70% of maximal baseline torque

45

3

5

Fernandez‐Gonzalo 2016

Unilateral explosive resistance training of the more affected leg

After

Lower

No

Maximal effort

Unclear

2

12

Flansbjer 2008

Dynamic and isokinetic resistance training (leg extension/curl rehab exercise machine)

After

Lower body

Yes

6‐10 repetitions equivalent to 80% of maximum load

90

Unknown

10

Inaba 1973

Resistance training

During

Lower body

No

50% and 100%
maximum weight

Unknown

'Daily'

4‐8

Ivey 2017

Pneumatic resistance machines

After

Lower

No

10‐15, decreasing to 20 repetition maximum across sets

Unclear

3

12

Kim 2001

Resistance training; isokinetic dynamometer

After

Lower body

No

Maximal effort
3 x 10 repetitions

30

3

6

Knox 2018

Gravity, free weights, elastic bands and balls

After

Lower

No

3 set of 10 repetitions; progressed individually

60

6 sessions

(average 0.5 per week)

12

Lee 2013a

Closed chain and open chain progressive resistance training

After

Lower

No

3 sets of 8‐10 repetitions

70% of 1 repetition maximum

Unclear (duration based on repetitions)

5

6

Lee 2013b

Closed‐chain and open‐chain progressive resistance training

After

Lower

No

3 sets of 8‐10 repetitions

70% of 1 repetition maximum

Unclear (duration based on repetitions)

5

6

Ouellette 2004

Resistance training; weights and pneumatic resistance machines

After

Lower body

No

70% 1 repetition maximum:
3 x 8‐10 repetitions

Not applicable

3

12

Sims 2009

Resistance training; machine weights

After

Both

Yes

3 x 8/10 repetitions at 80% 1 repetition maximum

Unknown

2

10

Son 2014

Pneumatic leg press machine

Probably after

Lower

No

3 sets of 8‐10 repetitions

70% of 1 repetition maximum

30

5

6

Taylor‐Pilliae 2014

Silversneakers national programme (strength and range of movement)

After

Unclear

Unclear

Unclear

40

3

12

Verheyden 2009

Functional strength

During

Upper (trunk)

Yes

Functional trunk flexion and extension strength in supine and sitting. Exercises gradually introduced and number of repetitions determined by physiotherapists on a participant's performance basis. No further details reported

30

4

5

Winstein 2004

Resistance training; weights;
TheraBand and grip devices

During

Upper body

No

Unknown

60

3 high
2 slow

4‐6 (target of 20 sessions)

Zou 2015

Resistance training machines

After

Lower

No

3 sets of 15 repetitions; initial intensity causing failure 10‐12 repetitions, then reduce to allow completion of 15

40

3

8

All employed muscle contractions resisted by weights, exercise machines, or elastic devices. One study trained the upper limbs (Winstein 2004), one trained the trunk (Verheyden 2009), two studies trained both the upper and lower limbs (Aidar 2016; Sims 2009), one was unclear (Taylor‐Pilliae 2014), and the remaining studies involved the lower limbs only. Most programmes were short (less than 12 weeks) apart from Aidar 2016, Fernandez‐Gonzalo 2016, Ivey 2017, Knox 2018, Ouellette 2004, and Taylor‐Pilliae 2014 (12 weeks). Twelve studies started resistance training after usual care (Aidar 2016; Fernandez‐Gonzalo 2016; Flansbjer 2008; Ivey 2017; Kim 2001; Knox 2018; Lee 2013a; Lee 2013b; Ouellette 2004; Sims 2009; Son 2014; Taylor‐Pilliae 2014; Zou 2015), whilst eight studies started it during usual care (Arabzadeh 2018; Bale 2008; Buyukvural 2015; Coroian 2018; Inaba 1973; Verheyden 2009; Winstein 2004). Only Winstein 2004 recruited participants during the acute phase of stroke (less than one month post‐onset).

Three of the studies appear similar in terms of participants and interventions and have a shared authorship (Lee 2013a; Lee 2013b; Son 2014). Although the sample sizes are different there is a possibility that these three publications share some of the same participants. We have not had a response to queries to establish this.

Mixed training

Twenty‐three studies with a total of 1207 randomised participants (range 13 to 250 individuals) assessed the effects of mixed training (Cooke 2010; Dean 2018; Donaldson 2009; Duncan 1998; Duncan 2003; Furnari 2014; Galvin 2011; James 2002; Kim 2016a; Kim 2017a; Knox 2018; Langhammer 2007; Letombe 2010; Mead 2007; Moore 2015; Richards 1993; Richards 2004; Shin 2011; Teixeira 1999; Toledano‐Zarhi 2011; Van de Port 2012; Yang 2006; Zedlitz 2012). Details of the nature and dose of the mixed training interventions are summarised in Table 3.

Open in table viewer
Table 3. Outline of the studies that focused on mixed training interventions

Study ID

Mode of training

During or after usual care

Upper or lower body

Specific training

Intensity

Duration (minutes)

Frequency
(days)

Programme length
(weeks)

Cooke 2010

Resistance training + treadmill training

During

Lower body

Yes

Unknown

60

4

6

Dean 2018

Group circuit training (0‐3 months) + home training (0‐6 months)

After

Both

Yes

Unclear

Unclear

2 classes (+ home exercise

6

(0‐3 months group exercise; 0‐6 months home exercise)

Donaldson 2009

Paretic upper limb exercises and hand grip activities

During

Upper body

Yes

Unknown

60

4

6

Duncan 1998

Walking or cycle ergometry; elastic‐resisted contractions

After

Both

Yes

Unknown

90

3

12

Duncan 2003

Circuit training

After

Lower body

Yes

50%‐60% heart rate reserve

90‐120

3

4

Furnari 2014

Aquatic exercise

During

Upper or lower body

Yes

Unclear; difficulty progressed weekly

60

3

8

Galvin 2011

Family‐mediated gait and strength training

During

Lower

Yes

Unknown

35

7

8

James 2002

Circuit training

After

Both

Yes

Unknown

90

3

12‐14 (total of 36 sessions)

Kim 2016a

Circuit training

During

Both

Yes

Treadmill speed/gradient
TheraBand repetitions/load

90

5

4

Kim 2017a

Handgrip resistance training + treadmill walking with some added load to unaffected leg

During

Both

Yes

Resistance increase

Treadmill speed increase

30

3

6

Knox 2018

Task‐oriented circuit training (+ home‐based walking)

After

Lower (+upper?)

Yes (walking)

Reduced support and increased complexity and more demanding home‐based walking

60

6 sessions

(average 0.5 per week)

12

Langhammer 2007

Walking, stationary bicycling, stair walking, treadmill, and resistance training

After

Both

Yes

70%‐80% maximum pulse (cardiorespiratory component); 50%‐60% one repetition maximum (strength component)

45

2/3

Unclear. Minimum 20 hours every third month in the first year after stroke

Letombe 2010

Cycle ergometry, treadmill walking, and isokinetic resistance training

During

Both including trunk

Yes (walking)

Cardiorespiratory training: 70%‐80% maximal cycling power

Strength training; 6 x 10 repetitions at 50%‐60% maximum

40‐60

4

4

Mead 2007

Circuit including walking, stepping, cycle ergometry; resistance training body mass, weights, and elastic

After

Both

Yes

Rating of perceived exertion: 13‐16

40‐75

3

12‐14 (total of 36 sessions)

Moore 2015

Community‐based group classes including warm‐up, stretching, functional strengthening, balance, agility and cardiorespiratory training

After

Both

Yes

Increasing load and repetitions

40%‐50% maximum heart rate increasing to 70%‐80%

40‐60

3

19

Richards 1993

Treadmill + Kinetron + tilt table

During

Lower body

Yes

Unknown

104

5

5

Richards 2004

Treadmill + Kinetron + limb load monitor

During

Lower body

Yes

Unknown

60

5

8

Shin 2011

Functional strength training (bridging and stepping) + treadmill and cycle ergometry

During

Lower

Yes (walking and stepping)

Cardiorespiratory progressive but < 40% heart rate reserve

Strength training described only as 'medium intensity' of 5‐15 repetitions

60

5

4

Teixeira 1999

Walking and stepping or cycle ergometry;
resistance training body mass, weights and elastic

After

Lower body

Yes

50%‐70% maximum work rate (cardiorespiratory component) 50%‐80% 1 repetition maximum, 3 x 10 repetitions (strength component)

60‐90

3

10

Toledano‐Zarhi 2011

Treadmill, hand bike, cycle ergometer + group exercise for strength, balance and co‐ordination exercise

During

Both

Yes (treadmill)

Cardiorespiratory 50%‐70% of maximal heart rate

Cardiorespiratory 90 min

Group 45‐55 min

Cardiorespiratory 2/week

Group 1/week

6

Van de Port 2012

Task‐orientated circuit training. 8 workstations targeting balance, stair walking, turning, transfers and speed walking

After

Lower

Yes (task‐orientated)

Unknown

90

2

12

Yang 2006

Functional stepping and chair rising

After

Lower body

Yes

Unknown

30

3

4

Zedlitz 2012

Treadmill walking, strength training, and home exercise assignments

After

Both

Yes (walking)

Cardiorespiratory and strength progressed from 40%‐70%

120

2

12

The modes of exercise are quite diverse since these comprise circuit training or various combinations of walking, treadmill training, and resistance training. All interventions contained one or more functionally relevant activity (such as walking). Most programmes were short, with six studies meeting or exceeding 12 weeks (Duncan 1998; Knox 2018; Mead 2007; Moore 2015; Van de Port 2012; Zedlitz 2012). Nine studies occurred during usual care; five of these recruited participants in the acute phase of stroke, less than one month post‐onset (Galvin 2011; Kim 2016a; Letombe 2010; Richards 1993; Toledano‐Zarhi 2011), and four at a later stage of care (Furnari 2014; Kim 2017a; Richards 2004; Shin 2011).

Adherence to the intervention

We defined adherence to the interventions in terms of: 1) attendance at the planned training sessions, and 2) compliance with the planned content of the training sessions.

Attendance

Rate of attendance (%) could be clearly determined in 33 of the 75 included studies (Ada 2013; Aidar 2016; Bateman 2001; Duncan 1998; Duncan 2003; Eich 2004; Fernandez‐Gonzalo 2016; Flansbjer 2008; Globas 2012; Ivey 2017; Kim 2016a; Kuys 2011; Langhammer 2007; MacKay‐Lyons 2013; Mead 2007; Moore 2015; Mudge 2009; Park 2011; Ouellette 2004; Pohl 2002; Richards 1993; Richards 2004; Salbach 2004; Sandberg 2016; Sims 2009; Taylor‐Pilliae 2014; Toledano‐Zarhi 2011; Van de Port 2012; Wang 2014; Winstein 2004; Yang 2006; Zedlitz 2012; Zou 2015). The proportion of attended training sessions ranged from 65% up to 100%. Seven studies measured attendance for the training and the control groups separately and showed similar rates between groups (Bateman 2001; Langhammer 2007; MacKay‐Lyons 2013; Mead 2007; Ouellette 2004; Salbach 2004; Taylor‐Pilliae 2014). A few other studies described attempts to facilitate attendance and make up missed sessions, or reported that "attendance did not differ between intervention groups" but did not provide attendance rates (Bale 2008; Cooke 2010; Teixeira 1999). One study specifically excluded those participants who attended fewer than nine training sessions from the statistical analyses (da Cunha 2002); this prevents an intention‐to‐treat assessment of results.

Compliance

Compliance with the scheduled exercise programme during training sessions was described in only a few studies.

For cardiorespiratory training interventions, Langhammer 2007 stated that the compliance with the individualised training levels was 'high'; other studies reported that participants 'tolerated' training (Globas 2012; MacKay‐Lyons 2013; Pohl 2002; Kim 2016a), or showed no discomfort (Jin 2013). Salbach 2004 maintained that most of the participants completed nine out of 10 circuit training exercises. Mao 2015 recorded compliance data but this was not reported.

For mixed training, Duncan 1998 reported 'good compliance' with home‐based training, and Yang 2006 stated that mixed circuit training was "performed as planned". Mead 2007 reported 94% to 99% compliance with circuit training exercises 'tailored' to individual requirements. Dean 2018 reported that 70% of the participants received an "appropriate dose" of training. Information on compliance was not available for the remaining studies. Zedlitz 2012 described the compliance of participants with training as 'good'. Two studies reported good compliance of therapists in delivery of the content of the planned protocol (MacKay‐Lyons 2013; Zedlitz 2012).

Comparisons

The included studies compared training interventions with control interventions in different ways. We identified seven different types of comparison, which has implications for establishing the effects of fitness training.

Balanced comparisons

The nature of some of these comparisons allows intervention and control groups to be comparable in terms of exposure time (both groups are exposed to an intervention, the frequency and duration of which is similar between groups) and the 'attention' received by the therapists. Therefore, these comparisons allow one to separate the specific effects of fitness training from those of usual rehabilitation interventions.

  • Training plus a proportion of usual care versus usual care

  • Training plus usual care versus non‐exercise intervention plus usual care

  • Training versus non‐exercise intervention ‐ after usual care

  • Training versus usual outpatient care

Confounded comparisons

Other comparisons make it impossible to have a comparable intervention and control group exposure time (e.g. the 'training versus no intervention' comparison). We described these comparisons in the review as 'confounded by additional training time'. With regard to interventions involving physical exercise, a greater exposure to the intervention has a known effect on rehabilitation outcomes ('augmented therapy time'; Kwakkel 2004). Therefore, although these comparisons allow comment on the overall effect of training programmes, they make it difficult to attribute any benefits to the content of the exercise prescription itself.

  • Training plus usual care versus usual care

  • Training plus non‐exercise intervention versus non‐exercise intervention ‐ after usual care

  • Training versus no intervention ‐ after usual care

Outcome measures

The included studies recorded outcome measures at the end of the training period (end of intervention), or at any other defined point either within the study duration or after completion of the training programme, or both (scheduled end of follow‐up).

Some outcome measures involved continuous data (e.g. assessment scales) with skewed distributions. Due to time and resource constraints we did not attempt to transform these data. We therefore combined continuous skewed data and continuous normal‐distributed data.

Excluded studies

The most common reasons for exclusion were interventions that either did not meet the criteria for fitness training ('wrong intervention') or were confounded by other intervention components ('co‐intervention') along with inappropriate control groups, such as those with an active physical intervention ('wrong control'). These are documented in the Characteristics of excluded studies table.

Risk of bias in included studies

Details and justifications for 'Risk of bias' assessments in individual studies are shown in the Characteristics of included studies table. For Knox 2018, the risk of bias scores are included twice as there are two entirely separate classes of intervention in this study giving a total of 75 studies. As this is a complex review we decided to apply the 'Risk of bias' assessments to 'all outcomes' for simplicity apart from incomplete outcome data, for which we assessed bias at both the end of the intervention and the end of follow‐up. We present the summary results in Figure 2 and Figure 3.


'Risk of bias' summary: review authors' judgements about each 'Risk of bias' item for each included study. In studies with no follow‐up measurement we did not assess risk of bias for the item labelled 'Incomplete outcome data (attrition bias): end of follow‐up'; this results in some blank spaces

'Risk of bias' summary: review authors' judgements about each 'Risk of bias' item for each included study. In studies with no follow‐up measurement we did not assess risk of bias for the item labelled 'Incomplete outcome data (attrition bias): end of follow‐up'; this results in some blank spaces


'Risk of bias' graph: review authors' judgements about each 'Risk of bias' item presented as percentages across all included studies. In studies with no follow‐up measurement, we did not assess risk of bias for the item labelled 'Incomplete outcome data (attrition bias): end of follow‐up'; this results in some blank spaces

'Risk of bias' graph: review authors' judgements about each 'Risk of bias' item presented as percentages across all included studies. In studies with no follow‐up measurement, we did not assess risk of bias for the item labelled 'Incomplete outcome data (attrition bias): end of follow‐up'; this results in some blank spaces

Allocation

Randomisation

We assessed 35 out of 75 (47%) of the included studies as having a low risk of selection bias (Ada 2013; Bateman 2001; Cooke 2010; Coroian 2018; da Cunha 2002; Dean 2018; Donaldson 2009; Eich 2004; Fernandez‐Gonzalo 2016; Flansbjer 2008; Galvin 2011; Globas 2012; Ivey 2010; James 2002; Jin 2013; Kang 2012; Kim 2001; Knox 2018 (both comparisons); Kuys 2011; Langhammer 2007; Lennon 2008; MacKay‐Lyons 2013; Mead 2007; Moore 2010; Moore 2015; Mudge 2009; Salbach 2004; Sandberg 2016; Sims 2009; Son 2014; Topcuoglu 2015; Van de Port 2012; Vanroy 2017; Yang 2014. We assessed 2 out of 75 (3%) of studies as being at high risk of bias (Ivey 2011; Ivey 2017) and the remaining 39 out of 75 (52%) of studies were assessed as unclear risk of bias because there was not enough information to make a judgement. All studies identified that randomisation had occurred but many did not describe the actual mechanism of how they had achieved this. Therefore, uncertainties remain among a number of studies. Most studies of fitness training are small; therefore, the use of techniques to balance participant numbers (e.g. block randomisation) and participant characteristics (e.g. stratification or minimisation based on age, gender, or outcomes of interest recorded at baseline) is quite common.

Allocation concealment

We assessed 13 out of 75 (17%) of the included studies at low risk of bias (Ada 2013; Bateman 2001; Cooke 2010; Coroian 2018; Dean 2018; Donaldson 2009; Ivey 2017; MacKay‐Lyons 2013; Mead 2007; Moore 2015; Sims 2009; Van de Port 2012; Vanroy 2017). We assessed 2 out of 75 (3%) of studies being at high risk of bias (Flansbjer 2008; Kim 2014; Zou 2015) and the remaining 60 out of 75 studies (80%) of studies were assessed as unclear risk of bias because there was not enough information to make a judgement. Mechanisms of allocation concealment were poorly reported. There are instances when centralised assignment mechanisms are used where allocation concealment is automatic (e.g. Mead 2007), in which case we rated the risk of bias as low. Other studies, where allocation concealment mechanisms were needed, frequently used envelopes. Numbered, sealed, opaque envelopes (e.g. Cooke 2010; Donaldson 2009), are appropriate. Many studies reporting the use of 'sealed envelopes' did not specify whether they were sequentially numbered or opaque, therefore we were unable to exclude potential selection bias with certainty.

Taking these together, only 12 of 75 studies (16%) were at low risk of bias issues relating to allocation.

Blinding

Participant blinding

We assessed none of the 75 included studies as being at low risk of performance bias. We assessed 47 out of 75 (63%) as being at high risk of bias (Ada 2013; Aidar 2016; Aidar 2018; Buyukvural 2015; Cooke 2010; Cuviello‐Palmer 1988; Dean 2018; Duncan 2003; Eich 2004; Fernandez‐Gonzalo 2016; Flansbjer 2008; Galvin 2011; Glasser 1986; Globas 2012; Gordon 2013; Inaba 1973; Ivey 2010; Ivey 2011; James 2002; Kim 2014; Kim 2016a; Kim 2017a; Knox 2018 (both comparisons); Kuys 2011; Langhammer 2007; Lee 2013a; Lee 2013b; Lennon 2008; Letombe 2010; Moore 2010; Park 2011; Sandberg 2016; Sims 2009; Smith 2008; Taylor‐Pilliae 2014; Teixeira 1999; Toledano‐Zarhi 2011; Topcuoglu 2015; Vanroy 2017; Verheyden 2009; Wang 2014; Winstein 2004; Yang 2006; Yang 2014; Zedlitz 2012) and the remaining 28 out of 75 studies (37%) of studies were assessed as unclear risk of bias because there was not enough information to make a judgement.

Participants cannot be blinded to physical interventions such as fitness training; therefore, we judged no studies to be at low risk of bias. However, some studies utilised an attention control or other means to disguise the 'true nature' of the comparison.

Investigator blinding

We assessed the outcome assessment to be at low risk of detection bias in 38 out of 75 (50%) of the included studies (Ada 2013; Aidar 2016; Bale 2008; Bateman 2001; Cooke 2010; Coroian 2018; Dean 2018; Donaldson 2009; Duncan 2003; Furnari 2014; Gordon 2013; Kang 2012; Katz‐Leurer 2003; Kim 2001; Kim 2014; Kim 2016a; Knox 2018 (both comparisons); Kuys 2011; Langhammer 2007; MacKay‐Lyons 2013; Mao 2015; Mead 2007; Moore 2015; Ouellette 2004; Park 2011; Richards 1993; Richards 2004; Taylor‐Pilliae 2014; Topcuoglu 2015; Van de Port 2012; Vanroy 2017; Verheyden 2009; Wang 2014; Yang 2006; Yang 2014; Zedlitz 2012; Zou 2015). We assessed 11 out of 75 (15%) as being at high risk of detection bias because outcome assessment was not blinded (Arabzadeh 2018; Eich 2004; Flansbjer 2008; Galvin 2011; Globas 2012; Ivey 2010; Ivey 2017; Moore 2010; Salbach 2004; Smith 2008; Winstein 2004) and the remaining 26 out of 75 (35%) were assessed as unclear risk of bias because there was not enough information to make a judgement. Among studies that used blinded outcome assessment some instructed participants not to reveal group assignments (Bateman 2001; Duncan 2003; Flansbjer 2008; Mead 2007). However, some degree of unmasking can easily occur and was documented in some studies (e.g. Eich 2004; Mudge 2009; Salbach 2004).

Incomplete outcome data

We assessed risk of attrition bias at the end of intervention (75 studies) and at the end of follow‐up where data existed (33 studies only).

We assessed 55 out of 75 (73%) included studies as being at low risk of attrition bias at the end of intervention (Ada 2013; Bale 2008; Coroian 2018; Cuviello‐Palmer 1988; da Cunha 2002; Dean 2018; Donaldson 2009; Duncan 1998; Eich 2004; Fernandez‐Gonzalo 2016; Flansbjer 2008; Galvin 2011; Glasser 1986; Globas 2012; Gordon 2013; James 2002; Kang 2012; Katz‐Leurer 2003; Kim 2001; Kim 2016a; Kim 2017a; Knox 2018 (both comparisons); Kuys 2011; Langhammer 2007; Lee 2013a; Lee 2013b; Lennon 2008; Letombe 2010; MacKay‐Lyons 2013; Mead 2007; Moore 2010; Moore 2015; Mudge 2009; Ouellette 2004; Park 2011; Pohl 2002; Potempa 1995; Richards 2004; Salbach 2004; Shin 2011; Sims 2009; Smith 2008; Son 2014; Taylor‐Pilliae 2014; Teixeira 1999; Toledano‐Zarhi 2011; Topcuoglu 2015; Van de Port 2012; Vanroy 2017; Verheyden 2009; Winstein 2004; Yang 2006; Yang 2014; Zou 2015). We assessed 11 out of 75 (15%) studies as being at high risk of attrition bias at the end of intervention (Aidar 2016; Bateman 2001; Cooke 2010; Inaba 1973; Ivey 2010; Ivey 2011; Ivey 2017; Kim 2014; Mao 2015; Richards 1993; Wang 2014). The remaining 9 out of 75 studies (12%) were assessed as unclear risk of bias because there was not enough information to make a judgement based on the nature and extent of dropouts or on whether an intention‐to‐treat approach was used or not.

We assessed 18 out of 33 (55%) included studies as being at low risk of attrition bias at the end of follow‐up (Ada 2013; Arabzadeh 2018; Dean 2018; Fernandez‐Gonzalo 2016; Furnari 2014; Kim 2016a; Kim 2017a; Knox 2018 (both comparisons); Langhammer 2007; Mao 2015; Mead 2007; Mudge 2009; Sandberg 2016; Sims 2009; Smith 2008; Taylor‐Pilliae 2014; Van de Port 2012). We assessed 11 out of 33 (33%) as being at high risk of bias (Bateman 2001; Cooke 2010; Donaldson 2009; Duncan 2003; Flansbjer 2008; Inaba 1973; Kuys 2011; MacKay‐Lyons 2013; Richards 2004; Winstein 2004; Zedlitz 2012) and the remaining four out of 33 studies (12%) of studies were assessed as unclear risk of bias because there was not enough information to make a judgement based on the nature and extent of dropouts or on whether an intention‐to‐treat.

One of the included studies did not analyse data for the participants who dropped out but we were able to impute sometimes large numbers of missing values in individual participant data obtained from Bateman 2001. This did not influence any of the findings; therefore, we included only the imputed data in this review for simplicity.

The bias assessment could not be applied to the 42 out of 75 (56%) studies with no end of follow‐up measurement. Therefore, there are 42 blank spaces in Figure 2 since a 'Risk of bias' judgement was not possible.

Selective reporting

We assessed nine out of 75 (12%) studies as being at low risk of reporting bias (Ada 2013; Arabzadeh 2018; Cooke 2010; Fernandez‐Gonzalo 2016; Galvin 2011; Kuys 2011; Mead 2007; Sandberg 2016; Zedlitz 2012). We assessed three out of 75 (4%) of studies as being at high risk of reporting bias (Coroian 2018; Knox 2018 both comparisons). The remaining 63 out of 75 studies (84%) of studies were assessed as unclear risk of bias because there was not enough information to make a judgement. This is because the majority of studies did not have readily available protocols. In most cases, where these were available, there was no evidence of selective reporting of outcomes relevant to this review.

Other potential sources of bias

We assessed 63 out of 75 (84%) studies as being at low risk of other biases (Ada 2013; Aidar 2018; Arabzadeh 2018; Bale 2008; Bateman 2001; Cooke 2010; Cuviello‐Palmer 1988; da Cunha 2002; Donaldson 2009; Duncan 1998; Duncan 2003; Eich 2004; Fernandez‐Gonzalo 2016; Flansbjer 2008; Furnari 2014; Galvin 2011; Glasser 1986; Gordon 2013; Inaba 1973; Ivey 2010; Ivey 2011; Ivey 2017; James 2002; Jin 2013; Kang 2012; Katz‐Leurer 2003; Kim 2001; Kim 2014; Kim 2016a; Kim 2017a; Knox 2018 (both comparisons); Kuys 2011; Langhammer 2007; Lee 2013a; Lee 2013b; Lennon 2008; Letombe 2010; MacKay‐Lyons 2013; Mao 2015; Mead 2007; Moore 2010; Mudge 2009; Park 2011; Pohl 2002; Potempa 1995; Richards 1993; Richards 2004; Salbach 2004; Sandberg 2016; Shin 2011; Smith 2008; Son 2014; Takami 2010; Toledano‐Zarhi 2011; Topcuoglu 2015; Van de Port 2012; Vanroy 2017; Verheyden 2009; Wang 2014; Winstein 2004; Yang 2006; Yang 2014). We assessed 7 out of 75 (9%) of studies as being at high risk of other biases. These included those that recruited via media advertisements (Globas 2012; Ouellette 2004; Teixeira 1999; Zedlitz 2012), involved different travel demands between intervention and control exposures (Moore 2015), had baseline differences in outcomes of interest (Sims 2009), and reluctance to recruit some participants (Coroian 2018). The remaining 5 out of 75 studies (7%) of studies were assessed as unclear risk of bias because there was not enough information to make a judgement.

Confounded by additional training time (imbalanced exposure)

We judged studies in which the participants received an unequal amount of exposure to the intervention and comparison arms of the study to be at high risk of bias. Technically this could be described as a source of confounding rather than bias but it is appropriate to record it here

.We assessed 28 out of 75 studies (37%) as being at low risk of confounding as they had balanced exposures in control and intervention groups (Arabzadeh 2018; Bale 2008; Bateman 2001; Coroian 2018; Cuviello‐Palmer 1988; da Cunha 2002; Furnari 2014; Gordon 2013; Ivey 2010; Ivey 2011; Ivey 2017; Jin 2013; Kang 2012; Kim 2001; MacKay‐Lyons 2013; Mao 2015; Mead 2007; Moore 2015; Ouellette 2004; Potempa 1995; Richards 1993; Richards 2004; Salbach 2004; Shin 2011; Son 2014; Takami 2010; Vanroy 2017; Zou 2015). We assessed 41 out of 75 studies (55%) as being at high risk of confounding as they had imbalanced exposure across the control and intervention groups (Ada 2013; Aidar 2016; Aidar 2018; Buyukvural 2015; Cooke 2010; Dean 2018; Donaldson 2009; Duncan 1998; Duncan 2003; Eich 2004; Fernandez‐Gonzalo 2016; Flansbjer 2008; Galvin 2011; Inaba 1973; James 2002; Kim 2014; Kim 2016a; Kim 2017a; Knox 2018 (both comparisons); Kuys 2011; Lee 2013a; Lee 2013b; Lennon 2008; Letombe 2010; Moore 2010; Park 2011; Sandberg 2016; Sims 2009; Smith 2008; Taylor‐Pilliae 2014; Teixeira 1999; Toledano‐Zarhi 2011; Topcuoglu 2015; Van de Port 2012; Verheyden 2009; Wang 2014; Winstein 2004; Yang 2006; Yang 2014; Zedlitz 2012). The remaining six out of 75 (8%) were assessed as unclear risk of confounding because there was not enough information to make a judgement. In summary, the design of more than half of the studies in this review meant that in 41 out of 75 studies (55%) the effects of fitness training could be exaggerated because the training intervention groups received greater time of exposure irrespective of the content of the training programme.

Effects of interventions

See: Summary of findings for the main comparison Cardiorespiratory training compared to control for people with stroke: end of intervention; Summary of findings 2 Resistance training compared to control for people with stroke: end of intervention; Summary of findings 3 Mixed training compared to control for people with stroke: end of intervention

Effect of training on primary outcome measures

Death

Overall there were few deaths; there were 19 deaths in 3017 participants (0.53%) before end of intervention. At the end of follow‐up there were 19 deaths out of 1469 participants (1.29%), 10 of these 19 occurred between end of intervention and the end of follow‐up.

Cardiorespiratory training (comparisons 1 and 2)

End of intervention

Out of the 32 studies of cardiorespiratory training (1631 participants) only Gordon 2013 reported death (n = 2 in each study arm) as a reason for participant losses. There was no statistically significant overall effect (RD 0.00, 95% CI −0.01 to 0.01; I2 = 0%; Analysis 1.1). There is low certainty in this estimate due to indirectness, imbalanced exposure (13/32 studies), and the fact that 6/32 studies in this analysis did report dropouts but could either not contact participants (Kuys 2011: n = 1), or did not fully describe all reasons for dropouts (Aidar 2016; Bateman 2001; Ivey 2011; Jin 2013; Sandberg 2016).

End of follow‐up

One out of six studies (Katz‐Leurer 2003), reported that one participant died in the training group (1/46) compared with one participant in the control group (1/46) with no statistically significant effect (RD 0.00, 95% CI −0.03 to 0.03; I2 = 0%; 360 participants; Analysis 2.1).

Resistance training (comparisons 3 and 4)

End of intervention

One of the 20 studies (Knox 2018), reported two deaths in the intervention group (1/45) and the control group (1/48). Overall, there is no statistically significant effect (RD 0.00, 95% CI −0.02 to 0.02; I2 = 0%; 803 participants; Analysis 3.1); however, there is low certainty in this estimate due to indirectness, imbalanced exposures in 12 out of 20 studies, and because four studies had undocumented attrition (Aidar 2016; Arabzadeh 2018; Buyukvural 2015; Inaba 1973), including one with a large number of undocumented dropouts (Inaba 1973).

End of follow‐up

One out of five studies (Knox 2018), reported four deaths in the intervention group (2/45) and the control group (2/48) with no statistically significant effect (RD 0.00, 95% CI −0.04 to 0.04; I2 = 0%; 251 participants; Analysis 4.1). One study had a large number of undocumented dropouts (Inaba 1973).

Mixed training (comparisons 5 and 6)

End of intervention

Three of the 23 studies (1231 participants) reported 13 deaths between the baseline and the end of intervention assessments: Knox 2018 (3/51 training, 1/48 control); Langhammer 2007 (1/32 training, 6/35 control); and Van de Port 2012 (0/126 training, 2/124 control). Overall, there was no statistically significant effect (RD −0.00, 95% CI −0.02 to 0.01; I2 = 0%; Analysis 5.1). There is low certainty in this estimate due to indirectness and imbalanced exposures affecting 16 out of 23 studies. Also, in Langhammer 2007, three of the six deaths in the control group and the one death in the training group occurred before discharge and before the intervention began; after excluding these data, the effect of training was still not statistically significant. The other 20 studies reported no deaths; however, two described undocumented losses: Richards 1993 (2 control); and Richards 2004 (5 training, 7 control) mentioning only that some participants were not available.

End of follow‐up

Five of the 13 studies reported a total of 14 deaths (Cooke 2010; Duncan 2003; Galvin 2011; Knox 2018; Van de Port 2012), with no statistically significant effect (RD −0.01, 95% CI −0.03 to 0.01; I2 = 0%; 906 participants; Analysis 6.1). The other eight mixed training studies reported that no losses to follow‐up were attributable to death apart from Richards 1993 (2 control), Richards 2004 (5 training, 7 control), and Zedlitz 2012 (4 control), which describe only that some participants were lost or not available for follow‐up.

Death or dependence

None of the studies reported the composite outcome of death or dependence.

Disability
Cardiorespiratory training (comparisons 1 and 2)

End of intervention

Three studies assessed Functional Independence Measure (FIM) score, one during usual care (Bateman 2001), and two after usual care (Cuviello‐Palmer 1988; Katz‐Leurer 2003). Overall, there was no statistically significant effect of training (SMD 0.21, 95% CI −0.10 to 0.52; P = 0.18; Analysis 1.2). However, the Bateman 2001 data were problematic because the procedures for obtaining FIM data at the end of intervention were not uniform and there was a high proportion of missing FIM data at the end of intervention (38%); exclusion of this study does not change the result (SMD 0.17, 95% CI −0.29 to 0.63; P = 0.46).

Three studies assessed Barthel Index scores, two during usual care (Bateman 2001; Wang 2014), and one after usual care (Gordon 2013), and there was no overall effect with (MD 6.65, 95% CI −0.67 to 13.98; Analysis 1.3) or without the problematic data from Bateman 2001. The high heterogeneity within this analysis could stem from the data from Wang 2014 whose participants were non‐ambulatory.

Two studies assessed Rivermead Mobility Index (RMI) scores during usual care (Bateman 2001; Takami 2010), and one study after usual care (Globas 2012). There was a small overall improvement in scores (MD 1.56, 95% CI 0.20 to 2.92; P = 0.02; Analysis 1.4). When we excluded the data from Bateman 2001 (risk of bias) the effect was strengthened (MD 2.18, 95% CI 0.99 to 3.37; P = 0.0003).

  • One study reported Physical Activity and Disability Scale scores (Mudge 2009).

  • One study reported Older Americans Resources and Services Questionnaire (Gordon 2013).

  • One study reported that FIM scores were better than the control but no data were reported (Topcuoglu 2015).

We combined all the available disability scale data from these individual outcomes (using FIM data from Bateman 2001), and can be moderately certain of an overall effect in favour of cardiorespiratory training (SMD 0.52, 95% CI 0.19 to 0.84; P = 0.002; 462 participants; moderate‐certainty evidence; Analysis 1.5). Exclusion of the Bateman 2001 data made a trivial difference. One of the included studies was confounded for exposure time and had multiple bias concerns (Wang 2014); if excluded, the heterogeneity disappeared and the overall beneficial effect remained (SMD 0.35 0.15 to 0.55; P = 0.0007). This study, of non‐ambulatory stroke survivors, had the largest individual effect size.

End of follow‐up

Studies reported a range of different global scales at follow‐up including RMI scores (Bateman 2001), Nottingham Extended ADL (Bateman 2001), Physical Activity and Disability Scale scores (Mudge 2009), and the Frenchay Activities Index (FAI; Katz‐Leurer 2003). When we combined all the disability scale data from these individual outcomes (Nottingham Extended ADL data from Bateman 2001), there was no statistically significant effect of cardiorespiratory training at the end of follow‐up (SMD 0.20, 95% CI −0.07 to 0.46; P = 0.14; Analysis 2.2). When the analysis was repeated using RMI data from Bateman 2001 instead of Nottingham Extended ADL data there was still no statistically significant effect. There was a considerable proportion of interpolated missing data (21%) and therefore the data from Bateman 2001 should be treated with caution; their exclusion does not change the findings.

Resistance training (comparisons 3 and 4)

End of intervention

There were no resistance training data suitable for pooling.

  • One study reported the various subscales Late Life Function and Disability Instrument (Ouellette 2004). Those who received resistance training felt less self‐perceived limitation; however, there was no detectable effect on overall disability or function components of this tool.

  • One study reported an effect favouring improved Rivermead Mobility Index score (Buyukvural 2015).

  • Three studies reported subscales or specific dimensions of existing functional scales and were not considered (Inaba 1973; Winstein 2004; Buyukvural 2015).

End of follow‐up

There were no resistance training data suitable for pooling.

Mixed training (comparisons 5 and 6)

End of intervention

Nine studies assessed the effects of mixed training at the end of the treatment phase or at follow‐up using a variety of scales that measured disability outcomes: Lawton Instrumental Activities of Daily Living (IADL) scores reported by Duncan 1998 and Duncan 2003 at the end of intervention showed no statistically significant effect (MD 0.83, 95% CI −0.51 to 2.17; P = 0.22; Analysis 5.3).

Six studies assessed the Barthel Index during usual care (Galvin 2011; Kim 2016a; Letombe 2010), and after usual care (Duncan 1998; Duncan 2003; Langhammer 2007), at the end of intervention and showed no statistically significant effect (MD 2.84, 95% CI −0.48 to 6.17; P = 0.09; Analysis 5.2). Barthel Index scores reached ceiling level in five out of 20 participants at baseline and 10 out of 20 participants at end of intervention (Duncan 1998); excluding this study reduces heterogeneity (I2 statistic from 21% to 10%) and gives a statistically significant beneficial effect (MD 4.02, 95% CI 0.16 to 7.88; P = 0.04).

RMI was assessed by three studies after usual care (Dean 2018; Mead 2007; Van de Port 2012). The direction of benefit favoured training but the effect was not significant (MD 0.41, 95% CI −0.02, 0.84; Analysis 5.4).

  • One study reported Nottingham Extended Activities of Daily Living (EADL; Mead 2007). In addition, Van de Port 2012 separately reported four subscales of the Nottingham EADL scale; only one was significantly affected in favour of the usual care rather than mixed training; all other subscales showed no statistically significant effect.

  • One study reported FIM data (Mead 2007), and showed no statistically significant effect at the end of intervention.

  • One study reported the Stroke Impact Scale (Duncan 2003), showing a marginal benefit. In addition, Van de Port 2012 separately reported 11 subscales of the Stroke Impact Scale. One subscale was significantly affected in favour of the usual care rather than mixed training; all other subscales were unaffected.

  • One study reported the Katz ADL scale (Letombe 2010), and showed no statistically significant effect at the end of intervention.

  • One study reported the Modified Patient‐Specific Functional Scale (Dean 2018), with no statistically significant effect shown at end of intervention.

We combined all available studies with disability scale data (nine studies, 604 participants) from the end of intervention, including the Barthel Index (Duncan 1998; Duncan 2003; Galvin 2011; Kim 2016a; Langhammer 2007; Letombe 2010), FIM (Mead 2007), and RMI (Dean 2018; Van de Port 2012). There was very low certainty in the small significant effect of mixed training at the end of the intervention (SMD 0.23, 95% CI 0.03 to 0.42; P = 0.02; Analysis 5.5). There were several potential combinations of data that could be included in this analysis as individual studies reported more than one disability scale; we presented Barthel Index, FIM and RMI data. We observed moderate inconsistency among studies' heterogeneity: (I² = 21%), and this may relate to the different specific domains each tool addresses. Seven of the nine studies included in these analyses were confounded by increased training time whereby the amount of contact with therapists in the experimental groups was greater than in the control groups (Dean 2018; Duncan 1998; Duncan 2003; Galvin 2011; Kim 2016a; Letombe 2010; Van de Port 2012). The remaining two studies without this source of confounding were among the smallest individual effects (Langhammer 2007; Mead 2007).

End of follow‐up

Two studies reported the Barthel Index (Galvin 2011; Langhammer 2007); there was no statistically significant effect at the end of follow‐up (MD 1.82, 95% CI −13.69 to 17.33; P = 0.82; Analysis 6.2).

Two studies reported Nottingham EADL (Galvin 2011; Mead 2007); there was no statistically significant effect at the end of follow‐up (MD 3.10, 95% CI −5.20 to 11.40; P = 0.46; Analysis 6.3).

Three studies reported RMI (Dean 2018; Mead 2007; Van de Port 2012); there was a statistically significant benefit at the end of three to four months of follow‐up (MD 0.35, 95% CI 0.02 to 0.69; P = 0.04; Analysis 6.4). However, two of the three studies were confounded for increased training time (Dean 2018; Van de Port 2012).

When we combined all studies with disability scale data from the end of follow‐up, including Barthel Index (Galvin 2011; Langhammer 2007), Modified Patient‐Specific Functional Scale (Dean 2018), FIM (Mead 2007), and RMI (Van de Port 2012), there was no statistically significant effect (SMD 0.10, 95% CI −0.17 to 0.37; P = 0.45; Analysis 6.5). It is worth noting that three studies included in these analyses were confounded by increased training time (Dean 2018; Galvin 2011; Van de Port 2012). There were several potential combinations of data that could be included in this analysis as individual studies reported more than one disability scale; we presented Barthel Index, FIM and RMI data

Comparison of cardiorespiratory training, resistance training, and mixed training (comparison 7)

We performed a subgroup analysis to directly compare the effects of the different types of training (cardiorespiratory training versus resistance training versus mixed training) on pooled disability outcomes at the end of the intervention (Analysis 7.1). There was only one includable study for resistance training (Ouellette 2004), but there were enough data to compare cardiorespiratory training and mixed training. Both of these show beneficial effects although there is some overall heterogeneity (I2 = 22%). In summary, cardiorespiratory training, with or without resistance training included, improves scores of global disability.

Effect of training on secondary outcomes

Adverse events

Adverse events were not typically sought (a priori) as an outcome measure but were instead reported in a more ad hoc fashion. However, a number of studies specifically reported no serious adverse events (Coroian 2018; Ivey 2017; Kim 2016a; Kim 2017a; Moore 2015; Sandberg 2016). One study reported serious adverse events (n = 6) that were mostly considered unconnected to the intervention (Dean 2018). One study reported excessive fatigue among participants after strength training (Coroian 2018).

The following studies reported falls.

  • Mead 2007 reported 11 falls in eight of the 32 participants allocated to mixed training and five falls in four of the 34 participants in the control group (P = 0.21, non‐significant). None of these falls occurred within training sessions.

  • Van de Port 2012 reported 29 falls in participants allocated to mixed training and 26 falls in those allocated to usual care (P = 0.93, non‐significant); one fall occurred during exercise training.

  • Dean 2018 reported 10 falls during the intervention; one fall occurred at the training venue.

  • Taylor‐Pilliae 2014 reported 29 falls; 14 in the intervention group and 15 in the control group.

  • Vanroy 2017 reported one fall in the intervention and one in the control group.

With regard to secondary cerebrovascular events; 11 participants (seven participants receiving the training intervention and four control participants) were reported to have had a cerebrovascular event between baseline and the end of the training intervention. In the studies that included a follow‐up assessment, 11 participants (five participants receiving the training intervention and six control participants) were reported to have had a cerebrovascular event between the end of intervention and the end of follow‐up.

With regard to cerebrovascular events, three participants (one participant receiving the training intervention and two control participants) were reported to have suffered a cardiovascular event between baseline and the end of the training intervention.

Cardiometabolic risk factors

Few studies within each type of training reported cardiometabolic risk factor data so meta‐analysis was limited. Cardiorespiratory fitness, discussed in the next section, is also a risk factor predictive of stroke.

Cardiorespiratory training (comparisons 1 and 2)

Five studies of cardiorespiratory training, with a total of 318 participants, showed no statistically significant training effects on systolic (MD −0.20, 95% CI −6.00 to 5.60; P = 0.95; Analysis 1.6), or diastolic blood pressure (MD −0.15, 95% CI −2.28 to 1.98; P = 0.89; Analysis 1.7) at the end of intervention (da Cunha 2002; Jin 2013; Katz‐Leurer 2003; Lennon 2008; Potempa 1995). One study (da Cunha 2002), had an unusually high systolic blood pressure in the intervention group; this introduced heterogeneity but had little effect on the pooled effect size. One study stated that there was an effect of cardiorespiratory training on blood pressure but did not provide data (Ivey 2011).

Two studies (174 participants) reported body mass index (BMI) data at the end of cardiorespiratory training interventions with no evidence of effect (MD 1.19, 95% CI −0.38 to 2.76; Analysis 1.8).

One study (Lennon 2008) reported waist girth measures but these were not affected by cardiorespiratory training.

One study of cardiorespiratory fitness training reported that glucose control (two‐hour glucose), fasting insulin, insulin sensitivity (HOMA: Homeostatic Model Assessment), and total triglycerides improved after training (Wang 2014). There was no statistically significant effect on cholesterol levels (high‐density lipoprotein (HDL), low‐density lipoprotein (LDL)) or fasting glucose levels.

Resistance training (comparisons 3 and 4)

One study of resistance training (Zou 2015), reported post‐training improvements in glucose control (two‐hour glucose), fasting insulin, insulin sensitivity (HOMA), and in cholesterol levels (total, HDL, LDL). There was no statistically significant effect on fasting glucose or total triglycerides.

One resistance training study measured BMI; there was no statistically significant effect (Zou 2015).

No resistance training studies reported blood pressure outcomes.

Mixed training (comparisons 5 and 6)

Two studies of mixed training examined blood pressure (Moore 2015; Toledano‐Zarhi 2011), and meta‐analysis showed no effects on systolic (Analysis 5.6), or diastolic blood pressure (Analysis 5.7).

One study reported no effect of mixed training on body composition outcomes (body mass index and fat mass) (Moore 2015).

One study of mixed training reported post‐training improvements in HDL cholesterol (representing a risk reduction) (Moore 2015). There was no statistically significant effect on glucose control (two‐hour glucose), insulin sensitivity (HOMA), and total and LDL cholesterol levels.

Physical fitness
Cardiorespiratory training (comparisons 1 and 2)

Cardiorespiratory fitness

Nine studies (317 participants) assessed cardiorespiratory fitness using directly measured peak VO2 (mL/kg/minute) at the end of the intervention. Most of the studies took place after usual care and there was a consistent pattern of improvement in peak VO2 measures. We can be moderately certain that cardiorespiratory fitness increased significantly in the training groups (MD 3.40 mL/kg/minute, 95% CI 2.98 to 3.83; I2 = 0%; P = 0.00001; Analysis 1.9). Doses of training varied between four weeks and six months among the studies. All studies demonstrated the same beneficial direction of effect; the effect was similar for interventions delivered during or after usual care. One study had unusually small values reported for the standard deviation (Jin 2013), and this study dominates the weighting (86%). If excluded, a slightly smaller effect occurs (MD 2.80 mL/kg/minute, 95% CI 1.66 to 3.95; I2 = 0%; P = 0.00001). If we assumed that the reported values were standard error values incorrectly reported and we then converted them to SD, the effect was again similar (MD 2.86 mL/kg/minute, 95% CI 1.77 to 3.96; I2 = 0%; P = 0.00001) and the weighting becomes comparable to the other studies (8.8%).

  • One study estimated peak VO2 indirectly from workload and showed a beneficial effect of training at the end of intervention (Lennon 2008).

  • One study assessed peak VO2 after a 12‐month follow‐up and suggests a training‐induced benefit still remained (MacKay‐Lyons 2013). This study is small (n = 50) but at low risk of bias.

  • One study assessed VO2 cost during the 12‐MWT and did not show any significant training effect at the end of intervention (Moore 2010).

  • One study planned oxygen uptake measures but did not report them (Kuys 2011).

Six studies (336 participants) assessed maximum cycling work rate at the end of intervention. This indicated that cardiorespiratory fitness improved significantly in participants who received the training intervention (MD 10.60 watts, 95% CI 1.88 to 19.33; I2 = 85%; P = 0.02; Analysis 1.10). The large number of dropouts in Bateman 2001 means these data are at risk of bias; if excluded, the overall effect was strengthened and all the heterogeneity disappeared (MD 12.90 watts, 95% CI 8.39 to 17.42; I2 = 0%). Data from Bateman 2001 suggested that the improvement measured by maximal cycling work rate was not maintained at follow‐up.

Musculoskeletal fitness

No studies reported indices of musculoskeletal fitness.

Resistance training (comparisons 3 and 4)

Cardiorespiratory fitness

One study showed a small increase in cardiorespiratory fitness (VO2 peak: 6%) after strength training (Ivey 2017).

Musculoskeletal fitness

Musculoskeletal fitness data, including muscle strength data, were awkward to synthesise because data can be collected from different muscle groups, using different equipment, different muscle contraction types (e.g. isometric, concentric), and reported as different data dimensions (e.g. force, torque, power). A total of 11 studies examined the effects of resistance training on indices relating to muscle strength.

Two studies with a total of 60 participants assessed the effects of resistance training on a composite measure of muscle strength at the end of intervention, during and after usual care (Kim 2001; Winstein 2004). Kim 2001 used a composite measure (i.e. the sum of the percentage change in six muscle groups) to assess the strength of the lower limbs, while Winstein 2004 used a composite measure (i.e. the sum of the torque of the extensors and flexors of the wrist, elbow, and shoulder) to assess the strength of the upper limbs. We have low certainty in the pooled estimate of effect in favour of the resistance training group (SMD 0.58, 95% CI 0.06 to 1.10; P = 0.03; Analysis 3.2). However, Winstein 2004 was biased by lack of blinding and the use of a dynamometer that was hand‐held by the investigator, and confounded by increased training time in the intervention group.

Three studies with a total of 93 participants showed that training could increase knee flexion strength in the affected leg; we have moderate certainty in this effect (SMD 0.72, 95% CI 0.10 to 1.34; P = 0.02; Analysis 3.3). The same studies showed no increase in knee extension strength of the affected leg; we have low certainty in this effect (SMD 1.09, 95% CI −0.23 to 2.41; I2 = 87%; Analysis 3.4). Only one of these studies (Flansbjer 2008), included any follow‐up data.

  • One study examined strength bilaterally in the lower limb extensors and unilaterally in the knee extensors and the ankle flexors (plantar and dorsi; Ouellette 2004). They reported that all strength measures improved significantly after resistance training compared with the control group except for ankle dorsiflexion on the unaffected side. They presented the data as graphs and we could not extract them satisfactorily for further analyses.

  • One study reported that participants allocated to resistance training of the lower limbs achieved significantly greater gains in the 10‐repetition maximum exercise compared with controls (12.18 versus 8.58 kg, P < 0.02) after one month of intervention (Inaba 1973). No statistically significant differences were observed between groups after two months of training. Inaba 1973 did not report any measures of variance and therefore we were not able to include these data in our analyses.

  • One study reported significant gains in maximal strength (bilateral one‐repetition maximum (1‐RM)) in a range of upper and lower body muscle groups after resistance training compared with the control group (Aidar 2016).

  • One study reported no statistically significant gains in elbow and wrist strength (3‐RM; peak torque of flexors and extensors) at either the end of intervention (six weeks) or the end of follow‐up (six months; Coroian 2018).

  • One study reported increases in static and dynamic strength (1‐RM, Newtons) of the extensors of the whole lower limb (hip and knee) in the trained (more affected) leg (Fernandez‐Gonzalo 2016). This was accompanied by muscle hypertrophy (+9.4%). In addition, there were strength gains in the less affected (untrained) leg.

  • One study showed that maximum strength (1‐RM, pounds) of extensors of the whole lower limb (hip and knee) improved in the paretic leg (143%) and non‐paretic leg (121%) plus there was a small increase in cardiorespiratory fitness (VO2 peak; 6%; Ivey 2017).

One study showed that submaximal muscular endurance (number of repetitions) of extensors of the whole lower limb (hip and knee) increased after strength training with an increase in total number of repetitions in the paretic leg (178%) and non‐paretic leg (161%; Ivey 2017).

Two studies reported peak explosive power output measures. Fernandez‐Gonzalo 2016 reported increases in power output (watts) of the extensors of the whole lower limb (hip and knee) in the trained (more affected) leg. This was accompanied by muscle hypertrophy (+9.4%). In addition there were power gains in the less affected (untrained) leg. Ouellette 2004 suggested that peak power was improved during unilateral knee extensions but not during bilateral extension of the whole lower limb; they presented the data as graphs and we could not extracted them satisfactorily to pool in meta‐analysis.

Mixed training (comparisons 5 and 6)

Cardiorespiratory fitness

Two studies (140 participants) reported cardiorespiratory fitness data as VO2 peak scores and showed effect of cardiorespiratory fitness; we have low certainty in this effect (MD 1.40, 95% CI −0.19 to 2.99; I2 = 35%; Analysis 5.8). Letombe 2010 also reported beneficial differences in VO2 peak (+30%) but incomplete reporting prevented incorporation in this meta‐analysis.

  • Two studies measured peak work rate (watts) as an index of cardiorespiratory fitness: Moore 2015 reported that peak work rate increased after training. Letombe 2010 also reported changes in peak work rate (watts: +20%) but incomplete reporting prevented meta‐analysis of these two studies.

  • One study examined gait economy (net VO2 mL/kg per metre walked; Mead 2007). A small beneficial effect at the end of intervention disappeared after a three‐month follow‐up.

  • One study examined walking performance (time or metabolic equivalents (METS)) during a Modified Bruce treadmill protocol and reported no statistically significant effect of mixed training (Toledano‐Zarhi 2011).

Musculoskeltal fitness

A total of six studies examined the effects of mixed training on indices relating to muscle strength.

Two studies (148 participants) assessed ankle dorsiflexion strength but did not show any effect of training; we have very low certainty in this effect (SMD 0.80, 95% CI −0.82 to 2.41; I2 = 94%; Analysis 5.10). There was considerable heterogeneity between their results and both studies were confounded by increased training time. Yang 2006 also reported a range of other lower limb strength improvements, but all measurements were potentially biased as they were obtained by means of a hand‐held dynamometer, which is not a reliable, objective method of measurement.

Three studies (202 participants) assessed knee extension strength. We have moderate certainty in the small effect size in favour of the mixed training group at the end of intervention (SMD 0.33, 95% CI 0.05 to 0.61; P = 0.02; Analysis 5.11). One of the studies showed that this training effect was not retained at the end of the scheduled follow‐up (Cooke 2010).

Three studies (147 participants) that assessed grip strength of the paretic hand did not show any significant improvement after mixed training at the end of intervention; we have low certainty in this effect (MD 0.32, 95% CI −0.88 to 1.52; I2 = 0%; Analysis 5.12). One other study reported grip strength data that we could not pool in this meta‐analysis, and showed no statistically significant effect of training at end of intervention or after a range of follow‐up time points (Langhammer 2007).

  • One study assessed knee flexion strength and showed no statistically significant effect at the end of intervention or end of follow‐up (Cooke 2010).

  • One study assessed the effect of mixed training on elbow extension, elbow flexion, and pinch force at the end of intervention but did not detect any significant training effect (Donaldson 2009).

  • One study assessed the maximum explosive extensor power of the affected and unaffected lower limb and showed no statistically significant effect at the end of intervention or end of follow‐up (Mead 2007).

Mobility
Cardiorespiratory training (comparisons 1 and 2)

Functional Ambulation Category

Two studies, which included three relevant comparisons and 73 participants, measured the effect of treadmill gait training using the Functional Ambulation Category (FAC) scale (da Cunha 2002; Pohl 2002). The pooled MD showed that the FAC score measured at the end of intervention was significantly better in stroke survivors who received cardiorespiratory training during usual care (MD 0.53, 95% CI 0.21 to 0.85; P = 0.001; Analysis 1.11). We could not pool the FAC data reported by one study due to the way it was reported; there was no evidence of an effect of training on FAC in this study (Vanroy 2017).

Maximum walking speed (MWS)

Seventeen studies with 20 comparisons and a total of 782 participants measured maximum walking speed (metres per minute) at the end of intervention. The pooled MD showed significant consensus in favour of the training group (MD +7.66 m/minute, 95% CI 3.65 to 11.68; P = 0.0002; Analysis 1.12). This analysis also shows a consistent effect across the studies as a whole and a similar magnitude of effect arising from training delivered during or after usual care. The mode of cardiorespiratory training in all these studies was walking‐specific apart from cycle ergometry (Bateman 2001; Sandberg 2016; Vanroy 2017), circuit type‐training (Mudge 2009), and aquatic exercise (Aidar 2018). Nine of the 20 comparisons were confounded for imbalanced exposure time. If the exposure‐confounded studies and non‐walking studies were excluded seven out of eight of the remaining studies show a beneficial direction of effect and together show a substantial consensus of benefit (MD +12.49 m/minute, 95% CI 4.02 to 20.95). A funnel plot of the complete data in this analysis showed a tendency toward asymmetry, suggesting potential publication bias and this is focused on those studies occurring during usual care (Figure 4).


Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.12 mobility ‐ walking maximal speed (over 5 to 10 metres; m/min)

Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.12 mobility ‐ walking maximal speed (over 5 to 10 metres; m/min)

Five studies with six comparisons (312 participants) also provided follow‐up data on maximum walking speed and observed a significant training effect at the end of follow‐up (MD 6.71 m/minute, 95% CI 2.40 to 11.02; P = 0.002; Analysis 2.3). Although the overall effect is consistent, the two comparisons of Ada 2013 show the smallest effect. Ada 2013 used a 12‐month follow‐up whilst all the others used a three‐month follow‐up period. If we excluded the data, heterogeneity was reduced and the confidence in the treatment effect strengthened.

Preferred walking speed (PWS)

Twelve studies with 13 comparisons (588 participants) measured the preferred gait speed (metres per minute) at the end of intervention. We have high certainty in the pooled MD, which indicates a significant effect in favour of training (MD 4.47 m/minute, 95% CI 2.07 to 6.87; P = 0.0003; Analysis 1.13). This pooled effect is contributed to mostly by the consistent positive directions of effect among the studies taking place after usual care. The mode of cardiorespiratory training in all these studies was walking‐specific, apart from three studies that used cycle ergometry (Katz‐Leurer 2003; Vanroy 2017; Yang 2014). Five of the 13 comparisons are confounded for exposure time. If confounded and non‐walking studies are excluded, the consistent beneficial effect among the remaining six studies is still apparent (MD +5.83 m/minute, 95%CI 2.32 to 9.34). A funnel plot of the complete data shows no evidence of asymmetry (Figure 5).


Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.13 mobility ‐ walking preferred speed (m/min)

Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.13 mobility ‐ walking preferred speed (m/min)

Three studies provided follow‐up data at three months (Kuys 2011), and 12 months (Ada 2013; MacKay‐Lyons 2013), after the intervention. Pooling these data showed no evidence of retention (Analysis 2.4).

Six‐Minute Walk Test (6‐MWT)

Sixteen studies with 17 comparisons (882 participants) assessed walking endurance using the 6‐MWT (total metres walked in six minutes). We have high certainty that cardiorespiratory training significantly increased the walking capacity at the end of intervention (MD +33.41 metres/6 minutes, 95% CI 19.04, 47.78; P = 0.00001; Analysis 1.14). A consistent direction of effect was demonstrated at all stages of care although some heterogeneity is present (I2 = 30%). Nine of the 17 comparisons are confounded for exposure time. All studies contained walking‐specific interventions apart from two that used cycle ergometry (Jin 2013; Yang 2014). If studies confounded for exposure and those using cycle ergometry are excluded then six of the remaining seven studies each show beneficial directions of effect and together these give a clear consensus effect in favour of training (MD +40.30 metres/6 minutes, 95% CI 13.24 to 67.37); this is dominated by studies occurring after usual care. A funnel plot of the complete data shows no evidence of asymmetry (Figure 6).


Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.14 mobility ‐ walking capacity (6‐Minute Walk Test (metres))

Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.14 mobility ‐ walking capacity (6‐Minute Walk Test (metres))

Five studies provided follow‐up data at three months (Eich 2004; Kuys 2011; Mudge 2009), and 12 months (Ada 2013; MacKay‐Lyons 2013), after the intervention. When pooled these data show some evidence of retention (MD 38.29 metres, 95% CI 7.19 to 69.39; P = 0.02; Analysis 2.5). Although overall heterogeneity is low, the effects are variable and not obviously associated to either the shorter or longer follow‐up periods.

Other mobility outcomes

Similar to the 6‐MWT data, three studies measured walking endurance (reported as metres per minute) in 154 stroke survivors at the end of intervention, during (da Cunha 2002; Eich 2004), and after (Salbach 2004), usual care. Walking capacity increased significantly in participants who received cardiorespiratory training (MD 8.87 metres/minute, 95% CI 1.35 to 16.40; P = 0.02; Analysis 1.15).

Two studies reported time taken for the community walk test (Kim 2014; Park 2011). There was a small difference between participants who received community ambulation training and controls at the end of intervention (MD −10.54 minutes, 95% CI −14.11 to −6.98; P = 0.00001; Analysis 1.16).

  • One study measured the time taken by stroke participants to walk a six‐metre distance and did not find any significant difference between participants who received Kinetron walking training and controls (Glasser 1986).

Resistance training (comparisons 3 and 4)

Maximal walking speed (MWS)

Six studies (274 participants) measured maximal walking speed (metres per minute). Resistance training did not increase the walking velocity at the end of intervention (MD 2.83 m/minute, 95% CI −0.49 to 6.14; Analysis 3.5). There was some moderate heterogeneity; studies showing positive directions of effect either involved walking‐related exercise (Bale 2008), or were problematic due to either use of interpolated data (Buyukvural 2015), or due to being confounded for exposure time (Buyukvural 2015; Knox 2018). Follow‐up data pooled from two studies did not show any effect of retained training effects (Flansbjer 2008; Knox 2018;Analysis 4.2).

Preferred walking speed (PWS)

Five studies (203 participants) measured preferred gait speed (metres per minute) but failed to demonstrate any effect of resistance training at the end of intervention; we have moderate certainty in this effect (MD 2.15 m/min, 95% CI −3.57 to 7.87; Analysis 3.6). One study measured comfortable walking speed after follow‐up; the intervention effect exceeded the control group (Knox 2018).

Six‐Minute Walk Test (6‐MWT)

Five studies (238 participants) assessed walking capacity as metres walked in six minutes. We have low certainty in the effect of resistance training at the end of intervention (MD 24.98 metres, 95% CI 11.98 to 37.98; P = 0.0002; Analysis 3.7). Three of the five studies are confounded for exposure time, or have multiple risk of bias concerns (Ivey 2017). Two studies provided follow‐up data that showed no training effect on walking capacity at the end of follow‐up (Analysis 4.3).

Mixed training (comparisons 5 and 6)

Maximum walking speed (MWS)

Three studies (168 participants) reported an increase in maximum walking speed (MD +8.48 m/minute, 95% CI 1.76 to 15.20; Analysis 5.13). Two of the included studies are confounded for exposure time, which could exaggerate the response.

  • Only one included follow‐up data and suggested that end of intervention benefit was retained after 12 weeks of follow‐up (Knox 2018).

Preferred walking speed (PWS)

Ten studies (738 participants) measured the effects of mixed training on preferred walking speed (metres per minute). We have moderate certainty in the walking speed increase at the end of intervention in stroke survivors who received mixed training (MD 4.71 m/minute, 95% CI 1.32 to 8.10; P = 0.006; Analysis 5.14). The effect is influenced mostly by data from interventions delivered after usual care and there is significant heterogeneity within this subgroup as well as overall. Only the interventions in three of the 10 studies had balanced control and training exposures and these show no statistically significant effect overall (Mead 2007; Richards 1993; Richards 2004). A funnel plot of these data (not included) did not show any evidence of asymmetry.

Five studies (542 participants) that provided follow‐up data for preferred gait speed did not show a training effect at the end of the scheduled follow‐up (Analysis 6.7).

  • One study showed some indication of dose‐response, where the improvement in preferred gait speed was positively associated with the amount of time spent on the gait training component (Richards 1993).

Six‐Minute Walk Test (6‐MWT)

Ten studies (720 participants) measured walking capacity (metres walked in six minutes). We have low certainty in the significant increase shown after mixed training (MD 35.00 metres, 95% CI 15.91 to 54.09; P < 0.0003; Analysis 5.15). All studies in this meta‐analysis, apart from Moore 2015, were confounded for exposure time. A funnel plot of these data (not included) did not show any asymmetry.

Four studies (464 participants) included a follow‐up and showed that walking capacity remained significantly greater in the groups who had participated in training (MD 47.48 metres, 95% CI 23.72 to 71.23; P = 0.0001; Analysis 6.8). It is worth noting, however, that in all studies in this analysis the intervention groups were confounded by additional training time, which could exaggerate the effect.

Other mobility outcomes

Three studies (232 participants) measured community ambulation speed (the ability to walk at 0.8 metres per second or more) and did not demonstrate any significant training effects either at the end of intervention (Analysis 5.16), or at follow‐up (Analysis 6.9).

  • One study examined FAC scores and detected no statistically significant effect of training at the end of intervention or at end of three‐month follow‐up (Van de Port 2012).

Comparison of cardiorespiratory, resistance training, and mixed training (comparison 7)

Where sufficient data existed we performed a subgroup analysis to compare the effects of the different types combined with sensitivity analyses to examine combinations of training types on mobility outcomes at the end of intervention. The effect sizes described below arise from the sensitivity analyses below and are not shown in Analysis 7.2, Analysis 7.3, or Analysis 7.4.

Maximal walking speed

Maximal walking speed increased significantly after cardiorespiratory training and mixed training but not after resistance training (Analysis 7.2). We examined pair‐wise combination of these subgroups. Excluding the resistance training subgroup showed that cardiorespiratory training with or without a resistance training element (mixed) benefits maximal walking speed (MD 7.77 m/min, 95% CI 4.11 to 11.44; P = 0.00001); the heterogeneity in this analysis was greatly reduced when we removed studies confounded for intervention exposure. Excluding the cardiorespiratory training subgroup showed that resistance training with or without a cardiorespiratory training element (mixed) also appears to benefit maximal walking speed (MD 3.63 m/min, 95% CI 0.64 to 6.63; P = 0.02); however, this benefit is due to mixed training interventions not the resistance training.

Preferred walking speed (PWS)

Preferred walking speed increased significantly after cardiorespiratory and mixed training but not after resistance training (Analysis 7.3). We examined pair‐wise combination of these subgroups. Excluding the resistance training subgroup showed that cardiorespiratory training with or without a resistance training element benefits preferred walking speed (MD 4.56 m/min, 95% CI 2.35 to 6.77; P value < 0.0001); excluding studies confounded for intervention time preserves a benefit whilst greatly reducing the heterogeneity. Excluding the cardiorespiratory training subgroup showed that resistance training with or without a cardiorespiratory element benefits preferred walking speed (MD 3.80 m/min, 95% CI 1.07 to 6.53; P = 0.006). All this benefit arises from the mixed training subgroup; however, seven out of 10 studies were confounded for intervention time.

Six‐Minute Walk Test (6‐MWT)

Gait endurance increased significantly after cardiorespiratory and mixed training but not after resistance training (Analysis 7.4). We examined pair‐wise combination of these subgroups. Excluding the resistance training subgroup showed that cardiorespiratory training, with or without a resistance training element, benefits gait endurance (MD 33.97 metres, 95% CI 22.59 to 45.35; P value P < 0.00001). There is a similar contribution from both subgroups but the majority of studies were confounded for intervention time. Excluding the cardiorespiratory training subgroup showed that resistance training, with or without a cardiorespiratory element, benefits gait endurance (29.53 metres 95% CI 18.87, 40.18; P value < 0.00001); the majority of studies (12/15) were confounded for intervention time.

Physical function

The included studies assessed participants' physical function using a variety of different measures including rating scales (e.g. Berg Balance Scale) and specific measures of functional performance (e.g. functional reach, Timed Up and Go test, stair climbing).

Cardiorespiratory training (comparisons 1 and 2)

Balance outcomes

Seven studies with eight comparisons (471 participants) assessed the effects of cardiorespiratory training on balance using the Berg Balance Scale. We have moderate certainty in the increase in balance scores (MD 1.92, 95% CI 0.16 to 3.68; P = 0.03; Analysis 1.17). All studies except Bateman 2001 and Jin 2013 included a walking component; when we excluded these two studies the effect was strengthened (MD 2.99, 95% CI 0.95 to 5.02: P = 0.004). The backwards‐walking group of Takami 2010 appeared to produce a larger benefit compared with the forwards‐walking group from the same study. Bateman 2001 and MacKay‐Lyons 2013 also assessed participants at the end of the follow‐up period but did not show any effect (Analysis 2.6).

  • One study assessed balance using a single leg stance test (left and right legs, with and without eyes closed) and demonstrated a beneficial direction of effect in all (Sandberg 2016).

  • One study showed Brunel Balance Scores did not change after training (Mao 2015).

Other outcomes

Five studies (223 participants) showed that performance of the Timed Up and Go test improved; we have moderate certainty in this effect (MD −3.42 sec, 95% CI −4.78 to −2.05; P value 0.00001; Analysis 1.18).

  • One study showed that functional reach was higher after training (Kang 2012).

  • One study showed that Fugl‐Meyer scores did not change after training (Mao 2015).

  • One study demonstrated a medium beneficial effect of training on time taken to rise from a chair (Aidar 2018).

Resistance training (comparisons 3 and 4)

Balance outcomes

Five studies (220 participants) assessed balance using the Berg Balance scale. We have low certainty in the pooled after training (MD 3.27, 95% CI 2.15 to 4.38; P = 0.00001; Analysis 3.8). Only Knox 2018 reported Berg Balance data again after follow‐up (at three months) and showed a small positive direction of benefit.

  • One study assessed the maximum weight‐bearing on the affected leg (% body weight) and showed a beneficial change after training (Bale 2008).

  • One study examined the effect on indices of postural sway (centre of pressure). This could not be pooled but suggested a beneficial effect of training (Arabzadeh 2018).

  • One study assessed the effect on antero‐posterior and medio‐lateral sway velocity and showed a beneficial effect of training (Lee 2013a).

  • One study assessed the effect on antero‐posterior and medio‐lateral sway distance and showed a beneficial effect of training (Son 2014).

Step tests

Four studies examined the effect of resistance training on stair climbing speed using different protocols.

Two studies (91 participants) reported time needed to ascend stairs using similar protocols (10 steps; Ouellette 2004; 11 steps Buyukvural 2015), and showed a beneficial effect of intervention at the end of the training period (MD −2.07 sec, 95% CI −3.18 to −0.96; P value 0.0003; Analysis 3.9).

Two other studies reported data not suitable to pool due to protocol differences. We could not use SMD as there would be a mix of end‐score and change‐score data.

  • One study reported time to climb four steps. Change scores showed no statistically significant effect on maximal or chosen speed (Kim 2001).

  • One study used a two‐minute step test and showed beneficial effect on stair climbing (Taylor‐Pilliae 2014).

Timed Up and Go

Five studies (224 participants) examined the effect of resistance training on the Timed Up and Go test. There was no benefit and we have low certainty in the estimate (MD −3.46 sec, 95% CI −6.94 to 0.02; I2 = 89%; Analysis 3.10). The during‐ and after‐usual‐care subgroups did each show a beneficial effect; however, four out of five studies were confounded for intervention time, there is substantial heterogeneity, and Buyukvural 2015 is based on variance data interpolated from published P values.

Two studies (117 participants) examined Timed Up and Go data at follow‐up and this shows no statistically significant effect of retained benefits (Analysis 4.4)

Other outcomes

  • One study examined the effect of resistance training on the Trunk Impairment Scale; there was no statistically significant effect size (Verheyden 2009).

  • One study concluded there was no benefit of isokinetic upper limb training to upper limb function (upper limb Fugl‐Meyer scores and Box and Block tests; Coroian 2018).

  • One study showed trivial direction benefit from lower limb training on lower limb and total Fugl‐Meyer scores (Zou 2015).

  • One study showed no beneficial effect of training on the Short Physical Performance Battery score; only the 'strength' subscale showed a beneficial direction of change (Taylor‐Pilliae 2014).

Mixed training (comparisons 5 and 6)

Balance outcomes

Nine studies (419 participants) assessed balance using the Berg Balance Scale. We have low certainty in the beneficial effect (MD 2.12, 95% CI 0.82 to 3.41; P = 0.001; Analysis 5.17). Heterogeneity is low in this meta‐analysis; however, five of the nine studies were confounded for increased exposure time in the intervention groups; excluding these studies extinguishes the beneficial effect. Follow‐up data from three studies (201 participants) did not show any significant retention of training effects (Analysis 6.10).

Two studies with a total of 166 participants measured balance using the functional reach test but did not show any benefit of mixed training at the end of intervention (Duncan 2003; Mead 2007; Analysis 5.18). One study provided follow‐up data (Mead 2007); this did not show any retention effects.

Other study balance data included;

  • One study measured the Four Square Step Test; however, these data were very different at baseline in a way that benefited the control group (Toledano‐Zarhi 2011).

  • One study measured balance using the timed balance test after intervention and after three‐month follow‐up (Van de Port 2012).

  • One study measured postural sway (static balance) in a range of conditions and planes of movement; however, the study authors concluded there was no statistically significant effect of mixed training (Shin 2011).

  • One study reported multiple benefits of aquatic exercise to a range of balance and stance outcomes measured using a 'baropodometric' system (Furnari 2014).

There were sufficient data among the all different measures of balance described above to justify pooling using SMD meta‐analysis (12 studies, 755 participants). This showed an overall beneficial improvement in balance at the end of intervention (SMD 0.28, 95% CI 0.11 to 0.45; P = 0.001; Analysis 5.19). However, seven of the 12 included studies were confounded by additional training time; when we excluded these data there was no statistically significant effect of training on balance. A funnel plot of these data (not included) appears asymmetrical; however, the asymmetry is caused by two small studies each showing negative effects (Kim 2016a; Toledano‐Zarhi 2011).

Other outcomes

Seven studies (586 participants) measured the time to complete the Timed Up and Go test and showed no statistically significant effect of training; we have low certainty in this effect (MD −2.21 sec, 95% CI −4.43 to 0.02; I2 = 45%; Analysis 5.20). Five of these seven included studies were confounded by additional training time. Follow‐up data in five studies (510 participants) did not show a significant retention of mixed training benefits (Analysis 6.12); these data are also dominated by studies confounded for intervention time.

  • One study assessed upper extremity functional performance using the Action Research Arm test and showed no difference at end of intervention (Donaldson 2009).

  • One study recorded physical activity data (diary and accelerometer) at end of intervention and end of follow‐up but did not analyse this (pilot study; Dean 2018). We calculated a MD and 95% CI and the data show no beneficial direction of effect for any domain of physical activity (total, light, moderate, vigorous (MVPA)) at either the end of intervention or end of follow up.

  • One study reported Fugl‐Meyer scores for the paretic lower limb; there was no evidence of an intervention effect (Kim 2016a).

Comparison of cardiorespiratory, resistance training, and mixed training (comparison 7)

Where sufficient data existed we performed a subgroup analysis to compare the effects of the different types combined with sensitivity analyses to examine combinations of training types on the Berg Balance Scale and Timed Up and Go data at the end of intervention. The effect sizes described below arise from the sensitivity analyses below and are not shown in Analysis 7.5 or Analysis 7.6.

Balance

Excluding the resistance training subgroup showed that cardiorespiratory training with or without a resistance training element benefits balance (MD 1.87, 95% CI 0.76 to 2.99; P = 0.0009; Analysis 7.5); this is contributed to similarly for both training types but exclusion of the studies confounded for intervention time cancels out evidence of beneficial effect. Excluding the cardiorespiratory training subgroup showed that resistance training with or without a cardiorespiratory training element benefits balance (MD 2.75, 95% CI 1.92 to 3.58; P value < 0.00001). Both intervention types contribute in a similar and consistent way and the benefit is still evident when the studies confounded for intervention time are excluded (MD 2.81, 95% CI 1.47 to 4.15; P value < 0.0001).

Timed Up and Go

Excluding the resistance training subgroup showed that cardiorespiratory training with or without a resistance training element benefits Timed Up and Go (MD −2.61 sec, 95% CI −3.93 to −1.29; P value < 0.0001; Analysis 7.6). Excluding the cardiorespiratory training subgroup showed that resistance training with or without a cardiorespiratory training element benefits Timed Up and Go (MD −2.88 sec, 95% CI −5.02 to −0.75; P value < 0.00001). Taking into account these data as a whole the magnitude of effect across the three training types was very similar and was consistent, with 15 out of 17 studies showing a positive direction of benefit. However, many of the studies (12/17) are confounded for intervention time.

Health status and quality of life
Cardiorespiratory training (comparisons 1 and 2)

Two studies (164 participants) examined effects of training on the component summary measures shared by the SF‐12 scale (Globas 2012), and the SF‐36 scale (Gordon 2013). This showed that cardiorespiratory training benefited the 'physical health' component (SMD 0.51, 95% CI 0.20 to 0.82; P = 0.001; Analysis 1.19) but not the 'mental health' component (Analysis 1.20).

Two studies with three comparisons (158 participants) reported EuroQoL scores and this showed no pooled effect of training at the end of intervention (Analysis 1.21), or the end of follow‐up (Analysis 2.7).

  • One study reported the SF‐36 'physical functioning' scale and the 'emotional role' scale showing the scores to be significantly better after training (Aidar 2018).

  • One study reported hand and shoulder pain being improved in the intervention group (Topcuoglu 2015).

Resistance training (comparisons 3 and 4)

Three studies (70 participants) assessed the 'physical functioning' or 'mental health' scales of the SF‐36 at the end of intervention. There was no statistically significant effect on 'physical functioning' (Analysis 3.11) but there was evidence of benefit for 'mental health' (MD 7.69, 95% CI 1.56 to 13.83; Analysis 3.12). The two studies with the largest contributing effects were confounded for intervention exposure time.

  • One study reported no training effect in the two 'physical health' and 'mental health' composite scores of the SF‐36 at the end of intervention (Taylor‐Pilliae 2014).

  • One study showed that all eight scales of the SF‐36 improved after training (but did not report the two composite scores); this intervention is confounded for exposure time (Aidar 2016).

  • One study reported a benefit in Stroke Specific Quality of Life scale (Buyukvural 2015).

Mixed training (comparisons 5 and 6)

SF‐36 data

Two studies (112 participants) showed significantly better scores in the SF‐36 'physical functioning' scale in the mixed training group at the end of intervention (SMD 0.48, 95% CI 0.10 to 0.85; 0.01; Analysis 5.21), but not after follow‐up (Analysis 6.13). There was no statistically significant effect on the 'social role functioning' scale at the end of intervention (Analysis 5.23).

Three studies (178 participants) showed significantly better scores in the SF‐36 'physical role functioning' scale for the mixed training group at the end of intervention (SMD 0.56, 95% CI 0.26 to 0.86; P = 0.0003; Analysis 5.22). This effect was retained at follow‐up (MD 11.61, 95% CI 2.38 to 20.84; P = 0.01; Analysis 6.14).

  • One study showed that participants receiving mixed training had significantly better results in the 'emotional role functioning' scale of the SF‐36 compared with controls at the end of the training period (Duncan 2003).

Other outcome data

  • One study reported the two components of the EuroQol scale (health state and perceived health state). Although not significant there was a positive direction of effect after intervention but not at follow‐up (Cooke 2010).

  • One study assessed the effect of mixed training on the Stroke‐Adapted Sickness Impact profile and showed no statistically significant effect at the end of intervention or end of six‐month follow‐up (Zedlitz 2012).

  • One study recorded quality of life using various metrics (Stroke QoL Scale, EQ‐5D‐5L, SF‐12 physical and mental health components) at end of follow‐up only but did not analyse this (pilot study; Dean 2018). We calculated MDs and 95% CI and these showed no effects. The direction of effect was beneficial for SF‐12 scores but not for the Stroke QoL Scale or EQ‐5D‐5L.

  • One study reported the domains of the Stroke Impact Scale as quality of life with only two out of 10 reported domains showing a beneficial direction of effect (Moore 2015).

Seven of the nine studies for mixed training in comparison 5 and 6 were confounded by additional training time, leaving only Mead 2007 and Moore 2010 unaffected.

Mood
Cardiorespiratory training (comparisons 1 and 2)

Two studies (56 participants) reported Beck Depression Index data at the end of intervention (Analysis 1.22) and showed no beneficial effect. Only one of these studies reported follow‐up data too (Smith 2008).

  • One study used the Beck Depression Index and stated depression was improved in the intervention group, but did not report any data (Topcuoglu 2015).

  • One study using HADS reported that the depression score improved in the intervention group but not in the control group (Lennon 2008). We were, however, unable to include these study data in our analyses as they were presented in a format not suitable for Review Manager 2014.

  • One study reported anxiety using HADS (Bateman 2001). The anxiety score decreased immediately after cardiorespiratory training but not at follow‐up. This study had, however, substantial missing values at the end of intervention (29%) and end of follow‐up (37%) and, therefore, we did not pool these with other depression scores.

  • One study reported medium‐sized beneficial effects in Anxiety Trait and Anxiety State measures (Aidar 2018).

Resistance training (comparisons 3 and 4)

Two studies (180 participants) reported the Centre for Epidemiological Studies for Depression scale (CES‐D). The mood in the resistance training group was significantly better at the end of intervention (MD −3.76, 95% CI −6.98 to −0.54; Analysis 3.13). One of these studies demonstrated that the effect was retained after a follow‐up (Sims 2009).

One study reported a significant benefit in measures of the Beck Depression Inventory at the end of intervention (Aidar 2016). Combining data from the different depression scales reported in three studies (209 participants) showed a significant benefit at the end of intervention (SMD −0.36, 95% CI −0.64 to −0.09; P = 0.01; Analysis 3.14). All three of these studies have major bias and confounding issues

  • One study used the Brazilian translation of the State‐Trait Anxiety Inventory and showed no effects (Aidar 2016).

Mixed training (comparisons 5 and 6)

Three studies (391 participants) used the anxiety and depression components of the HADS (Mead 2007; Van de Port 2012; Zedlitz 2012). No immediate training effects were observed on either HADS component at the end of the intervention (Analysis 5.24; Analysis 5.25). No retained training effects were observed on either HADS component at the end of follow‐up (Analysis 6.17; Analysis 6.18).

Two studies (Duncan 2003; Van de Port 2012; 335 participants) assessed mood using the 'emotion' domain of the Stroke Impact Scale (SIS) and showed no statistically significant effect at the end of intervention (Analysis 5.26), or after three‐month follow‐up (Analysis 6.15).

One study reported Geriatric Depression Scale scores (Duncan 2003). Combining all available depression data from four studies (484 participants) showed no statistically significant effect of training at the end of intervention (Analysis 5.27), or the end of follow‐up (Analysis 6.19).

Cognitive function
Cardiorespiratory training (comparisons 1 and 2)

One study of cardiorespiratory training showed no statistically significant effect on FIM cognitive score (memory, problem‐solving questions) at the end of intervention (Bateman 2001). We did not consider end of follow‐up data due to the considerable proportions of missing data.

Resistance training (comparisons 3 and 4)

One study showed benefits of short intense training on attention, working memory, information processing, and executive function (Fernandez‐Gonzalo 2016). Some cognition data is incomplete in this study for participants with expressive aphasia or upper limb spasticity.

Mixed training (comparisons 5 and 6)

Two studies (159 participants) showed no statistically significant effect on FIM cognitive score (memory, problem‐solving questions) at the end of intervention (Analysis 5.28), or end of follow‐up (Analysis 6.20).

Two studies (133 participants) used SIS domains of 'communication' and 'memory and thinking' to assess cognitive function. The meta‐analyses showed no statistically significant effects at the end of intervention (Analysis 5.29; Analysis 5.30), or the end of the six‐month follow‐up (Analysis 6.21; Analysis 6.22).

  • One study showed that mixed training benefited cognitive function assessed by the Korean version of the Montreal Cognitive Assessment but not the Trail Making Test or Stroop test (Kim 2017a).

  • One study showed that mixed training improved cognition measured using the ACE‐R tool (Moore 2015).

'Summary of findings' tables

We have presented the results for the primary outcome measures 'Summary of findings' tables for cardiorespiratory training (summary of findings Table for the main comparison), resistance training (summary of findings Table 2), and mixed training (summary of findings Table 3). In addition we made a post‐hoc decision to include domains relating to physical fitness, mobility, and physical function.

Discusión

disponible en

Resumen de los resultados principales

Efecto del entrenamiento en las medidas de resultado primarias

Muerte

No hubo efectos estadísticamente significativos en la mortalidad, lo que sugiere que no hubo beneficios pero tampoco efectos adversos en la mortalidad. Aunque hay poca certeza en estos análisis, la muerte por cualquier causa fue un evento muy poco común entre los participantes. Al final de la intervención solo habían muerto 19 del total de 3617 participantes los cuales estuvieron limitados a cinco de los 75 estudios. Al final del seguimiento habían muerto 19 de los 1469 participantes; los mismos estuvieron limitados a siete de los 24 estudios con puntos temporales de seguimiento.

La cantidad de muertes observadas en esta revisión podría ser escasa porque los participantes incluidos tenían menos riesgo de muerte en comparación con la población más amplia con accidente cerebrovascular. Este hecho puede deberse, en primer lugar, a que los criterios de inclusión de los ensayos de ejercicio seleccionan a participantes con accidentes cerebrovasculares más leves (la mayoría eran pacientes que podían deambular) y factores de riesgo reducidos (como criterios de presión arterial límite). En otras palabras, las pacientes con mayor riesgo de morir probablemente fueron excluidos sistemáticamente debido a las contraindicaciones para hacer ejercicio. En segundo lugar, puede haber una autoselección por parte de los participantes que son físicamente activos con un mayor estado físico. Se sabe que una mayor actividad física y un mejor estado físico cardiorrespiratorio se asocian con una reducción del riesgo de accidentes cerebrovasculares y de la mortalidad por accidentes cerebrovasculares (Hooker 2019). Además, en su mayoría los programas de entrenamiento de esta revisión fueron de corta duración (12 semanas o menos). Una revisión sistemática del efecto de la rehabilitación cardíaca basada en el ejercicio mostró una reducción de la mortalidad cardiovascular en los pacientes con cardiopatía coronaria (Anderson 2016), pero los programas de entrenamiento fueron más prolongados (mediana de seis meses) que los de esta revisión. Como muchos pacientes con accidente cerebrovascular presentan cardiopatías coexistentes, el entrenamiento podría influir en la mortalidad posterior al accidente cerebrovascular si incluye un entrenamiento cardiorrespiratorio administrado por períodos de tiempo prolongados. En cuanto a las intervenciones a más largo plazo, actualmente existen dos estudios pequeños del entrenamiento cardiorrespiratorio (Ivey 2010; Ivey 2011), y uno del entrenamiento mixto (Dean 2018); en los mismos se utilizó una duración de la intervención de seis meses. La evidencia actual carece de las intervenciones con mayor probabilidad de influir en la mortalidad.

Aunque una mayor actividad física y un mejor estado cardiorrespiratorio están vinculados a la prevención primaria del accidente cerebrovascular, faltan datos sobre la función del entrenamiento con ejercicios en la prevención secundaria del accidente cerebrovascular. Esta brecha en el conocimiento actualmente es una prioridad y requiere de estudios de investigación (Pollock 2012).

Muerte o dependencia

No hay datos disponibles para establecer conclusiones sobre la influencia del entrenamiento en el resultado compuesto de muerte o dependencia después de un accidente cerebrovascular. La muerte es poco frecuente, y existe una falta de medidas de la dependencia como las basadas en preguntas sencillas, una puntuación del Barthel Index menor que 20 o la puntuación de la Rankin Scale modificada de 3; 4 ó 5 (Lindley 1994). Es probable que ambos elementos de esta medida de resultado compuesta sean poco frecuentes en los supervivientes de un accidente cerebrovascular elegibles para el entrenamiento con ejercicios físicos.

Discapacidad

Se evaluaron varios índices globales diferentes de discapacidad. Los datos que utilizaban las mismas escalas eran limitados, lo cual limitó los metanálisis al uso de diferencias de medias estandarizadas. Además, varias cuestiones metodológicas debilitaron y sesgaron los datos disponibles.

Después del entrenamiento cardiorrespiratorio no hubo mejoría en las puntuaciones del Functional Independence Instrument (Análisis 1.2), las puntuaciones del Barthel Index (Análisis 1.3) u otros resultados informados de manera individual. Sin embargo, hubo una mejoría en las puntuaciones del Rivermead Mobility Index (Analysis 1.4). El agrupamiento de todos los datos disponibles de las escalas de discapacidad de diferentes escalas mostró un efecto beneficioso moderado (DME; Análisis 1.5). Este patrón de hallazgos podría ocurrir debido a que el entrenamiento influye en los ítems de funcionalidad física/movilidad de estas diversas escalas; dichos ítems dominan el puntaje en herramientas como el Rivermead Mobility Index (ocho de 15 ítems) mientras que son menos influyentes en herramientas más «globales» como la Functional Independence Measure (dos de 18 ítems). Debido a que la caminata es una modalidad habitual de ejercicio cardiorrespiratorio estos hallazgos podrían ser consecuencia de mejorías en la caminata y la movilidad, en lugar de efectos más «globales» sobre la discapacidad.

Hubo muy pocos datos que permitieran formular observaciones sobre el efecto del entrenamiento de resistencia y no hubo evidencia de los efectos de la intervención al final del seguimiento, en los casos en que existían datos.

En los estudios del entrenamiento mixto se utilizaron diversos instrumentos de medición de la discapacidad, que individualmente no mostraron efectos de consenso claros. El agrupamiento de todos los datos disponibles de diferentes escalas mostró un pequeño efecto al final de la intervención (Análisis 5.5). Al igual que el entrenamiento cardiorrespiratorio, estos efectos significativos podrían deberse principalmente a los cambios en la movilidad. La mayoría de los estudios agrupados fueron confundidos por el tiempo de entrenamiento adicional; cuando fueron excluidos, los beneficios desaparecieron. Lo anterior significa que la participación en el entrenamiento mixto pareció ser efectiva, aunque es imposible atribuir cualquier efecto beneficioso al contenido real de los programas de entrenamiento mixto.

Los efectos del entrenamiento cardiorrespiratorio (evidencia de certeza moderada) y del entrenamiento mixto (evidencia de certeza baja) son de magnitud similar al final de la intervención (Análisis 7.1). En general, los resultados muestran que las intervenciones que contienen entrenamiento cardiorrespiratorio, con o sin contenido de entrenamiento de resistencia (es decir, entrenamiento mixto), mejoran las medidas globales de discapacidad después de un accidente cerebrovascular. Estos efectos pueden estar motivados por mejorías en la movilidad en lugar de ser indicativos de un cambio en el estado de discapacidad más «global». Estos datos coincidirían con los hallazgos entre los resultados secundarios (movilidad).

Efecto del entrenamiento en las medidas de resultado secundarias

Eventos adversos

No hubo evidencia de eventos adversos graves a partir del entrenamiento en los pacientes que participaron en programas de entrenamiento con ejercicios físicos. Sin embargo, este hallazgo no se puede generalizar a la población más amplia con accidente cerebrovascular, y solo unos pocos estudios registraron o informaron específicamente los eventos adversos. Hay una clara necesidad de mejorar el informe de los eventos adversos en los ensayos del entrenamiento con ejercicios físicos.

Factores de riesgo

Pocos estudios informaron sobre los factores de riesgo vascular, y la variedad de resultados restringió el metanálisis. No hubo efectos de consenso sobre la presión arterial. En los estudios individuales, que informaron sobre medidas metabólicas (tolerancia a la glucosa, sensibilidad a la insulina, lípidos), hubo algunas direcciones beneficiosas del efecto, pero no se puede llegar a un consenso. La presión arterial siguió siendo un resultado poco común que se informó en los estudios sobre el ejercicio después de un accidente cerebrovascular y, sin embargo, podría ser un beneficio importante y plausible. Otras revisiones sistemáticas recientes han examinado el efecto del ejercicio en los factores de riesgo cardiovascular y han informado de efectos beneficiosos en la presión arterial sistólica, la glucosa en ayunas y la insulina y el colesterol HDL (D'Isabella 2017); sin embargo, esto incluyó varios estudios que no cumplían con los criterios de elegibilidad. La revisión de D'Isabella 2017 no incluyó el estado cardiorrespiratorio como resultado.

Hubo un aumento del estado cardiorrespiratorio después del entrenamiento cardiorrespiratorio, lo cual se examina en la siguiente sección desde una perspectiva funcional. Sin embargo, además de tener implicaciones funcionales, los valores bajos de VO2 máximo se asocian con un mayor riesgo de accidentes cerebrovasculares y una mayor mortalidad por accidentes cerebrovasculares (Hooker 2019). Un aumento en el VO2 máximo de 1 MET (equivalente a +3,3 mL/kg/min) equivale a una reducción del 7% del riesgo de hospitalización por accidente cerebrovascular (Pandey 2016). Existe una certeza moderada de que el efecto observado de +3,40 mL/kg/min (IC del 95%: 2,98 a 3,83) es de una magnitud similar al anterior, lo cual indica que puede lograrse una reducción significativa del riesgo con intervenciones cortas de entrenamiento cardiorrespiratorio, ya sea durante o después de la atención habitual.

Estado físico
Estado cardiorrespiratorio

El entrenamiento cardiorrespiratorio mejoró de manera significativa los indicadores fisiológicos (VO2 máximo), y los indicadores del rendimiento (tolerancia al ejercicio) del estado cardiorrespiratorio. Esta mejoría puede ser beneficiosa debido a que un VO2 máximo bajo se asocia con una limitación funcional en las pacientes de edad muy avanzada (Young 2001). Sin embargo, en los pacientes con accidente cerebrovascular, los efectos beneficiosos funcionales son menos claros (ver por ejemplo los datos contradictorios de Michael 2007 and Patterson 2007).

Una «reserva física» limitada causada por un VO2 máximo bajo junto con una economía deficiente para caminar (alto coste de oxígeno al caminar) es un problema común después de un accidente cerebrovascular (Blokland 2018; Macko 2001). El entrenamiento para mejorar cualquiera de los dos componentes (VO2 máximo o economía de caminata) podría beneficiar el rendimiento de la caminata y la tolerancia al ejercicio después de un accidente cerebrovascular. Aunque hubo muy pocos datos para determinar si se puede mejorar la economía, hay un claro consenso de que el VO2 máximo puede mejorarse. El entrenamiento aumenta la «reserva física», lo que significa que caminar a una velocidad determinada es menos exigente. El efecto de consenso (+3,40 mL/kg/min, IC del 95%: 2,98 a 3,83) es muy similar a otras revisiones sistemáticas recientes (+2,2 mL/kg/min, IC del 95%: 1,3 a 3,1; Boyne 2017).

Hubo muy pocos datos adicionales para establecer conclusiones sobre los efectos de los otros tipos de entrenamiento o la retención del estado cardiorrespiratorio después del entrenamiento.

Estado físico osteomuscular

Los efectos de consenso mediante el uso de medidas de metanálisis del estado musculoesquelético (fuerza y potencia muscular) son difíciles de lograr de manera significativa debido a que hay muchos enfoques de prueba, protocolos, dimensiones de resultados y grupos musculares diferentes que se pueden utilizar. Los estudios del entrenamiento de resistencia y del entrenamiento mixto incluidos en esta revisión que midieron el estado musculoesquelético lo hicieron a través de una serie de resultados, que incluyen no solo la fuerza máxima sino también otras dimensiones como la resistencia muscular local y la potencia explosiva máxima.

La mayoría de los estudios del entrenamiento de resistencia mostraron individualmente mejorías en el estado músculo‐esquelético y en algunos casos las mismas fueron de magnitud considerable y fueron dominadas por los grupos musculares de los miembros inferiores.

Los estudios del entrenamiento mixto informaron de una serie de resultados con la mayoría de los ejemplos de una dirección beneficiosa del efecto dentro de la musculatura de los miembros inferiores en lugar de los miembros superiores.

En la actualización de esta revisión hay evidencia de un mayor interés en el entrenamiento de resistencia y, por lo tanto, las medidas del estado físico musculoesquelético son más frecuentes. Sin embargo, la certeza de la evidencia sigue siendo de baja a moderada.

En varios estudios se examinan las expresiones dinámicas del estado musculoesquelético, como la potencia explosiva (Fernandez‐Gonzalo 2016; Mead 2007; Ouellette 2004). En pacientes con accidente cerebrovascular, la potencia explosiva se asocia con la funcionalidad y la discapacidad después de un accidente cerebrovascular (Saunders 2008) y en pacientes de edad muy avanzada la potencia explosiva puede ser más importante que la fuerza para la función y la discapacidad (Puthoff 2007). Aún no se han investigado de manera suficiente las intervenciones para mejorar la potencia explosiva después del accidente cerebrovascular.

Movilidad

Todos los metanálisis de los resultados del rendimiento de la caminata se resumen en la Tabla 4 y muestran un patrón claro de los hallazgos.

El entrenamiento cardiorrespiratorio aumentó la velocidad máxima de caminata, la velocidad preferida de caminata y la capacidad de caminata (6‐MWT) al final del período de entrenamiento (Análisis 1.12; Análisis 1.13; Análisis 1.14). Cuando estos análisis se limitan a los estudios que tienen una exposición equilibrada del grupo de control y que utilizan la caminata como modalidad de ejercicio, las tres magnitudes del efecto beneficioso aumentan, lo que sugiere la importancia de que el ejercicio esté relacionado con las tareas. Los beneficios se mantuvieron tanto en la velocidad máxima de caminata (Análisis 2.3), como en la 6‐MWT (Análisis 2.5). Los efectos beneficiosos en el rendimiento de la caminata también surgen al caminar en un entorno de la comunidad fuera del ambiente de investigación (Análisis 1.16). Hay evidencia que indica que el entrenamiento cardiorrespiratorio, así como la mejoría en la velocidad de caminata, puede reducir la confianza de los supervivientes de accidente cerebrovascular en otras personas en cuanto a la ayuda en la deambulación (puntuación de las Functional Ambulation Categories; Análisis 1.11). Hay una certeza alta de la evidencia del entrenamiento cardiorrespiratorio.

El entrenamiento de resistencia benefició solo la capacidad de caminata (6‐MWT) y no la velocidad máxima o preferida de caminata. Cabe señalar que la mayoría de las intervenciones de entrenamiento de resistencia no incorporaron la caminata como una forma de ejercicio. Las mejorías observadas en la fuerza muscular no tienen que producir necesariamente efectos beneficiosos funcionales (Kim 2001), que se traducen en un mejor rendimiento de la caminata. Las relaciones entre el «estado físico» y la «funcionalidad» son de hecho muy complejas y pueden surgir a partir de factores como las asociaciones no lineales (Buchner 1991) o la interacción de «codeficiencias» como la falta de equilibrio y poca fuerza muscular (Rantanen 2001). En esta revisión también podría suceder que las adaptaciones metabólicas intramusculares derivadas del entrenamiento de resistencia aumentaran la tolerancia de los participantes a cualquier efecto de fatiga de la 6‐MWT basada en el rendimiento. Sin embargo, hay poca certeza de la evidencia en cuanto a este resultado.

El entrenamiento mixto aumentó la velocidad máxima de caminata, la velocidad preferida de caminata y la capacidad de caminata (6‐MWT) al final del período de entrenamiento (Análisis 5.14; Análisis 5.15). Todos estos tamaños del efecto son similares en magnitud a los del entrenamiento cardiorrespiratorio y también son de menor certeza (de baja a moderada). Sin embargo, estos efectos de consenso son más tenues debido a la heterogeneidad, algunos de los cuales pueden ser explicados por el hecho de que todos están dominados por exposiciones desequilibradas, que podrían exagerar los efectos. Los efectos beneficiosos se mantuvieron solo en el rendimiento en la 6‐MWT (Análisis 6.8). Además, todos los estudios, excepto Yang 2006; incluyeron un entrenamiento específico de caminata.

Cuando se comparan los efectos de las diferentes intervenciones (comparación 7), es el entrenamiento cardiorrespiratorio con o sin entrenamiento de resistencia (entrenamiento mixto) el que otorga beneficios en los resultados de la velocidad de la caminata. Dentro de este análisis está claro que el elemento cardiorrespiratorio es clave y el mismo es más efectivo cuando se presenta a través de una modalidad de ejercicio de caminata. El entrenamiento de resistencia con o sin un elemento cardiorrespiratorio (mixto) también beneficia la velocidad de caminata, pero estos datos están dominados por el efecto del entrenamiento mixto y son menos fiables.

Las mejorías en la velocidad de la caminata después del entrenamiento podrían estar relacionadas con una mayor reserva física (derivada de un aumento del VO2 máximo o una mejoría de la economía de la caminata). Las intervenciones de entrenamiento basado en caminata dominan los efectos del entrenamiento cardiorrespiratorio y mixto y, por definición, están relacionadas con las tareas y son de naturaleza repetitiva. Estos elementos pueden por sí mismos facilitar el aprendizaje motor y beneficiar el rendimiento de la marcha incluso en ausencia de mejorías obvias en los parámetros del estado físico.

Por lo tanto, en general hay evidencia consistente de que las medidas del rendimiento de la caminata mejoran después del entrenamiento cardiorrespiratorio y después del entrenamiento mixto, pero no después del entrenamiento de resistencia solo. Aunque las mejorías están claras todavía podría existir el interrogante de si son clínicamente importantes. Por ejemplo, Fulk 2011 estableció la conclusión de que un aumento clínicamente importante de la velocidad de caminata preferida después de un accidente cerebrovascular sería de 10,5 m/minuto; esta cifra es mayor que el margen superior del intervalo de confianza (IC) del 95% de los tamaños del efecto para la velocidad de caminata preferida en esta revisión. Fulk 2018 sugirió que la diferencia mínima clínicamente importante para la 6‐MWT es de +71 a +130 metros sobre la base de los pacientes que inicialmente caminan rápido (≥ 0,4m/seg), los cuales superan los efectos en esta revisión. La velocidad inicial de la marcha seguirá siendo una consideración importante para establecer conclusiones sobre la magnitud de los efectos en los resultados de la velocidad de caminata.

Función física

En los estudios incluidos se utilizaron diversas medidas para evaluar la función motora; los datos del equilibrio y los datos de la Timed Up and Go pudieron ser agrupados y se registraron en todos los tipos de entrenamiento.

Los tres tipos principales de intervención recogieron datos de la puntuación de Berg Balance y cada uno mostró tamaños del efecto beneficiosos. La mayoría de los estudios del entrenamiento cardiorrespiratorio implicaban caminata, y los mismos contribuyeron en gran medida al efecto beneficioso (certeza moderada). Los datos del entrenamiento mixto fueron menos fiables y posiblemente se vieron afectados por factores de confusión (certeza baja). Las intervenciones de entrenamiento de resistencia demostraron el mayor efecto general pero fueron de certeza baja. En conjunto, las intervenciones de entrenamiento cardiorrespiratorio con o sin entrenamiento de resistencia (mixto) mejoraron el equilibrio. Del mismo modo, el entrenamiento de resistencia con o sin entrenamiento cardiorrespiratorio (mixto) mejoró el equilibrio. Estos datos sugieren que hay más en el entrenamiento del equilibrio que solo intervenciones específicas de «entrenamiento del equilibrio», como lo demuestran los efectos similares del entrenamiento de resistencia y del ejercicio de tipo caminata. Otras revisiones sistemáticas han examinado los efectos del entrenamiento cardiorrespiratorio (Pang 2013), y los efectos del entrenamiento del tronco (Cabanas‐Valdés 2013; Sorinola 2014), en el equilibrio después de un accidente cerebrovascular. Aunque Sorinola 2014 informó de un efecto significativo del ejercicio del tronco sobre el equilibrio en bipedestación (DME 0,72; IC del 95%: ‐0,01 a 1,45; P = 0,05) los datos del equilibrio en su conjunto no son convincentes y estas revisiones tienen criterios de elegibilidad diferentes a los de la presente revisión. La revisión sistemática de Van Duijnhoven 2016 examinó los efectos de diferentes intervenciones de tratamiento con ejercicios y mostró que las mismas otorgaban beneficios en el equilibrio; el tamaño del efecto general en la escala Berg fue de 2,22 puntos (IC del 95%: 1,26 a 3,17), lo que es muy similar a los datos de esta revisión. Además, Van Duijnhoven 2016 señaló que fue el entrenamiento específico del equilibrio o el entrenamiento para el cambio de peso el que proporcionó el mayor tamaño del efecto (3,75 puntos, IC del 95%: 1,71 a 5,78), mientras que en esta revisión, el mayor efecto fue después del entrenamiento de resistencia, el cual es de una magnitud similar (DM 3,27; IC del 95%: 2,15 a 4,38).

Los tres tipos de entrenamiento parecen tener un efecto general similar en el rendimiento en la Timed Up and Go. Si bien no se ha establecido una diferencia mínima clara e importante desde el punto de vista clínico para este resultado, el mismo se relaciona con la movilidad, el equilibrio y el riesgo de caídas y, por lo tanto, es pertinente para los pacientes que sufren un accidente cerebrovascular.

Estado de salud y calidad de vida

Existen datos que examinan las medidas de la calidad de vida; sin embargo, los estudios utilizan una serie de herramientas diferentes para informar sobre diferentes subescalas y estadísticas resumidas, lo que dificulta el agrupamiento significativo de dichos datos. Por lo tanto, se pueden establecer pocas conclusiones sobre si el entrenamiento puede mejorar el estado de salud y la calidad de vida autopercibidos después del accidente cerebrovascular. Teniendo en cuenta todos los datos, tampoco hay un patrón discernible en cuanto a los estudios que muestran o no una dirección beneficiosa del efecto en los dominios físico, mental o emocional de las escalas utilizadas. Además, 14 de los 19 estudios que incluyeron resultados de la calidad de vida fueron confundidos por el tiempo adicional de intervención, lo que significa que es difícil atribuir cualquier efecto al contenido del entrenamiento. Una revisión sistemática del ejercicio después del accidente cerebrovascular incluyó resultados de la calidad de vida y también concluyó que no hubo un efecto consistente (Pang 2013).

Estado de ánimo

Se dispuso de un escaso número de ensayos de calidad metodológica variable para evaluar los efectos del entrenamiento sobre el estado de ánimo. No hay un patrón consistente de efectos y el agrupamiento de los estudios está en riesgo de sesgo debido a la deserción y a los factores de confusión relacionados con el desequilibrio en las exposiciones.

Una revisión sistemática reciente del ejercicio para los síntomas depresivos después del accidente cerebrovascular combinó los datos de 13 estudios con un total de 1022 participantes y mostró un efecto pequeño al final del ejercicio (DME ‐0,13; IC del 95%: ‐0,26 a 0,01; P = 0,03), pero no en el momento del seguimiento (Eng 2014). Estos hallazgos pueden diferir de la revisión actual, ya que Eng 2014 agrupó diferentes tipos de ejercicios; solo cinco de 13 ECA cumplieron con los criterios de elegibilidad, y se tomó la decisión metodológica de no agrupar los datos de Lennon 2008 en los metanálisis (ya que esto habría implicado la estimación de la media y la desviación estándar a partir de la mediana y el rango).

En ambas revisiones los efectos beneficiosos pequeños podrían haber sido exagerados debido a la exposición a factores de confusión. Además, cualquier falta de efecto podría deberse a que los síntomas de depresión son relativamente leves; esto podría deberse a los factores de confusión relacionados con los medicamentos antidepresivos, que no se informaron.

Funcionalidad cognitiva

Solo seis estudios han examinado el efecto de las intervenciones de entrenamiento físico en los resultados de la funcionalidad cognitiva; en la actualidad no es posible establecer conclusiones. Hay otras revisiones sistemáticas que han examinado los efectos del ejercicio en la función cognitiva (Cumming 2012; Garcia‐Soto 2013; Zheng 2016). La revisión de Cumming 2012 mostró que las intervenciones de actividad física y ejercicio produjeron mejorías significativas en la función cognitiva al final de la intervención (DME 0,20; IC del 95%: 0,04 a 0,36; P = 0,015; nueve estudios, 716 participantes). Aunque seis de los 13 estudios incluyeron intervenciones de ejercicios, solo tres de los 13 estudios incluidos cumplieron con los criterios de inclusión (Bateman 2001; Duncan 2003 [citado como Studentski]; Mead 2007). Garcia‐Soto 2013 examinó los efectos de las intervenciones de entrenamiento cardiorrespiratorio y de resistencia sobre la función cognitiva después del accidente cerebrovascular. Ninguno de los cinco estudios incluidos cumplió con los criterios de inclusión. Asimismo, Zheng 2016 examinó el efecto de los ejercicios cardiorrespiratorios y ninguno de los 10 estudios incluidos cumplió con los criterios de elegibilidad.

Existe una justificación de por qué la función cognitiva puede mejorar con el entrenamiento físico (Heyn 2004), y las intervenciones para mejorar la función cognitiva han surgido como la prioridad de investigación de más alto nivel con respecto a la vida después de un accidente cerebrovascular (Pollock 2012). Todavía hay muy pocos datos para determinar si el ejercicio es beneficioso, por lo que sigue siendo una brecha importante en el conocimiento.

Factores que afectan las medidas de resultado primarias y secundarias

La realización de análisis de subgrupos es difícil cuando el número de estudios es reducido; las consecuencias son un poder estadístico reducido y la influencia de características no relacionadas con los factores del agrupamiento.

Dosis de entrenamiento

Todas las intervenciones de entrenamiento de esta revisión se realizaron con regularidad y fueron de carácter progresivo. Las intervenciones difirieron en la dosis de entrenamiento cuantificado en cuanto a la intensidad del ejercicio y al volumen general de tiempo de entrenamiento.

Con respecto a las intervenciones de entrenamiento cardiorrespiratorio (tabla 1), y los estudios que en conjunto informaron de una mejoría clara en el estado cardiorrespiratorio (Análisis 1.9), nueve de los 10 estudios informaron de la intensidad del ejercicio como una reserva de frecuencia cardiaca del 60% al 80%, una frecuencia cardiaca máxima del 50% al 85%, o un esfuerzo máximo del 30% al 50%; se informó que la tasa de esfuerzo percibido fue de 13 a 15 en dos de los 10 estudios; existe cierta variación. Asimismo, la duración del programa varió de menos de 12 semanas en cuatro de cada 10 estudios a 12 semanas o más en seis de cada 10 estudios. Hay heterogeneidad en el análisis del estado cardiorrespiratorio, pero este hecho no proporciona una explicación obvia de la magnitud de los efectos. Cabe señalar que todos los estudios mencionados comprendían el entrenamiento cardiorrespiratorio, que era regular (en su mayor parte de 3 a 5 días por semana) y progresivo. La tendencia innegable es la de una mejor respuesta del estado físico en todos los estudios, independientemente de la dosis, por lo que tal vez la prescripción precisa de la intensidad sea menos importante en comparación con la capacidad de realizar ejercicio, que es regular y progresiva; la misma provoca una adaptación fisiológica.

Con respecto a las intervenciones de entrenamiento de resistencia (tabla 2), ocho de 20 estudios informaron de una intensidad del 70% al 80% de la fuerza máxima, y cinco de 20 estudios declararon que se requería un esfuerzo máximo sobre un número determinado de repeticiones. En general, 12 de 20 estudios requirieron de seis a 15 repeticiones de cada ejercicio utilizado; nueve de 20 estudios informaron de que se realizaron de tres a seis series de cada ejercicio. La duración del programa varió de menos de 12 semanas en 14 de 20 estudios a 12 semanas o más en seis de 10 estudios. Al igual que el entrenamiento cardiorrespiratorio, hay una variación en la dosis total y algunos estudios activaron más grupos musculares/utilizaron diferentes números de ejercicios que otros. Aunque se sintetizaron los datos sin hacer un metanálisis, hay un claro patrón de mejoría de la fuerza muscular que surge de las intervenciones de entrenamiento de resistencia. El entrenamiento de resistencia regular puede estimular las adaptaciones musculoesqueléticas en programas de ejercicios relativamente cortos y, aunque los mismos varían, son regulares y progresivos.

En cuanto a las intervenciones de entrenamiento mixto (tabla 3), en las que se informa de los parámetros de dosis de los componentes de entrenamiento cardiorrespiratorio y de resistencia, son de naturaleza similar a las descritas anteriormente.

Con respecto a la dosis, la realidad de la progresión es que la dosis no es fija y debe cambiar constantemente para impulsar adaptaciones. En los que responden más, la progresión puede ocurrir más rápido mientras que es más conservadora en los que se adaptan más lentamente. Una dosis de «talla única», particularmente en términos de intensidad y progresión, no parece realista y debería ser personalizada. En cuanto a la dosis inicial, quizás sea menos importante debido a que la progresión hará que las cosas avancen rápidamente; el simple hecho de hacer algo será un buen comienzo y ayudará a familiarizar a los pacientes con lo que implica el entrenamiento.

Puede surgir una subestimación de los beneficios si no se asiste o no se cumple con las intervenciones. Hubo asistencia completa en pocos ensayos incluidos, donde las intervenciones ocurrieron parcial o completamente durante la atención hospitalizada, fueron intervenciones domiciliarias o tuvieron una duración muy corta (cuatro semanas). En general, no hubo amenazas reales a la dosis planificada entre los estudios incluidos en su conjunto. Lo anterior es un reflejo de que hay pocos eventos adversos e indica que estas intervenciones son aceptables para los que participaron. Sin embargo, la mezcla de pacientes de los participantes incluidos puede haber restringido la generalizabilidad a la población de pacientes con accidentes cerebrovasculares.

La sobrestimación de los beneficios puede surgir en estudios en los que el grupo de intervención presenta factores de confusión potenciales relacionados con el aumento del tiempo de entrenamiento en comparación con el grupo de control; este hecho implica el agregado de un elemento indefinido de «dosis», que puede implicar actividad física. En estos ensayos sin control de atención los efectos beneficiosos adicionales podrían surgir de efectos no específicos de la contribución de los terapeutas, efectos psicosociales del contacto con otros participantes y factores como el traslado a y desde una ubicación de entrenamiento que podría equivaler a una dosis significativa de actividad física, de la cual podría surgir un efecto de entrenamiento real.

Aunque han surgido beneficios en los programas de menos de 12 semanas de duración, hay alguna evidencia que sugiere que los programas de rehabilitación física de cuatro a seis semanas son menos efectivos que los de ocho a 14 semanas (Pollock 2014). No hay razón por la que los programas más largos de entrenamiento físico no podrían ser más efectivos; asimismo, el aumento de la actividad física durante toda la vida después de un accidente cerebrovascular podría lograr o mantener algunos de los mismos beneficios que el ejercicio.

En general, los resultados de esta revisión sistemática indican que los supervivientes de accidentes cerebrovasculares pueden participar con éxito en una variedad de intervenciones de entrenamiento a corto plazo y completarlas. Aún no se ha establecido una dosis «óptima» para el contenido del entrenamiento para los pacientes con accidente cerebrovascular. En realidad, es probable que sea altamente individual y, por lo tanto, parece más apropiado un enfoque personalizado y estratificado para el entrenamiento con ejercicios físicos.

Tipo de entrenamiento

Fue posible comparar los efectos de los diferentes tipos de entrenamiento sobre la velocidad de la marcha. La velocidad de la caminata aumentó de manera significativa después del entrenamiento cardiorrespiratorio y del entrenamiento mixto, pero no después del entrenamiento de resistencia. Las intervenciones cardiorrespiratorias y las intervenciones mixtas incluyeron entrenamiento específico relacionado con la marcha, lo que dio lugar a efectos positivos del entrenamiento.

En general, los hallazgos de esta revisión muestran que los beneficios reflejan el concepto de especificidad, la naturaleza relacionada con la tarea de la respuesta al entrenamiento. En particular, el estado cardiorrespiratorio (VO2 máximo) mejoró después de las intervenciones que incluían el entrenamiento cardiorrespiratorio; la fuerza muscular mejoró después de intervenciones que incluían el entrenamiento de resistencia; el rendimiento al caminar mejoró en particular después de las intervenciones de entrenamiento basadas en la caminata o en modalidades de ejercicio similares a la caminata.

El equilibrio mejoró mediante el contenido del entrenamiento cardiorrespiratorio de la marcha, pero también mediante el contenido del entrenamiento de resistencia; los diferentes estímulos y adaptaciones reflejan la naturaleza multidimensional del equilibrio.

En general, no hay un tipo de entrenamiento «óptimo». Es probable que la mayoría de los pacientes se beneficien con un programa mixto de entrenamiento cardiorrespiratorio y de resistencia para la prevención secundaria, a fin de mejorar el estado físico, mejorar la movilidad y mejorar el equilibrio.

Momento adecuado del entrenamiento

Todos los metanálisis se dividieron en subgrupos de «durante la atención habitual» y «después de la atención habitual». Sin embargo, estos análisis deben interpretarse con cautela, ya que para muchas comparaciones solo se disponía de un número limitado de estudios.

Compleción y aplicabilidad general de las pruebas

Se incluyeron resultados centrados en el paciente: todavía hay una falta de resultados clave

Un ejercicio de establecimiento de prioridades realizado en 2012 identificó las diez prioridades de investigación más importantes para la vida después del accidente cerebrovascular (Pollock 2012). Entre las prioridades identificadas por los pacientes con accidente cerebrovascular y quienes los cuidan se encuentra una proporción considerable de áreas para las cuales el entrenamiento físico podría ser beneficioso:

  • funcionalidad cognitiva;

  • funcionalidad del miembro superior;

  • movilidad, equilibrio y marcha; y

  • y función del ejercicio en la funcionalidad física, la calidad de vida y la prevención secundaria del accidente cerebrovascular (Saunders 2014a).

Aparte de la movilidad, el equilibrio y algunos aspectos de la función, hay poca evidencia relacionada con las otras áreas, que los pacientes identificaron como relevantes. En particular hay una falta de investigación en cuanto a la función cognitiva, a pesar de estar clasificada como la prioridad de investigación más importante.

Medir la discapacidad y la dependencia en el accidente cerebrovascular es problemático. Habitualmente en los estudios de la rehabilitación física y el entrenamiento con ejercicios se informa de una variedad de escalas de discapacidad y evaluación. Estas escalas no siempre evalúan el mismo dominio funcional, por lo que plantean el problema de la validez y la fiabilidad de combinar sus resultados en un metanálisis. Además, algunas de estas escalas no están validadas en supervivientes de un accidente cerebrovascular y, por lo tanto, pueden carecer de especificidad. Las escalas de calificación también están propensas al «efecto de techo» y a distribuciones asimétricas. Sería útil que en los ensayos futuros solo se utilizaran escalas validadas bien conocidas para la evaluación del rendimiento funcional de los participantes y que los investigadores del ensayo consideraran de forma clara los problemas relacionados con el uso de estas escalas.

Los supervivientes de un accidente cerebrovascular que son elegibles para el entrenamiento con ejercicios habitualmente tienen niveles leves de discapacidad. Las deficiencias leves pueden ser difíciles de evaluar y es posible que muchas de las escalas existentes de discapacidad no las detecten. Sin embargo, la disminución funcional con el transcurso del tiempo, que se debe sencillamente a un aumento en la edad y la inactividad, podría significar que la discapacidad leve puede progresar rápidamente a niveles más graves. Por lo tanto, sería útil evaluar los resultados a largo plazo en los supervivientes de un accidente cerebrovascular leve con el uso de medidas de discapacidad preclínicas (por ejemplo Fried 1996).

Alguna falta de datos de seguimiento

Las mejorías en el estado físico después del entrenamiento y las mejorías en la funcionalidad física después de la rehabilitación son transitorias. Debido a que el estado físico puede estar asociado al estado funcional, en los estudios que evalúan los efectos del entrenamiento con ejercicios se debe examinar de forma sistemática el mantenimiento de los efectos beneficiosos a largo plazo. Se conoce que los parámetros del estado y la función se deterioran con la inactividad física y disminuyen con el aumento de la edad. Por lo tanto, es posible que los efectos a corto plazo del entrenamiento sean beneficiosos, solo después de un período de disminución funcional. Es necesario examinar las estrategias destinadas a promover la actividad física (incluida la reducción del comportamiento sedentario) y mantener el estado físico a largo plazo después de un accidente cerebrovascular.

Se sabe que las ventajas funcionales observadas al final de las intervenciones de rehabilitación son transitorias y desaparecen en un estadio posterior (Kwakkel 2002). Este hecho se debe probablemente a las mejorías continuas en el grupo de control y no a un deterioro en la función (Langhorne 2002). También se sabe que las mejorías en el estado físico observadas al final de las intervenciones de entrenamiento se deterioran. Pocos estudios incluidos en esta revisión sistemática evaluaron la posible retención de los beneficios a lo largo del tiempo. Los que lo hicieron tuvieron mayor riesgo de sesgo de desgaste. La mayoría de las mejorías funcionales observadas al final del período de entrenamiento no se mantuvieron en las evaluaciones posteriores. Sin embargo, se encontró que los efectos del entrenamiento cardiorrespiratorio y mixto sobre las medidas del rendimiento de la caminata se mantuvieron al final del período de seguimiento. Este efecto de retención podría deberse a un aumento en los niveles habituales de actividad física (que incluye la caminata) facilitado por la participación en una intervención de entrenamiento. Todavía se desconoce el grado en el que el entrenamiento con ejercicios a corto plazo influye sobre la actividad física habitual a más largo plazo después del accidente cerebrovascular. Actualmente no hay datos que analicen intervenciones con entrenamiento con ejercicios a largo plazo o intervenciones para facilitar el ejercicio continuado una vez que se completa la intervención con entrenamiento. En los ensayos futuros del entrenamiento con ejercicios físicos se deben incorporar evaluaciones a largo plazo. La adopción a largo plazo del ejercicio podría beneficiarse con un apoyo adicional para el cambio de comportamiento en lugar de una simple intervención de ejercicio finita (por ejemplo, un programa de ocho semanas).

Las intervenciones suelen ser cortas

Si bien los programas de ejercicio pueden ser finitos, es probable que los pacientes se beneficien con la actividad (incluido el ejercicio) durante toda la vida después de un accidente cerebrovascular. Otras intervenciones, como la posibilidad de ser más activo físicamente y ser menos sedentario, también son, al igual que el ejercicio, de una naturaleza de «gasto de energía» y pueden proporcionar algunos beneficios similares a los del ejercicio. Es plausible que estos enfoques contribuyan a lo que el ejercicio puede ofrecer y faciliten la retención y los beneficios a largo plazo.

Características de los participantes

La mayoría de los participantes podía deambular y presentaba una mejor funcionalidad. Solo cinco de 75 estudios incluyeron a participantes que no podían deambular, por lo que hay dificultades para generalizar los resultados de la revisión a las pacientes con accidente cerebrovascular que no pueden caminar. En los estudios incluidos se utilizaron criterios de elegibilidad relacionados con las contraindicaciones para el ejercicio; lo cual significa que los participantes tienen más probabilidades de tener una mejor función y un mejor estado de salud. Aunque este hecho restringe la población, los datos siguen siendo generalizables a los pacientes que son seleccionados como capaces de participar con seguridad en las intervenciones de ejercicio. El promedio de edad de los participantes fue de aproximadamente 62 años. Los resultados se consideran generalizables, ya que dos tercios de todos los accidentes cerebrovasculares se producen en pacientes menores de 70 años de edad (Feigin 2017).

Aumento en los estudios que incluyen elementos del entrenamiento de resistencia

En comparación con las actualizaciones anteriores de esta revisión sistemática, se ha observado un aumento de los estudios con un elemento de entrenamiento de resistencia. Este hecho significa que los datos sobre el entrenamiento físico son ahora más completos. El aumento del interés refleja el de otras áreas de la salud pública (Steele 2017).

Naturaleza de los grupos de control: factores de confusión

Más de la mitad de los estudios incluidos (41/75 estudios; 55%) tienen un diseño sin un control de atención, lo que significa que el tiempo de exposición no es equivalente. Lo anterior confunde estos datos de tal manera que los beneficios solo pueden atribuirse a la totalidad de la exposición y no al contenido y al diseño del entrenamiento físico en sí.

Calidad de la evidencia

Todos los datos que se revisaron son de ECA. La principal amenaza en lo que respecta a las conclusiones sobre el contenido y el diseño de los programas de ejercicio se debe a una exposición desequilibrada. Los análisis de sensibilidad identifican dónde puede estar ocurriendo lo anterior.

Sesgos potenciales en el proceso de revisión

En la etapa de búsqueda es posible que se hayan pasado por alto algunos estudios pertinentes. Sin embargo, se utilizó una estrategia de búsqueda muy exhaustiva y se garantizó que cada etapa de la inclusión involucrara una decisión consensuada e independiente de dos autores de la revisión.

En la etapa de selección de estudios es posible que las intervenciones se hayan clasificado erróneamente, lo que ha dado lugar a la exclusión o a la clasificación errónea del subgrupo primario (entrenamiento cardiorrespiratorio, de resistencia o mixto). Sin embargo, se utilizaron definiciones bien conocidas para el entrenamiento físico que permitieron utilizar criterios claros (USDHHS 2018).

En la etapa de extracción de datos, la mayoría de los estudios incluidos no incluyeron formalmente los eventos adversos como resultado previsto. Sin embargo, se revisaron todos los estudios en busca de eventos adversos graves.

En la etapa de extracción de datos, dos autores de la revisión extrajeron todas las características de los estudios y los elementos del «Riesgo de sesgo» de forma independiente y llegaron a un consenso. Un autor de la revisión extrajo los datos de resultados, pero todos los datos analizados en Review Manager 2014 fueron verificados doblemente por un segundo revisor.

En la etapa de análisis de los datos, los datos que faltaban de un estudio incluido se interpolaron antes del análisis (Bateman 2001). En los casos en que se introdujo heterogeneidad se evaluó el efecto de incluir este estudio con un análisis de sensibilidad.

En la etapa de análisis de los datos podría haber un sesgo de publicación y sesgos de estudios pequeños que afectaran las conclusiones. Se evaluó la evidencia de sesgo de publicación cuando un metanálisis incluyó 10 estudios o más. No hubo evidencia de sesgos de publicación problemáticos.

En la etapa de análisis de datos se examinó una serie de diferentes clases de resultados; esta es una revisión amplia con dicho objetivo. Sin embargo, los estudios de viabilidad pequeños o los estudios piloto con alto riesgo de sesgo y múltiples resultados pueden ser más «visibles» en esta revisión, ya que los datos pueden aparecer en múltiples metanálisis de diferentes resultados. Por el contrario, los grandes estudios centrados en un número limitado de resultados pueden ser menos «visibles». Los estudios pequeños con medidas de resultados múltiples también son más vulnerables a mostrar efectos positivos por azar si no realizan el ajuste a las comparaciones múltiples.

En la etapa de informe, se tomaron decisiones post hoc sobre qué resultados incluir en las tablas de estudios. Se incluyeron los hallazgos para los resultados primarios y para los tres tipos de entrenamiento, independientemente del efecto. Los resultados secundarios que no se incluyeron se indican con claridad como datos incompletos sobre los que no es posible puede llegar a un consenso.

Acuerdos y desacuerdos con otros estudios o revisiones

Se recuperaron 29 revisiones sistemáticas relacionadas con el ejercicio después de un accidente cerebrovascular durante las búsquedas para esta actualización. En general, las mismas difieren de la arquitectura de esta revisión amplia debido a que la mayoría tiende a centrarse en un tipo de ejercicio (por ejemplo, el entrenamiento cardiorrespiratorio o de resistencia), una modalidad de ejercicio (por ejemplo, caminata/cinta rodante), o informan de una gama restringida de tipos de medidas de resultado. Por consiguiente, esta revisión es mucho más exhaustiva en cuanto a la posibilidad de captar tanto la complejidad de la intervención como la gama de posibles beneficios del ejercicio en su conjunto.

Al observar resultado por resultado hay algunas pautas de similitud. Entre ellas se incluye que el estado cardiorrespiratorio puede mejorar (Baldwin 2016; Boyne 2017; Saltychev 2016); el equilibrio puede mejorar mediante el entrenamiento cardiorrespiratorio, de resistencia y mixto (Chen 2016; Hasan 2016; Iatridou 2018; Tally 2017; Van Duijnhoven 2016; Vloothuis 2016; Wist 2016); y la caminata/movilidad puede mejorar mediante un entrenamiento mixto y cardiorrespiratorio (Baldwin 2016; Bonini‐Rocha 2018; Boyne 2017; English 2017; Ilunga Tshiswaka 2018; Jeon 2015; Kendall 2016; Mehrholz 2017), en particular si se utiliza la caminata como modalidad de ejercicio. También hay algunas preocupaciones compartidas entre otras revisiones sistemáticas acerca de los beneficios del entrenamiento de resistencia por sí solo en términos de transferencia de beneficios funcionales (Dorsch 2018; Salter 2016; Wist 2016).

Existen algunas diferencias, ya que varias revisiones muestran efectos positivos en los resultados cognitivos (Hasan 2016; Oberlin 2017; Vanderbeken 2017; Zheng 2016), mientras que los análisis de esta revisión no fueron concluyentes. Una de las razones por las que los hallazgos de esta y los de otras revisiones pueden diferir es que algunas revisiones incluyeron otros elementos de cointervención que aquí se excluirían automáticamente, y también pueden haber incluido estudios que no cumplen con los criterios para ser definidos como ejercicio. Un equipo de autores de revisión compartió las preocupaciones sobre el informe inadecuado, y la naturaleza y dosis de las intervenciones de ejercicio (Ammann 2014).

Study flow diagram for the current update of this review
Figuras y tablas -
Figure 1

Study flow diagram for the current update of this review

'Risk of bias' summary: review authors' judgements about each 'Risk of bias' item for each included study. In studies with no follow‐up measurement we did not assess risk of bias for the item labelled 'Incomplete outcome data (attrition bias): end of follow‐up'; this results in some blank spaces
Figuras y tablas -
Figure 2

'Risk of bias' summary: review authors' judgements about each 'Risk of bias' item for each included study. In studies with no follow‐up measurement we did not assess risk of bias for the item labelled 'Incomplete outcome data (attrition bias): end of follow‐up'; this results in some blank spaces

'Risk of bias' graph: review authors' judgements about each 'Risk of bias' item presented as percentages across all included studies. In studies with no follow‐up measurement, we did not assess risk of bias for the item labelled 'Incomplete outcome data (attrition bias): end of follow‐up'; this results in some blank spaces
Figuras y tablas -
Figure 3

'Risk of bias' graph: review authors' judgements about each 'Risk of bias' item presented as percentages across all included studies. In studies with no follow‐up measurement, we did not assess risk of bias for the item labelled 'Incomplete outcome data (attrition bias): end of follow‐up'; this results in some blank spaces

Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.12 mobility ‐ walking maximal speed (over 5 to 10 metres; m/min)
Figuras y tablas -
Figure 4

Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.12 mobility ‐ walking maximal speed (over 5 to 10 metres; m/min)

Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.13 mobility ‐ walking preferred speed (m/min)
Figuras y tablas -
Figure 5

Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.13 mobility ‐ walking preferred speed (m/min)

Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.14 mobility ‐ walking capacity (6‐Minute Walk Test (metres))
Figuras y tablas -
Figure 6

Funnel plot of comparison 1. Cardiorespiratory training versus control ‐ end of intervention, outcome: 1.14 mobility ‐ walking capacity (6‐Minute Walk Test (metres))

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 1 Death.
Figuras y tablas -
Analysis 1.1

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 1 Death.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 2 Disability ‐ Functional Independence Measure.
Figuras y tablas -
Analysis 1.2

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 2 Disability ‐ Functional Independence Measure.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 3 Disability ‐ Barthel Index.
Figuras y tablas -
Analysis 1.3

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 3 Disability ‐ Barthel Index.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 4 Disability ‐ Rivermead Mobility Index (scale 0 to 15).
Figuras y tablas -
Analysis 1.4

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 4 Disability ‐ Rivermead Mobility Index (scale 0 to 15).

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 5 Disability ‐ combined disability scales.
Figuras y tablas -
Analysis 1.5

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 5 Disability ‐ combined disability scales.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 6 Risk factors ‐ blood pressure, systolic.
Figuras y tablas -
Analysis 1.6

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 6 Risk factors ‐ blood pressure, systolic.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 7 Risk factors ‐ blood pressure, diastolic.
Figuras y tablas -
Analysis 1.7

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 7 Risk factors ‐ blood pressure, diastolic.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 8 Risk factors ‐ body mass index (BMI).
Figuras y tablas -
Analysis 1.8

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 8 Risk factors ‐ body mass index (BMI).

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 9 Physical fitness ‐ peak VO2.
Figuras y tablas -
Analysis 1.9

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 9 Physical fitness ‐ peak VO2.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 10 Physical fitness ‐ maximum cycling work rate.
Figuras y tablas -
Analysis 1.10

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 10 Physical fitness ‐ maximum cycling work rate.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 11 Mobility ‐ functional ambulation categories.
Figuras y tablas -
Analysis 1.11

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 11 Mobility ‐ functional ambulation categories.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 12 Mobility ‐ walking maximal speed (over 5 to 10 metres).
Figuras y tablas -
Analysis 1.12

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 12 Mobility ‐ walking maximal speed (over 5 to 10 metres).

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 13 Mobility ‐ walking preferred speed.
Figuras y tablas -
Analysis 1.13

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 13 Mobility ‐ walking preferred speed.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 14 Mobility ‐ walking capacity (6‐MWT metres).
Figuras y tablas -
Analysis 1.14

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 14 Mobility ‐ walking capacity (6‐MWT metres).

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 15 Mobility ‐ walking capacity (m/min).
Figuras y tablas -
Analysis 1.15

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 15 Mobility ‐ walking capacity (m/min).

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 16 Mobility ‐ community walk (min).
Figuras y tablas -
Analysis 1.16

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 16 Mobility ‐ community walk (min).

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 17 Physical function ‐ Berg Balance Scale (score 0 to 56).
Figuras y tablas -
Analysis 1.17

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 17 Physical function ‐ Berg Balance Scale (score 0 to 56).

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 18 Physical function ‐ Timed Up and Go (sec).
Figuras y tablas -
Analysis 1.18

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 18 Physical function ‐ Timed Up and Go (sec).

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 19 Health‐related QoL ‐ SF‐36 & SF‐12 Physical Health Component.
Figuras y tablas -
Analysis 1.19

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 19 Health‐related QoL ‐ SF‐36 & SF‐12 Physical Health Component.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 20 Health‐related QoL ‐ SF‐36 & SF‐12 Mental Health Component.
Figuras y tablas -
Analysis 1.20

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 20 Health‐related QoL ‐ SF‐36 & SF‐12 Mental Health Component.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 21 Health‐related QoL ‐ EuroQol EQ‐5D.
Figuras y tablas -
Analysis 1.21

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 21 Health‐related QoL ‐ EuroQol EQ‐5D.

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 22 Mood ‐ Beck Depression Index.
Figuras y tablas -
Analysis 1.22

Comparison 1 Cardiorespiratory training versus control ‐ end of intervention, Outcome 22 Mood ‐ Beck Depression Index.

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 1 Death.
Figuras y tablas -
Analysis 2.1

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 1 Death.

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 2 Disability ‐ combined disability scales.
Figuras y tablas -
Analysis 2.2

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 2 Disability ‐ combined disability scales.

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 3 Mobility ‐ walking maximal speed (m/min).
Figuras y tablas -
Analysis 2.3

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 3 Mobility ‐ walking maximal speed (m/min).

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 4 Mobility ‐ walking preferred speed (m/min).
Figuras y tablas -
Analysis 2.4

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 4 Mobility ‐ walking preferred speed (m/min).

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 5 Mobility ‐ walking capacity (6‐MWT metres).
Figuras y tablas -
Analysis 2.5

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 5 Mobility ‐ walking capacity (6‐MWT metres).

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 6 Physical function ‐ Berg Balance scale.
Figuras y tablas -
Analysis 2.6

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 6 Physical function ‐ Berg Balance scale.

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 7 Health‐related QoL ‐ EuroQol EQ‐5D.
Figuras y tablas -
Analysis 2.7

Comparison 2 Cardiorespiratory training versus control ‐ end of retention follow‐up, Outcome 7 Health‐related QoL ‐ EuroQol EQ‐5D.

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 1 Death.
Figuras y tablas -
Analysis 3.1

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 1 Death.

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 2 Physical fitness ‐ composite measure of muscle strength.
Figuras y tablas -
Analysis 3.2

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 2 Physical fitness ‐ composite measure of muscle strength.

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 3 Physical fitness ‐ muscle strength, paretic knee flexion.
Figuras y tablas -
Analysis 3.3

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 3 Physical fitness ‐ muscle strength, paretic knee flexion.

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 4 Physical fitness ‐ muscle strength, paretic knee extension.
Figuras y tablas -
Analysis 3.4

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 4 Physical fitness ‐ muscle strength, paretic knee extension.

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 5 Mobility ‐ walking maximal speed (m/min).
Figuras y tablas -
Analysis 3.5

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 5 Mobility ‐ walking maximal speed (m/min).

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 6 Mobility ‐ walking preferred speed (m/min).
Figuras y tablas -
Analysis 3.6

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 6 Mobility ‐ walking preferred speed (m/min).

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 7 Mobility ‐ walking capacity (6‐MWT metres).
Figuras y tablas -
Analysis 3.7

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 7 Mobility ‐ walking capacity (6‐MWT metres).

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 8 Physical function ‐ Berg Balance Scale (score 0 to 56).
Figuras y tablas -
Analysis 3.8

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 8 Physical function ‐ Berg Balance Scale (score 0 to 56).

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 9 Physical function ‐ stair climbing, maximal (sec/step).
Figuras y tablas -
Analysis 3.9

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 9 Physical function ‐ stair climbing, maximal (sec/step).

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 10 Physical function ‐ Timed Up and Go (sec).
Figuras y tablas -
Analysis 3.10

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 10 Physical function ‐ Timed Up and Go (sec).

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 11 Health‐related QoL ‐ SF‐36 physical functioning (PF) scale.
Figuras y tablas -
Analysis 3.11

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 11 Health‐related QoL ‐ SF‐36 physical functioning (PF) scale.

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 12 Health‐related QoL ‐ SF‐36 mental health (MH) scale.
Figuras y tablas -
Analysis 3.12

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 12 Health‐related QoL ‐ SF‐36 mental health (MH) scale.

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 13 Mood ‐ Centre for Epidemiologic Studies for Depression scale (CES‐D).
Figuras y tablas -
Analysis 3.13

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 13 Mood ‐ Centre for Epidemiologic Studies for Depression scale (CES‐D).

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 14 Mood ‐ combined depression scales.
Figuras y tablas -
Analysis 3.14

Comparison 3 Resistance training versus control ‐ end of intervention, Outcome 14 Mood ‐ combined depression scales.

Comparison 4 Resistance training versus control ‐ end of retention follow‐up, Outcome 1 Death.
Figuras y tablas -
Analysis 4.1

Comparison 4 Resistance training versus control ‐ end of retention follow‐up, Outcome 1 Death.

Comparison 4 Resistance training versus control ‐ end of retention follow‐up, Outcome 2 Mobility ‐ walking maximal speed (m/min).
Figuras y tablas -
Analysis 4.2

Comparison 4 Resistance training versus control ‐ end of retention follow‐up, Outcome 2 Mobility ‐ walking maximal speed (m/min).

Comparison 4 Resistance training versus control ‐ end of retention follow‐up, Outcome 3 Mobility ‐ walking capacity (6‐MWT metres).
Figuras y tablas -
Analysis 4.3

Comparison 4 Resistance training versus control ‐ end of retention follow‐up, Outcome 3 Mobility ‐ walking capacity (6‐MWT metres).

Comparison 4 Resistance training versus control ‐ end of retention follow‐up, Outcome 4 Physical function ‐ Timed Up and Go (sec).
Figuras y tablas -
Analysis 4.4

Comparison 4 Resistance training versus control ‐ end of retention follow‐up, Outcome 4 Physical function ‐ Timed Up and Go (sec).

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 1 Death.
Figuras y tablas -
Analysis 5.1

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 1 Death.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 2 Disability ‐ Barthel Index (BI).
Figuras y tablas -
Analysis 5.2

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 2 Disability ‐ Barthel Index (BI).

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 3 Disability ‐ Lawton IADL.
Figuras y tablas -
Analysis 5.3

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 3 Disability ‐ Lawton IADL.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 4 Disability ‐ Rivermead Mobility Index (RMI).
Figuras y tablas -
Analysis 5.4

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 4 Disability ‐ Rivermead Mobility Index (RMI).

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 5 Disability ‐ combined disability scales.
Figuras y tablas -
Analysis 5.5

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 5 Disability ‐ combined disability scales.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 6 Risk factors ‐ blood pressure, systolic.
Figuras y tablas -
Analysis 5.6

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 6 Risk factors ‐ blood pressure, systolic.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 7 Risk factors ‐ blood pressure, diastolic.
Figuras y tablas -
Analysis 5.7

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 7 Risk factors ‐ blood pressure, diastolic.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 8 Physical fitness ‐ peak VO2 (mL/kg/min).
Figuras y tablas -
Analysis 5.8

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 8 Physical fitness ‐ peak VO2 (mL/kg/min).

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 9 Physical fitness ‐ gait economy, VO2 (mL/kg/metre).
Figuras y tablas -
Analysis 5.9

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 9 Physical fitness ‐ gait economy, VO2 (mL/kg/metre).

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 10 Physical fitness ‐ muscle strength, ankle dorsiflexion*.
Figuras y tablas -
Analysis 5.10

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 10 Physical fitness ‐ muscle strength, ankle dorsiflexion*.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 11 Physical fitness ‐ muscle strength, knee extension*.
Figuras y tablas -
Analysis 5.11

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 11 Physical fitness ‐ muscle strength, knee extension*.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 12 Physical fitness ‐ muscle strength, grip strength (paretic hand).
Figuras y tablas -
Analysis 5.12

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 12 Physical fitness ‐ muscle strength, grip strength (paretic hand).

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 13 Mobility ‐ walking maximum speed.
Figuras y tablas -
Analysis 5.13

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 13 Mobility ‐ walking maximum speed.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 14 Mobility ‐ walking preferred speed (m/min).
Figuras y tablas -
Analysis 5.14

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 14 Mobility ‐ walking preferred speed (m/min).

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 15 Mobility ‐ walking capacity (6‐MWT metres).
Figuras y tablas -
Analysis 5.15

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 15 Mobility ‐ walking capacity (6‐MWT metres).

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 16 Mobility ‐ Community Ambulation Speed (> 0.8 m/sec).
Figuras y tablas -
Analysis 5.16

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 16 Mobility ‐ Community Ambulation Speed (> 0.8 m/sec).

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 17 Physical function ‐ balance ‐ Berg Balance scale.
Figuras y tablas -
Analysis 5.17

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 17 Physical function ‐ balance ‐ Berg Balance scale.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 18 Physical function ‐ balance ‐ functional reach.
Figuras y tablas -
Analysis 5.18

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 18 Physical function ‐ balance ‐ functional reach.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 19 Physical function ‐ balance ‐ combined outcome data.
Figuras y tablas -
Analysis 5.19

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 19 Physical function ‐ balance ‐ combined outcome data.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 20 Physical function ‐ Timed Up and Go (sec).
Figuras y tablas -
Analysis 5.20

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 20 Physical function ‐ Timed Up and Go (sec).

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 21 Health‐related QoL ‐ SF‐36 physical functioning.
Figuras y tablas -
Analysis 5.21

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 21 Health‐related QoL ‐ SF‐36 physical functioning.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 22 Health‐related QoL ‐ SF‐36 physical role functioning.
Figuras y tablas -
Analysis 5.22

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 22 Health‐related QoL ‐ SF‐36 physical role functioning.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 23 Health‐related QoL ‐ SF‐36 social role functioning.
Figuras y tablas -
Analysis 5.23

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 23 Health‐related QoL ‐ SF‐36 social role functioning.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 24 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ anxiety score.
Figuras y tablas -
Analysis 5.24

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 24 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ anxiety score.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 25 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ depression score.
Figuras y tablas -
Analysis 5.25

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 25 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ depression score.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 26 Mood ‐ Stroke Impact Scale emotion score.
Figuras y tablas -
Analysis 5.26

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 26 Mood ‐ Stroke Impact Scale emotion score.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 27 Mood ‐ combined depression scales.
Figuras y tablas -
Analysis 5.27

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 27 Mood ‐ combined depression scales.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 28 Cognitive function ‐ FIM cognitive score.
Figuras y tablas -
Analysis 5.28

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 28 Cognitive function ‐ FIM cognitive score.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 29 Cognitive function ‐ SIS memory and thinking.
Figuras y tablas -
Analysis 5.29

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 29 Cognitive function ‐ SIS memory and thinking.

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 30 Cognitive function ‐ SIS communication.
Figuras y tablas -
Analysis 5.30

Comparison 5 Mixed training versus control ‐ end of intervention, Outcome 30 Cognitive function ‐ SIS communication.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 1 Death.
Figuras y tablas -
Analysis 6.1

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 1 Death.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 2 Disability ‐ Barthel Index (BI).
Figuras y tablas -
Analysis 6.2

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 2 Disability ‐ Barthel Index (BI).

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 3 Disability ‐ Nottingham Extended ADL.
Figuras y tablas -
Analysis 6.3

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 3 Disability ‐ Nottingham Extended ADL.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 4 Disability ‐ Rivermead Mobility Index (RMI).
Figuras y tablas -
Analysis 6.4

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 4 Disability ‐ Rivermead Mobility Index (RMI).

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 5 Disability ‐ combined disability scales.
Figuras y tablas -
Analysis 6.5

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 5 Disability ‐ combined disability scales.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 6 Mobility ‐ Functional Ambulation Categories.
Figuras y tablas -
Analysis 6.6

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 6 Mobility ‐ Functional Ambulation Categories.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 7 Mobility ‐ walking preferred speed (m/min).
Figuras y tablas -
Analysis 6.7

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 7 Mobility ‐ walking preferred speed (m/min).

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 8 Mobility ‐ walking capacity (6‐MWT metres).
Figuras y tablas -
Analysis 6.8

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 8 Mobility ‐ walking capacity (6‐MWT metres).

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 9 Mobility ‐ community ambulation speed (> 0.8 m/sec).
Figuras y tablas -
Analysis 6.9

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 9 Mobility ‐ community ambulation speed (> 0.8 m/sec).

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 10 Physical function ‐ balance ‐ Berg Balance Scale.
Figuras y tablas -
Analysis 6.10

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 10 Physical function ‐ balance ‐ Berg Balance Scale.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 11 Physical function ‐ balance ‐ functional reach.
Figuras y tablas -
Analysis 6.11

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 11 Physical function ‐ balance ‐ functional reach.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 12 Physical function ‐ Timed Up and Go (sec).
Figuras y tablas -
Analysis 6.12

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 12 Physical function ‐ Timed Up and Go (sec).

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 13 Health‐related QoL ‐ SF‐36 physical functioning.
Figuras y tablas -
Analysis 6.13

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 13 Health‐related QoL ‐ SF‐36 physical functioning.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 14 Health‐related QoL ‐ SF‐36 physical role functioning.
Figuras y tablas -
Analysis 6.14

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 14 Health‐related QoL ‐ SF‐36 physical role functioning.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 15 Mood ‐ Stroke Impact Scale emotion score.
Figuras y tablas -
Analysis 6.15

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 15 Mood ‐ Stroke Impact Scale emotion score.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 16 Mood ‐ Geriatric Depression Scale.
Figuras y tablas -
Analysis 6.16

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 16 Mood ‐ Geriatric Depression Scale.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 17 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ anxiety score.
Figuras y tablas -
Analysis 6.17

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 17 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ anxiety score.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 18 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ depression score.
Figuras y tablas -
Analysis 6.18

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 18 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ depression score.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 19 Mood ‐ combined depression scales.
Figuras y tablas -
Analysis 6.19

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 19 Mood ‐ combined depression scales.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 20 Cognitive function ‐ FIM cognitive score.
Figuras y tablas -
Analysis 6.20

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 20 Cognitive function ‐ FIM cognitive score.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 21 Cognitive function ‐ SIS memory and thinking.
Figuras y tablas -
Analysis 6.21

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 21 Cognitive function ‐ SIS memory and thinking.

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 22 Cognitive function ‐ SIS communication.
Figuras y tablas -
Analysis 6.22

Comparison 6 Mixed training versus control ‐ end of retention follow‐up, Outcome 22 Cognitive function ‐ SIS communication.

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 1 Disability ‐ combined disability scales.
Figuras y tablas -
Analysis 7.1

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 1 Disability ‐ combined disability scales.

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 2 Mobility ‐ walking maximal speed.
Figuras y tablas -
Analysis 7.2

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 2 Mobility ‐ walking maximal speed.

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 3 Mobility ‐ walking preferred speed.
Figuras y tablas -
Analysis 7.3

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 3 Mobility ‐ walking preferred speed.

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 4 Mobility ‐ walking capacity (6‐MWT distance).
Figuras y tablas -
Analysis 7.4

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 4 Mobility ‐ walking capacity (6‐MWT distance).

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 5 Physical Function ‐ Balance ‐ Berg Balance Scale.
Figuras y tablas -
Analysis 7.5

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 5 Physical Function ‐ Balance ‐ Berg Balance Scale.

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 6 Physical function ‐ Timed up and go.
Figuras y tablas -
Analysis 7.6

Comparison 7 Cardiorespiratory versus resistance versus mixed training, Outcome 6 Physical function ‐ Timed up and go.

Summary of findings for the main comparison. Cardiorespiratory training compared to control for people with stroke: end of intervention

Cardiorespiratory training compared to control for people with stroke: end of intervention

Patient or population: people with stroke
Setting: during and after usual care
Intervention: cardiorespiratory training
Comparison: control; end of intervention

Outcomes

Relative effect
(95% CI)

Number of participants
(studies)

Certainty of the evidence
(GRADE)

Comments

Death

Analysis 1.1

Risk difference 0.00
(−0.01 to 0.01)

1631
(32 RCTs)

⊕⊕⊝⊝
Lowa

Death is very uncommon, with only 4 deaths; 2 deaths in the control group and 2 in the intervention group of a single study (Gordon 2013).

Dead or dependent

0 (0 RCTs)

No studies reported the composite outcome of death or dependency.

Disability

Pooled functional scales

Analysis 1.5

SMD 0.52 higher
(0.19 higher to 0.84 higher)

462
(8 RCTs)

⊕⊕⊕⊝
Moderateb

A SMD of global scales of disability is difficult to interpret. The magnitude of increase observed (> 0.5) can generally be categorised as a 'moderate' effect. Any improvement may be reflecting improved mobility since mobility items are commonly included in these assessment tools.

Physical fitness

VO2 peak (mL/kg/min)

Analysis 1.9

MD 3.4 mL/kg/min higher
(2.98 higher to 3.83 higher)

438
(9 RCTs)

⊕⊕⊕⊝
Moderatec

An increase of 1 MET (3.3 mL/kg/min) is associated with a 7% risk reduction in stroke hospitalisation (Pandey 2016). The effect here is of similar magnitude and suggests secondary prevention targets could be achieved within short periods of training.

Muscle strength

No data; specificity of training gives little rationale to investigate

Mobility

Preferred gait speed (m/min)

Analysis 1.13

MD 4.47 m/min faster
(2.07 faster to 6.87 faster)

588
(12 RCTs)

⊕⊕⊕⊕
Highd

These increases in preferred walking speed and walking capacity are relevant to community ambulation. The interventions are mostly those with a walking mode of exercise. These functional benefits are also maintained after the end of the training interventions. Maximal speed and other indices of gait also improve.

Gait endurance (6‐MWT metres)

Analysis 1.14

MD 33.41 m further
(19.04 further to 47.78 further)

882
(16 RCTs)

⊕⊕⊕⊕
Highe

Physical function

Berg Balance Scale

(0 to 56, best balance = 56)

Analysis 1.17

MD 1.92 units higher
(0.16 higher to 3.68 higher)

471
(8 RCTs)

⊕⊕⊕⊝
Moderatef

Both of these outcomes are indices of balance.

3‐metre Timed Up and Go (seconds)

Analysis 1.18

MD 3.42 s faster
(2.05 faster to 4.78 faster)

223
(5 RCTs)

⊕⊕⊕⊝
Moderateg

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

6‐MWT: 6‐Minute Walk Test; CI: confidence interval; MD: mean difference; MET: metabolic equivalent; RCT: randomised controlled trial; RR: risk ratio; SMD: standardised mean difference

GRADE Working Group grades of evidence
High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.
Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

aMost participants were high‐functioning; risk of death was low among this group. There is some risk of bias from imbalanced exposure in 13 of the 20 included studies and some reporting uncertainties concerning reasons for dropouts in six of the 32 studies.
bThere is some heterogeneity (I2 = 61%); other issues with individual studies account for this heterogeneity.
cThere are some 'Risk of bias' items recorded as 'high' but these are among studies with a low weighting. There is uncertainty in the data of one study (Jin 2013). If we exclude this study, a clear effect is still present (MD 2.80 mL/kg/min higher (1.66 higher to 3.95 higher) with high‐certainty evidence).
dAlthough five out of 13 studies are confounded for exposure time the effect is still apparent when these are excluded.
eSome heterogeneity is present (I2 = 30%) but sensitivity analysis of confounded studies and those using non‐walking (cycling) exercise modes reduces this and a similar beneficial effect remains.
fThere is some heterogeneity (I2 = 57%).
gThree out of five studies are confounded for exposure time.

Figuras y tablas -
Summary of findings for the main comparison. Cardiorespiratory training compared to control for people with stroke: end of intervention
Summary of findings 2. Resistance training compared to control for people with stroke: end of intervention

Resistance training compared to control for people with stroke: end of intervention

Patient or population: people with stroke
Setting: during and after usual care
Intervention: resistance training
Comparison: control; end of intervention

Outcomes

Relative effect
(95% CI)

Number of participants
(studies)

Certainty of the evidence
(GRADE)

Comments

Death

Analysis 3.1

Risk difference 0.00
(−0.02 to 0.02)

803
(20 RCTs)

⊕⊕⊝⊝
Lowa

Death is very uncommon, with only 2 deaths; 1 in the control group and 1 in the intervention group of a single study (Knox 2018).

Dead or dependent

0 (0 RCTs)

No studies reported the composite outcome of death or dependency.

Disability

Pooled functional scales

Too few data reporting global indices of disability to establish any consensus effects.

Physical Fitness

VO2 peak (mL/kg/min)

The rationale for resistance training is to increase muscle strength and not cardiorespiratory fitness therefore there is little rationale to investigate this outcome. Only 1 study measured VO2 peak and this indicated a 6% improvement.

Muscle strength ‐ composite measure

Analysis 3.2

SMD 0.58 higher (0.06 higher to 1.1 higher)

60 (2 RCTs)

⊕⊕⊝⊝
Lowb

Overall, 11 RCTs reported muscle strength outcomes. 10/11 studies, mostly examining lower limb fitness, demonstrated that resistance training can improve muscle strength and some studies also indicated that indices such as local muscular endurance and power output can be improved.

Variation in the method for measuring strength restricts the pooling of data however three small groups of outcomes could be pooled. These show medium‐sized effects (SMD > 0.5) only for one outcome, a composite measure of strength.

Muscle strength ‐ paretic knee flexion

Analysis 3.3

SMD 0.72 higher (0.10 higher to 1.34 higher)

93 (3 RCTs)

⊕⊕⊕⊝
Moderatec

Muscle strength ‐ paretic knee extension

Analysis 3.4

SMD 1.09 higher (0.23 lower to 2.41 higher)

93 (3 RCTs)

⊕⊕⊝⊝
Lowd

Mobility

Preferred gait speed (m/min)

Analysis 3.6

MD 2.15 m/min faster
(3.57 slower to 7.87 faster)

203
(5 RCTs)

⊕⊕⊕⊝
Moderatee

There was no statistically significant effect of training on preferred walking speed or on other indices of gait such as maximal walking speed. Only 6‐MWT data showed a benefit but this and all other gait measures showed no statistically significant effect after a follow‐up period. These training interventions were not based on a walking mode of exercise.

Gait endurance (6‐MWT metres)

Analysis 3.7

MD 24.98 m further
(11.98 further to 37.98 further)

238
(5 RCTs)

⊕⊕⊝⊝
Lowf

Physical Function

Berg Balance Scale

(0 to 56, best balance = 56)

Analysis 3.8

MD 3.27 higher
(2.15 higher to 4.38 higher)

220
(5 RCTs)

⊕⊕⊝⊝
Lowg

Both of these outcomes are indices of balance.

The training only showed a statistically significant improvement in balance measured with the Berg Balance Scale.

3‐metre Timed Up and Go (seconds)

Analysis 3.10

MD 3.46 s faster
(0.02 slower to 6.94 faster)

224
(5 RCTs)

⊕⊕⊝⊝
Lowh

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

6‐MWT: 6‐Minute Walk Test; CI: confidence interval; MD: mean difference; RCT: randomised controlled trial; SMD: standardised mean difference

GRADE Working Group grades of evidence
High certainty: We are very confident that the true effect lies close to that of the estimate of the effect
Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

aMost participants were high‐functioning; risk of death was low among this group. There is serious risk of bias from imbalanced exposure in 12 of the 20 included studies.
bOne of the two included studies has major risk of bias issues and the composite measure of muscle strength is indirect in nature.
cOne of the three included studies has risk of bias issues. There is some heterogeneity (I2 = 47%).
dOne of the three included studies has risk of bias issues. There is high heterogeneity (I2 = 87%).
eHigh degree of heterogeneity (I2 = 76%).
fVery serious risk of bias including three out of five studies confounded for exposure time; key 'Risk of bias' items affecting highest weighted studies.
gVery serious risk of bias including three out of five studies confounded for exposure time.
hHigh degree of heterogeneity (I2 = 89%) and four out of five studies confounded for exposure time.

Figuras y tablas -
Summary of findings 2. Resistance training compared to control for people with stroke: end of intervention
Summary of findings 3. Mixed training compared to control for people with stroke: end of intervention

Mixed training compared to control for people with stroke: end of intervention

Patient or population: people with stroke
Setting: during and after usual care
Intervention: mixed training
Comparison: control; end of intervention

Outcomes

Relative effect
(95% CI)

Number of participants
(studies)

Certainty of the evidence
(GRADE)

Comments

Death

Analysis 5.1

Risk difference 0.00

(−0.02 to 0.01)

1231
(23 RCTs)

⊕⊕⊝⊝
Lowa

Although there were more deaths in the control group there was no statistically significant difference between the groups.

Dead or dependent

0 (0 RCTs)

No studies reported the composite outcome of death or dependency.

Disability

Pooled functional scales

Analysis 5.5

SMD 0.23 higher
(0.03 higher to 0.42 higher)

604
(9 RCTs)

⊕⊕⊝⊝
Lowb

A SMD of global scales of disability is difficult to interpret. The magnitude of increase observed (0.2 to 0.5) can generally be categorised as a 'small' effect. Any improvement may be reflecting improved mobility since mobility items are commonly included in these assessment tools. 7/9 studies were confounded for exposure time so any effects may be exaggerated. Any improvement may be connected to improved mobility since mobility items are a common feature of these scales.

Physical fitness

VO2 peak (mL/kg/min)

Analysis 5.8

MD 1.4 mL/kg/min higher
(‐0.19 lower to 2.99 higher)

140
(2 RCTs)

⊕⊕⊝⊝
Lowc

There were too few cardiorespiratory fitness data reported to establish any consensus effects for mixed training.

Muscle strength ‐ ankle dorsiflexion

Analysis 5.10

SMD 0.8 stronger (‐0.82 weaker to 2.41 stronger)

148 (2 RCTs)

⊕⊝⊝⊝
Very lowd

Overall 6 RCTs reported muscle strength outcomes.

Variation in the method for measuring strength restricted the pooling of data; however, 3 groups of strength outcomes could be pooled.

Only knee extensor strength showed a small (> 0.2) beneficial effect on knee extension strength.

Muscle strength ‐ knee extension

Analysis 5.11

SMD 0.33 stronger (0.05 stronger to 0.61 stronger)

202 (3 RCTs)

⊕⊕⊝⊝
Lowe

Muscle strength ‐ paretic grip strength (kg)

Analysis 5.12

MD 0.32 Kg stronger (‐0.88 weaker to 1.52 stronger)

147 (3 RCTs)

⊕⊕⊝⊝
Lowf

Mobility

Preferred gait speed (m/min)

Analysis 5.14

MD 4.71 m/min faster
(1.32 faster to 8.1 faster)

738
(10 RCTs)

⊕⊕⊕⊝
Moderateg

These increases in preferred walking speed and walking capacity are relevant to community ambulation. The interventions are mostly those with a walking mode of exercise. These functional benefits in the 6‐MWT were also maintained after the end of the training interventions.

Gait endurance (6‐MWT metres)

Analysis 5.15

MD 35 m further
(15.91 further to 54.09 further)

720
(10 RCTs)

⊕⊕⊝⊝
Lowh

Physical function

Berg Balance Scale

(0 to 56, best balance = 56)

Analysis 5.17

MD 2.12 higher
(0.82 higher to 3.41 higher)

419
(9 RCTs)

⊕⊕⊝⊝
Lowi

Both of these outcomes are indices of balance, only the Berg Balance Scale demonstrated a statistically significant improvement.

3‐metre Timed Up and Go (seconds)

Analysis 5.20

MD 2.21 sec faster
(0.02 slower to 4.43 faster)

586
(7 RCTs)

⊕⊕⊝⊝
Lowj

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

6‐MWT: 6‐Minute Walk Test; CI: confidence interval; MD: mean difference; OR: odds ratio; RCT: randomised controlled trial; RR: risk ratio; SMD: standardised mean difference

GRADE Working Group grades of evidence
High certainty: We are very confident that the true effect lies close to that of the estimate of the effect
Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

aMost participants were high‐functioning; risk of death was low among this group. There is serious risk of bias from imbalanced exposure in 16 of the 23 included studies.
bThere is heterogeneity (I2 = 21%) in addition to very serious risk of bias from imbalanced exposure in seven of the nine included studies.
cThere is heterogeneity (I2 = 35%) in addition to very serious risk of bias from imbalanced exposure in the study weighted 79.6%.
dSubstantial heterogeneity (I2 = 76%); very serious risk of bias; both studies with imbalanced exposure.
eVery serious risk of bias; all three studies with imbalanced exposure.
fVery serious risk of bias with 3/3 studies with imbalanced exposure.
gSubstantial heterogeneity (I2 = 76%).
hVery serious risk of bias with nine out of 10 studies with imbalanced exposure times.
iVery serious risk of bias with five out of nine studies with imbalanced exposure; there is no beneficial effect if these five studies are excluded.
jThere is heterogeneity (I2 = 45%) in addition to serious risk of bias from imbalanced exposure in seven of the nine included studies.

Figuras y tablas -
Summary of findings 3. Mixed training compared to control for people with stroke: end of intervention
Table 1. Outline of the studies that focused on cardiorespiratory training interventions

Study ID

Mode of training

During or after usual care

Upper or lower body

Specific training

Intensity

Duration
(minutes)

Frequency
(days)

Programme length (weeks)

Ada 2013

Treadmill + overground walking

After

Lower body

Yes

Unknown

30 min

3

Group 1 = 16

Group 2 = 8

Aidar 2018

Water training

After

Both

Yes

Unknown

45‐60

2

12

Bateman 2001

Cycle ergometer

During

Lower body

No

60%‐80% age‐related heart rate maximum

≤ 30

3

12

Cuviello‐Palmer 1988

Kinetron

During

Lower body

No

Heart rate < resting + 20 beats/min

7‐17

5

3

da Cunha 2002

Treadmill gait training with body weight support

During

Lower body

Yes

Unknown

20

5

2‐3

Eich 2004

Treadmill gait training

During

Lower body

Yes

60% heart rate reserve

30

5

6

Glasser 1986

Kinetron

During

Lower body

No

Unknown

20‐60

5

3

Globas 2012

Treadmill

After

Lower body

Yes

40%‐50% progressing to 60%‐80% heart rate reserve

10‐20 min increasing to 30‐50 min

3

12

Gordon 2013

Overground community‐based walking

After

Lower body

Yes

Target heart rate was 60%‐85% of age‐predicted maximum heart rate (220‐age).

15min progressing by +5 min per week

3

12

Ivey 2010

Treadmill

After

Lower body

Yes

40%‐50% progressing to 60%‐70% heart rate reserve

10‐20 min increasing to 40 min

3

24

(6 months)

Ivey 2011

Treadmill

After

Lower body

Yes

40%‐50% progressing to 60%‐70% heart rate reserve

10‐20 min increasing to 40 min

3

24

(6 months)

Jin 2013

Cycle ergometry

During

Lower

No

Commencing at 40%‐50% heart rate reserve progressing 5% heart rate reserve every 2 weeks up to 70% heart rate reserve

40

5

12

Kang 2012

Treadmill

After

Lower body

Yes

Unknown

30

3

4

Katz‐Leurer 2003

Cycle ergometer

After

Lower body

No

≤ 60% heart rate reserve

20 then 30

5 then 3

2 then 6
(total 8)

Kim 2014

Community walking programme

During

Lower

Yes

Unclear

The walking environment was made more challenging with increased exposure to uneven ground, gradients and stairs

60

5

4

Kuys 2011

Treadmill

After

Lower body

Yes

40% progressing to 60% heart rate reserve

30

3

6

Lennon 2008

Cycle ergometer (cardiac rehabilitation programme)

After

Both

No

50%‐60% maximum heart rate

30

2

10

MacKay‐Lyons 2013

Body weight supported treadmill training

During

Both

Yes

Target heart rates corresponding to 60%‐75% of baseline VO2peak

Initially treadmill speed 80%‐90% of self‐paced overground speed with 20%‐30% body weight supported for ambulatory independent participants and 70%‐80% of overground speed with 40% body weight supported for ambulatory dependent participants

60

5/week for 6 weeks then 3/week for 6 weeks

12

Mao 2015

Body weight supported treadmill training

During

Lower

Yes

Treadmill walking with 30%‐40% body weight support. Body support was decreased and treadmill speed increased. No further detail for percentage assisted body support was provided. Speed initially 0.5 miles/h (0.8 km/h) for 20 min progressing to 2.5 miles/h (4.0 km/h) for 40 min

20 up to 40

5

3

Moore 2010

Treadmill gait training with overhead harness

After

Lower body

Yes

80%‐85% age‐predicted maximum heart rate

Unknown

2‐5

4

Mudge 2009

Circuit training

After

Lower body

Yes

Unknown

30

3

4

Park 2011

Overground community‐based walking

During

Lower

Yes

Unknown

60

3

4

Pohl 2002

Treadmill gait training

Group 1: structured speed‐dependent treadmill training

Group 2: limited progressive treadmill training

During

Lower body

Yes

Unknown

30

3

4

Potempa 1995

Cycle ergometer

After

Lower body

No

30%‐50% maximum effort

30

3

10

Salbach 2004

Circuit training

After

Lower body

Yes

Unknown

55

3

6

Sandberg 2016

Cycling (main exercise element)

After

Lower

No

Class included 2 x 8‐min periods of high‐intensity exercise (14‐15 RPE; 75% maximum oxygen consumption; 80% maximum heart rate)

60

2

12

Smith 2008

Treadmill gait training

After

Lower body

Yes

RPE ≤ 13

20

3

4

Takami 2010

Treadmill gait training with body weight support

Group 1: backward walking group

Group 2: forward walking group

During

Lower body

Yes

Unknown

10

6

3

Topcuoglu 2015

Arm‐cranking ergometer

During

Upper

No

Intensity 10 watts/minute

30

5

4

Vanroy 2017

MOTOmed seated cycling ergometer

Commenced during (some discharged home)

Lower

No

Intensity progressed from 60%‐75% heart rate reserve

30

(Total session 51 min reducing to 40 min)

3

12 (3 months)

Wang 2014

Wheelchair‐seated pedaling ergometry

During

Lower

Yes

Cycling training consisted of 30‐min sessions including: 5‐min warm‐up; 30‐min active pedaling at an intensity based on an incremental graded exercise test (2.5 W ramp every 3 min maintaining 50 rpm until exhaustion); followed by 5‐min cool down. Target heart rate was calculated as ((peak heart rate in graded exercise test – resting heart rate) x 50%‐70%) + resting heart rate

30

3

6

Yang 2014

Cycle ergometer

During

Lower

Yes

Cycling training consisted of 15‐min sessions each of forward and backward cycling including: 150‐s passive warm‐up; 10‐min active pedaling at 50‐70 rpm at an intensity of stage 13 of the Borg scale; 150 s of passive cool‐down

30

5

4

mph: miles per hour; RPE: rate of perceived exertion;RPM: revolutions per minute

Figuras y tablas -
Table 1. Outline of the studies that focused on cardiorespiratory training interventions
Table 2. Outline of the studies that focused on resistance training interventions

Study ID

Mode of training

During/after usual care

Upper or lower body

Specific training

Intensity

Duration (minutes)

Frequency (days)

Programme length
(weeks)

Aidar 2016

Resistance training; machine weights

After

Both

No

OMNI Resistance Exercise Scale

45‐60

3

12

Arabzadeh 2018

Task‐oriented circuit with added weights and some balance activities

During

Lower

Yes

Unknown; tailored to individual capacity

50

3

4

Bale 2008

Resistance training; weights

During

Lower body

No

10‐15 repetitions to achieve moderate fatigue

50

3

4

Buyukvural 2015

Isokinetic dynamometer training

During

Lower

No

Unclear

Unclear

5

3

Coroian 2018

Isokinetic dynamometer training

During

Upper

No

6 sets of 8 repetitions increasing from 40%‐70% of maximal baseline torque

45

3

5

Fernandez‐Gonzalo 2016

Unilateral explosive resistance training of the more affected leg

After

Lower

No

Maximal effort

Unclear

2

12

Flansbjer 2008

Dynamic and isokinetic resistance training (leg extension/curl rehab exercise machine)

After

Lower body

Yes

6‐10 repetitions equivalent to 80% of maximum load

90

Unknown

10

Inaba 1973

Resistance training

During

Lower body

No

50% and 100%
maximum weight

Unknown

'Daily'

4‐8

Ivey 2017

Pneumatic resistance machines

After

Lower

No

10‐15, decreasing to 20 repetition maximum across sets

Unclear

3

12

Kim 2001

Resistance training; isokinetic dynamometer

After

Lower body

No

Maximal effort
3 x 10 repetitions

30

3

6

Knox 2018

Gravity, free weights, elastic bands and balls

After

Lower

No

3 set of 10 repetitions; progressed individually

60

6 sessions

(average 0.5 per week)

12

Lee 2013a

Closed chain and open chain progressive resistance training

After

Lower

No

3 sets of 8‐10 repetitions

70% of 1 repetition maximum

Unclear (duration based on repetitions)

5

6

Lee 2013b

Closed‐chain and open‐chain progressive resistance training

After

Lower

No

3 sets of 8‐10 repetitions

70% of 1 repetition maximum

Unclear (duration based on repetitions)

5

6

Ouellette 2004

Resistance training; weights and pneumatic resistance machines

After

Lower body

No

70% 1 repetition maximum:
3 x 8‐10 repetitions

Not applicable

3

12

Sims 2009

Resistance training; machine weights

After

Both

Yes

3 x 8/10 repetitions at 80% 1 repetition maximum

Unknown

2

10

Son 2014

Pneumatic leg press machine

Probably after

Lower

No

3 sets of 8‐10 repetitions

70% of 1 repetition maximum

30

5

6

Taylor‐Pilliae 2014

Silversneakers national programme (strength and range of movement)

After

Unclear

Unclear

Unclear

40

3

12

Verheyden 2009

Functional strength

During

Upper (trunk)

Yes

Functional trunk flexion and extension strength in supine and sitting. Exercises gradually introduced and number of repetitions determined by physiotherapists on a participant's performance basis. No further details reported

30

4

5

Winstein 2004

Resistance training; weights;
TheraBand and grip devices

During

Upper body

No

Unknown

60

3 high
2 slow

4‐6 (target of 20 sessions)

Zou 2015

Resistance training machines

After

Lower

No

3 sets of 15 repetitions; initial intensity causing failure 10‐12 repetitions, then reduce to allow completion of 15

40

3

8

Figuras y tablas -
Table 2. Outline of the studies that focused on resistance training interventions
Table 3. Outline of the studies that focused on mixed training interventions

Study ID

Mode of training

During or after usual care

Upper or lower body

Specific training

Intensity

Duration (minutes)

Frequency
(days)

Programme length
(weeks)

Cooke 2010

Resistance training + treadmill training

During

Lower body

Yes

Unknown

60

4

6

Dean 2018

Group circuit training (0‐3 months) + home training (0‐6 months)

After

Both

Yes

Unclear

Unclear

2 classes (+ home exercise

6

(0‐3 months group exercise; 0‐6 months home exercise)

Donaldson 2009

Paretic upper limb exercises and hand grip activities

During

Upper body

Yes

Unknown

60

4

6

Duncan 1998

Walking or cycle ergometry; elastic‐resisted contractions

After

Both

Yes

Unknown

90

3

12

Duncan 2003

Circuit training

After

Lower body

Yes

50%‐60% heart rate reserve

90‐120

3

4

Furnari 2014

Aquatic exercise

During

Upper or lower body

Yes

Unclear; difficulty progressed weekly

60

3

8

Galvin 2011

Family‐mediated gait and strength training

During

Lower

Yes

Unknown

35

7

8

James 2002

Circuit training

After

Both

Yes

Unknown

90

3

12‐14 (total of 36 sessions)

Kim 2016a

Circuit training

During

Both

Yes

Treadmill speed/gradient
TheraBand repetitions/load

90

5

4

Kim 2017a

Handgrip resistance training + treadmill walking with some added load to unaffected leg

During

Both

Yes

Resistance increase

Treadmill speed increase

30

3

6

Knox 2018

Task‐oriented circuit training (+ home‐based walking)

After

Lower (+upper?)

Yes (walking)

Reduced support and increased complexity and more demanding home‐based walking

60

6 sessions

(average 0.5 per week)

12

Langhammer 2007

Walking, stationary bicycling, stair walking, treadmill, and resistance training

After

Both

Yes

70%‐80% maximum pulse (cardiorespiratory component); 50%‐60% one repetition maximum (strength component)

45

2/3

Unclear. Minimum 20 hours every third month in the first year after stroke

Letombe 2010

Cycle ergometry, treadmill walking, and isokinetic resistance training

During

Both including trunk

Yes (walking)

Cardiorespiratory training: 70%‐80% maximal cycling power

Strength training; 6 x 10 repetitions at 50%‐60% maximum

40‐60

4

4

Mead 2007

Circuit including walking, stepping, cycle ergometry; resistance training body mass, weights, and elastic

After

Both

Yes

Rating of perceived exertion: 13‐16

40‐75

3

12‐14 (total of 36 sessions)

Moore 2015

Community‐based group classes including warm‐up, stretching, functional strengthening, balance, agility and cardiorespiratory training

After

Both

Yes

Increasing load and repetitions

40%‐50% maximum heart rate increasing to 70%‐80%

40‐60

3

19

Richards 1993

Treadmill + Kinetron + tilt table

During

Lower body

Yes

Unknown

104

5

5

Richards 2004

Treadmill + Kinetron + limb load monitor

During

Lower body

Yes

Unknown

60

5

8

Shin 2011

Functional strength training (bridging and stepping) + treadmill and cycle ergometry

During

Lower

Yes (walking and stepping)

Cardiorespiratory progressive but < 40% heart rate reserve

Strength training described only as 'medium intensity' of 5‐15 repetitions

60

5

4

Teixeira 1999

Walking and stepping or cycle ergometry;
resistance training body mass, weights and elastic

After

Lower body

Yes

50%‐70% maximum work rate (cardiorespiratory component) 50%‐80% 1 repetition maximum, 3 x 10 repetitions (strength component)

60‐90

3

10

Toledano‐Zarhi 2011

Treadmill, hand bike, cycle ergometer + group exercise for strength, balance and co‐ordination exercise

During

Both

Yes (treadmill)

Cardiorespiratory 50%‐70% of maximal heart rate

Cardiorespiratory 90 min

Group 45‐55 min

Cardiorespiratory 2/week

Group 1/week

6

Van de Port 2012

Task‐orientated circuit training. 8 workstations targeting balance, stair walking, turning, transfers and speed walking

After

Lower

Yes (task‐orientated)

Unknown

90

2

12

Yang 2006

Functional stepping and chair rising

After

Lower body

Yes

Unknown

30

3

4

Zedlitz 2012

Treadmill walking, strength training, and home exercise assignments

After

Both

Yes (walking)

Cardiorespiratory and strength progressed from 40%‐70%

120

2

12

Figuras y tablas -
Table 3. Outline of the studies that focused on mixed training interventions
Table 4. Pooled walking data for cardiorespiratory training, resistance training, and mixed training at the end of the training period and at follow‐up

End of intervention

End of follow‐up

Intervention

Walking outcome

Studies
(number of participants)

MD
(95% CI)

Significance level

Studies
(number of participants)

MD
(95% CI)

Significance level

Cardiorespiratory

training

Maximal gait speed

17 (782)

7.66 m/min (3.65 to 11.68)

P = 0.0002

5 (312)

6.71 m/min ( 2.40 to 11.02)

P = 0.002

Preferred gait speed

12 (588)

4.47 m/min (2.07 to 6.87)

P = 0.0003

3 (176)

1.67 m/min (−3.27 to 6.62)

NS

6‐Minute Walk Test

16 (882)

33.41 m (19.04 to 47.78)

P = 0.00001

5 (283)

38.29 m (7.19 to 69.39)

P = 0.02

Resistance training

Maximal gait speed

6 (274)

2.83 m/min (−0.49 to 6.14)

NS

2 (117)

7.80 m/min (−3.32 to 18.91)

NS

Preferred gait speed

5 (203)

2.15 m/min (−3.57 to 7.87)

NS

6‐Minute Walk Test

5 (238)

24.98 m (11.98 to 37.98)

P value 0.0002

2 (117)

22.41 m (−27.87 to 72.69)

NS

Mixed

training

Maximal gait speed

3 (168)

8.48 m/min (1.76 to 15.20)

P = 0.01

Preferred gait speed

10 (738)

4.71 m/min (1.32 to 8.10)

P = 0.006

5 (542)

2.54 m/min (−3.65 to 8.72)

NS

6‐Minute Walk Test

10 (720)

35.00 m (15.91 to 54.09)

P value < 0.0003

4 (464)

47.48 m (23.72 to 71.23)

P = 0.0001

CI: confidence interval; MD: mean difference; NS: no statistically significant difference

Figuras y tablas -
Table 4. Pooled walking data for cardiorespiratory training, resistance training, and mixed training at the end of the training period and at follow‐up
Comparison 1. Cardiorespiratory training versus control ‐ end of intervention

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Death Show forest plot

32

1631

Risk Difference (M‐H, Random, 95% CI)

0.0 [‐0.01, 0.01]

1.1 During usual care

16

698

Risk Difference (M‐H, Random, 95% CI)

0.0 [‐0.02, 0.02]

1.2 After usual care

16

933

Risk Difference (M‐H, Random, 95% CI)

0.0 [‐0.02, 0.02]

2 Disability ‐ Functional Independence Measure Show forest plot

3

162

Std. Mean Difference (IV, Random, 95% CI)

0.21 [‐0.10, 0.52]

2.1 During usual care

1

52

Std. Mean Difference (IV, Random, 95% CI)

0.23 [‐0.32, 0.78]

2.2 After usual care

2

110

Std. Mean Difference (IV, Random, 95% CI)

0.17 [‐0.29, 0.63]

3 Disability ‐ Barthel Index Show forest plot

3

243

Mean Difference (IV, Random, 95% CI)

6.65 [‐0.67, 13.98]

3.1 During usual care

2

115

Mean Difference (IV, Random, 95% CI)

10.48 [‐11.83, 32.80]

3.2 After usual care

1

128

Mean Difference (IV, Random, 95% CI)

2.60 [‐0.15, 5.35]

4 Disability ‐ Rivermead Mobility Index (scale 0 to 15) Show forest plot

3

146

Mean Difference (IV, Random, 95% CI)

1.56 [0.20, 2.92]

4.1 During usual care

2

110

Mean Difference (IV, Random, 95% CI)

1.43 [‐0.62, 3.49]

4.2 After usual care

1

36

Mean Difference (IV, Random, 95% CI)

2.0 [0.53, 3.47]

5 Disability ‐ combined disability scales Show forest plot

8

462

Std. Mean Difference (IV, Random, 95% CI)

0.52 [0.19, 0.84]

5.1 During usual care

3

130

Std. Mean Difference (IV, Random, 95% CI)

0.88 [0.08, 1.68]

5.2 After usual care

5

332

Std. Mean Difference (IV, Random, 95% CI)

0.33 [0.11, 0.55]

6 Risk factors ‐ blood pressure, systolic Show forest plot

5

318

Mean Difference (IV, Random, 95% CI)

‐0.20 [‐4.00, 5.60]

6.1 During usual care

1

12

Mean Difference (IV, Random, 95% CI)

26.33 [1.95, 50.71]

6.2 After usual care

4

306

Mean Difference (IV, Random, 95% CI)

‐1.41 [‐5.25, 2.43]

7 Risk factors ‐ blood pressure, diastolic Show forest plot

5

318

Mean Difference (IV, Random, 95% CI)

‐0.15 [‐2.28, 1.98]

7.1 During usual care

1

12

Mean Difference (IV, Random, 95% CI)

1.0 [‐10.46, 12.46]

7.2 After usual care

4

306

Mean Difference (IV, Random, 95% CI)

‐0.19 [‐2.35, 1.98]

8 Risk factors ‐ body mass index (BMI) Show forest plot

2

174

Mean Difference (IV, Random, 95% CI)

1.19 [‐0.38, 2.76]

8.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

8.2 After usual care

2

174

Mean Difference (IV, Random, 95% CI)

1.19 [‐0.38, 2.76]

9 Physical fitness ‐ peak VO2 Show forest plot

9

438

Mean Difference (IV, Random, 95% CI)

3.40 [2.98, 3.83]

9.1 During usual care

3

121

Mean Difference (IV, Random, 95% CI)

2.28 [0.75, 3.81]

9.2 After usual care

6

317

Mean Difference (IV, Random, 95% CI)

3.51 [3.06, 3.96]

10 Physical fitness ‐ maximum cycling work rate Show forest plot

6

336

Mean Difference (IV, Random, 95% CI)

10.60 [1.88, 19.33]

10.1 During usual care

3

148

Mean Difference (IV, Random, 95% CI)

3.48 [‐5.23, 12.19]

10.2 After usual care

3

188

Mean Difference (IV, Random, 95% CI)

13.37 [8.55, 18.19]

11 Mobility ‐ functional ambulation categories Show forest plot

2

73

Mean Difference (IV, Random, 95% CI)

0.53 [0.21, 0.85]

11.1 During usual care

2

73

Mean Difference (IV, Random, 95% CI)

0.53 [0.21, 0.85]

11.2 After usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

12 Mobility ‐ walking maximal speed (over 5 to 10 metres) Show forest plot

17

782

Mean Difference (IV, Random, 95% CI)

7.66 [3.65, 11.68]

12.1 During usual care

10

383

Mean Difference (IV, Random, 95% CI)

5.20 [0.48, 9.92]

12.2 After usual care

7

399

Mean Difference (IV, Random, 95% CI)

10.94 [7.13, 14.76]

13 Mobility ‐ walking preferred speed Show forest plot

12

588

Mean Difference (IV, Random, 95% CI)

4.47 [2.07, 6.87]

13.1 During usual care

6

211

Mean Difference (IV, Random, 95% CI)

3.90 [‐1.25, 9.05]

13.2 After usual care

6

377

Mean Difference (IV, Random, 95% CI)

4.69 [1.57, 7.80]

14 Mobility ‐ walking capacity (6‐MWT metres) Show forest plot

16

882

Mean Difference (IV, Random, 95% CI)

33.41 [19.04, 47.78]

14.1 During usual care

7

225

Mean Difference (IV, Random, 95% CI)

32.10 [10.11, 54.10]

14.2 After usual care

9

657

Mean Difference (IV, Random, 95% CI)

37.03 [15.54, 58.51]

15 Mobility ‐ walking capacity (m/min) Show forest plot

3

154

Mean Difference (IV, Random, 95% CI)

8.87 [1.35, 16.40]

15.1 During usual care

2

63

Mean Difference (IV, Random, 95% CI)

12.24 [‐3.41, 27.89]

15.2 After usual care

1

91

Mean Difference (IV, Random, 95% CI)

6.60 [‐2.66, 15.86]

16 Mobility ‐ community walk (min) Show forest plot

2

47

Mean Difference (IV, Random, 95% CI)

‐10.54 [‐14.11, ‐6.98]

16.1 During usual care

2

47

Mean Difference (IV, Random, 95% CI)

‐10.54 [‐14.11, ‐6.98]

16.2 After usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

17 Physical function ‐ Berg Balance Scale (score 0 to 56) Show forest plot

8

471

Mean Difference (IV, Random, 95% CI)

1.92 [0.16, 3.68]

17.1 During usual care

3

160

Mean Difference (IV, Random, 95% CI)

0.79 [‐2.01, 3.59]

17.2 After usual care

5

311

Mean Difference (IV, Random, 95% CI)

2.67 [0.07, 5.26]

18 Physical function ‐ Timed Up and Go (sec) Show forest plot

5

223

Mean Difference (IV, Random, 95% CI)

‐3.42 [‐4.78, ‐2.05]

18.1 During usual care

1

20

Mean Difference (IV, Random, 95% CI)

‐2.10 [‐6.27, 2.07]

18.2 After usual care

4

203

Mean Difference (IV, Random, 95% CI)

‐3.58 [‐5.02, ‐2.13]

19 Health‐related QoL ‐ SF‐36 & SF‐12 Physical Health Component Show forest plot

2

164

Std. Mean Difference (IV, Random, 95% CI)

0.51 [0.20, 0.82]

19.1 During usual care

0

0

Std. Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

19.2 After usual care

2

164

Std. Mean Difference (IV, Random, 95% CI)

0.51 [0.20, 0.82]

20 Health‐related QoL ‐ SF‐36 & SF‐12 Mental Health Component Show forest plot

2

164

Std. Mean Difference (IV, Random, 95% CI)

0.58 [‐0.52, 1.68]

20.1 During usual care

0

0

Std. Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

20.2 After usual care

2

164

Std. Mean Difference (IV, Random, 95% CI)

0.58 [‐0.52, 1.68]

21 Health‐related QoL ‐ EuroQol EQ‐5D Show forest plot

2

158

Mean Difference (IV, Random, 95% CI)

6.55 [‐1.36, 14.47]

21.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

21.2 After usual care

2

158

Mean Difference (IV, Random, 95% CI)

6.55 [‐1.36, 14.47]

22 Mood ‐ Beck Depression Index Show forest plot

2

56

Mean Difference (IV, Random, 95% CI)

‐1.22 [‐5.62, 3.19]

22.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

22.2 After usual care

2

56

Mean Difference (IV, Random, 95% CI)

‐1.22 [‐5.62, 3.19]

Figuras y tablas -
Comparison 1. Cardiorespiratory training versus control ‐ end of intervention
Comparison 2. Cardiorespiratory training versus control ‐ end of retention follow‐up

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Death Show forest plot

6

360

Risk Difference (M‐H, Random, 95% CI)

0.0 [‐0.03, 0.03]

1.1 During usual care

3

226

Risk Difference (M‐H, Random, 95% CI)

0.0 [‐0.03, 0.03]

1.2 After usual care

3

134

Risk Difference (M‐H, Random, 95% CI)

0.0 [‐0.05, 0.05]

2 Disability ‐ combined disability scales Show forest plot

3

220

Std. Mean Difference (IV, Random, 95% CI)

0.20 [‐0.07, 0.46]

2.1 During usual care

1

83

Std. Mean Difference (IV, Random, 95% CI)

0.18 [‐0.26, 0.61]

2.2 After usual care

2

137

Std. Mean Difference (IV, Random, 95% CI)

0.21 [‐0.12, 0.55]

3 Mobility ‐ walking maximal speed (m/min) Show forest plot

5

312

Mean Difference (IV, Random, 95% CI)

6.71 [2.40, 11.02]

3.1 During usual care

3

152

Mean Difference (IV, Random, 95% CI)

7.92 [2.01, 13.83]

3.2 After usual care

2

160

Mean Difference (IV, Random, 95% CI)

5.33 [‐0.96, 11.63]

4 Mobility ‐ walking preferred speed (m/min) Show forest plot

3

176

Mean Difference (IV, Random, 95% CI)

1.67 [‐3.27, 6.62]

4.1 During usual care

2

74

Mean Difference (IV, Random, 95% CI)

2.54 [‐3.65, 8.73]

4.2 After usual care

1

102

Mean Difference (IV, Random, 95% CI)

0.14 [‐8.08, 8.37]

5 Mobility ‐ walking capacity (6‐MWT metres) Show forest plot

5

283

Mean Difference (IV, Random, 95% CI)

38.29 [7.19, 69.39]

5.1 During usual care

3

123

Mean Difference (IV, Random, 95% CI)

50.76 [19.09, 82.43]

5.2 After usual care

2

160

Mean Difference (IV, Random, 95% CI)

22.34 [‐44.02, 88.69]

6 Physical function ‐ Berg Balance scale Show forest plot

2

134

Mean Difference (IV, Random, 95% CI)

0.04 [‐2.48, 2.56]

6.1 During usual care

2

134

Mean Difference (IV, Random, 95% CI)

0.04 [‐2.48, 2.56]

6.2 After usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

7 Health‐related QoL ‐ EuroQol EQ‐5D Show forest plot

2

150

Mean Difference (IV, Random, 95% CI)

‐4.25 [‐8.00, 1.49]

7.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

7.2 After usual care

2

150

Mean Difference (IV, Random, 95% CI)

‐4.25 [‐8.00, 1.49]

Figuras y tablas -
Comparison 2. Cardiorespiratory training versus control ‐ end of retention follow‐up
Comparison 3. Resistance training versus control ‐ end of intervention

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Death Show forest plot

20

803

Risk Difference (M‐H, Random, 95% CI)

0.00 [‐0.02, 0.02]

1.1 During usual care

7

236

Risk Difference (M‐H, Random, 95% CI)

0.0 [‐0.04, 0.04]

1.2 After usual care

13

567

Risk Difference (M‐H, Random, 95% CI)

0.00 [‐0.02, 0.02]

2 Physical fitness ‐ composite measure of muscle strength Show forest plot

2

60

Std. Mean Difference (IV, Random, 95% CI)

0.58 [0.06, 1.10]

2.1 During usual care

0

0

Std. Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

2.2 During and after usual care

1

40

Std. Mean Difference (IV, Random, 95% CI)

0.47 [‐0.16, 1.10]

2.3 After usual care

1

20

Std. Mean Difference (IV, Random, 95% CI)

0.84 [‐0.09, 1.76]

3 Physical fitness ‐ muscle strength, paretic knee flexion Show forest plot

3

93

Std. Mean Difference (IV, Random, 95% CI)

0.72 [0.10, 1.34]

3.1 During usual care

1

18

Std. Mean Difference (IV, Random, 95% CI)

0.03 [‐0.90, 0.96]

3.2 After usual care

2

75

Std. Mean Difference (IV, Random, 95% CI)

1.01 [0.52, 1.50]

4 Physical fitness ‐ muscle strength, paretic knee extension Show forest plot

3

93

Std. Mean Difference (IV, Random, 95% CI)

1.09 [‐0.23, 2.41]

4.1 During usual care

1

18

Std. Mean Difference (IV, Random, 95% CI)

‐0.06 [‐0.99, 0.87]

4.2 After usual care

2

75

Std. Mean Difference (IV, Random, 95% CI)

1.66 [0.53, 2.79]

5 Mobility ‐ walking maximal speed (m/min) Show forest plot

7

274

Mean Difference (IV, Random, 95% CI)

2.83 [‐0.49, 6.14]

5.1 During usual care

1

18

Mean Difference (IV, Random, 95% CI)

8.40 [2.82, 13.98]

5.2 After usual care

6

256

Mean Difference (IV, Random, 95% CI)

1.80 [‐1.52, 5.12]

6 Mobility ‐ walking preferred speed (m/min) Show forest plot

5

203

Mean Difference (IV, Random, 95% CI)

2.15 [‐3.57, 7.87]

6.1 During usual care

1

18

Mean Difference (IV, Random, 95% CI)

9.0 [3.42, 14.58]

6.2 After usual care

4

185

Mean Difference (IV, Random, 95% CI)

‐0.18 [‐4.99, 4.63]

7 Mobility ‐ walking capacity (6‐MWT metres) Show forest plot

5

238

Mean Difference (IV, Random, 95% CI)

24.98 [11.98, 37.98]

7.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

7.2 After usual care

5

238

Mean Difference (IV, Random, 95% CI)

24.98 [11.98, 37.98]

8 Physical function ‐ Berg Balance Scale (score 0 to 56) Show forest plot

5

220

Mean Difference (IV, Random, 95% CI)

3.27 [2.15, 4.38]

8.1 During usual care

1

20

Mean Difference (IV, Random, 95% CI)

3.70 [0.11, 7.29]

8.2 After usual care

4

200

Mean Difference (IV, Random, 95% CI)

3.22 [2.04, 4.39]

9 Physical function ‐ stair climbing, maximal (sec/step) Show forest plot

2

91

Mean Difference (IV, Random, 95% CI)

‐2.07 [‐3.18, ‐0.96]

9.1 During usual care

1

50

Mean Difference (IV, Random, 95% CI)

‐2.0 [‐3.12, ‐0.88]

9.2 After usual care

1

41

Mean Difference (IV, Random, 95% CI)

‐5.36 [‐13.13, 2.41]

10 Physical function ‐ Timed Up and Go (sec) Show forest plot

5

224

Mean Difference (IV, Random, 95% CI)

‐3.46 [‐6.94, 0.02]

10.1 During usual care

1

50

Mean Difference (IV, Random, 95% CI)

‐2.0 [‐3.12, ‐0.88]

10.2 After usual care

4

174

Mean Difference (IV, Random, 95% CI)

‐5.72 [‐7.92, ‐3.52]

11 Health‐related QoL ‐ SF‐36 physical functioning (PF) scale Show forest plot

3

70

Mean Difference (IV, Random, 95% CI)

5.72 [‐5.26, 16.70]

11.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

11.2 After usual care

3

70

Mean Difference (IV, Random, 95% CI)

5.72 [‐5.26, 16.70]

12 Health‐related QoL ‐ SF‐36 mental health (MH) scale Show forest plot

3

70

Mean Difference (IV, Random, 95% CI)

7.69 [1.56, 13.83]

12.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

12.2 After usual care

3

70

Mean Difference (IV, Random, 95% CI)

7.69 [1.56, 13.83]

13 Mood ‐ Centre for Epidemiologic Studies for Depression scale (CES‐D) Show forest plot

2

180

Mean Difference (IV, Random, 95% CI)

‐3.76 [‐6.98, ‐0.54]

13.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

13.2 After usual care

2

180

Mean Difference (IV, Random, 95% CI)

‐3.76 [‐6.98, ‐0.54]

14 Mood ‐ combined depression scales Show forest plot

3

209

Std. Mean Difference (IV, Random, 95% CI)

‐0.36 [‐0.64, ‐0.09]

14.1 During usual care

0

0

Std. Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

14.2 After usual care

3

209

Std. Mean Difference (IV, Random, 95% CI)

‐0.36 [‐0.64, ‐0.09]

Figuras y tablas -
Comparison 3. Resistance training versus control ‐ end of intervention
Comparison 4. Resistance training versus control ‐ end of retention follow‐up

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Death Show forest plot

5

251

Risk Difference (M‐H, Random, 95% CI)

0.00 [‐0.04, 0.04]

1.1 During usual care

3

115

Risk Difference (M‐H, Random, 95% CI)

0.0 [‐0.05, 0.05]

1.2 After usual care

2

136

Risk Difference (M‐H, Random, 95% CI)

0.00 [‐0.06, 0.06]

2 Mobility ‐ walking maximal speed (m/min) Show forest plot

2

117

Mean Difference (IV, Random, 95% CI)

7.80 [‐3.32, 18.91]

2.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

2.2 After usual care

2

117

Mean Difference (IV, Random, 95% CI)

7.80 [‐3.32, 18.91]

3 Mobility ‐ walking capacity (6‐MWT metres) Show forest plot

2

117

Mean Difference (IV, Random, 95% CI)

22.41 [‐27.87, 72.69]

3.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

3.2 After usual care

2

117

Mean Difference (IV, Random, 95% CI)

22.41 [‐27.87, 72.69]

4 Physical function ‐ Timed Up and Go (sec) Show forest plot

2

117

Mean Difference (IV, Random, 95% CI)

‐2.64 [‐9.24, 3.95]

4.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

4.2 After usual care

2

117

Mean Difference (IV, Random, 95% CI)

‐2.64 [‐9.24, 3.95]

Figuras y tablas -
Comparison 4. Resistance training versus control ‐ end of retention follow‐up
Comparison 5. Mixed training versus control ‐ end of intervention

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Death Show forest plot

23

1231

Risk Difference (M‐H, Random, 95% CI)

‐0.00 [‐0.02, 0.01]

1.1 During usual care

10

344

Risk Difference (M‐H, Random, 95% CI)

0.0 [‐0.03, 0.03]

1.2 After usual care

13

887

Risk Difference (M‐H, Random, 95% CI)

‐0.01 [‐0.02, 0.01]

2 Disability ‐ Barthel Index (BI) Show forest plot

6

256

Mean Difference (IV, Random, 95% CI)

2.84 [‐0.48, 6.17]

2.1 During usual care

3

78

Mean Difference (IV, Random, 95% CI)

5.44 [‐2.12, 13.00]

2.2 After usual care

3

178

Mean Difference (IV, Random, 95% CI)

1.99 [‐2.32, 6.29]

3 Disability ‐ Lawton IADL Show forest plot

2

113

Mean Difference (IV, Random, 95% CI)

0.83 [‐0.51, 2.17]

3.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

3.2 After usual care

2

113

Mean Difference (IV, Random, 95% CI)

0.83 [‐0.51, 2.17]

4 Disability ‐ Rivermead Mobility Index (RMI) Show forest plot

3

348

Mean Difference (IV, Random, 95% CI)

0.41 [‐0.02, 0.84]

4.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

4.2 After usual care

3

348

Mean Difference (IV, Random, 95% CI)

0.41 [‐0.02, 0.84]

5 Disability ‐ combined disability scales Show forest plot

9

604

Std. Mean Difference (IV, Random, 95% CI)

0.23 [0.03, 0.42]

5.1 During usual care

3

78

Std. Mean Difference (IV, Random, 95% CI)

0.39 [‐0.06, 0.84]

5.2 After usual care

6

526

Std. Mean Difference (IV, Random, 95% CI)

0.17 [‐0.09, 0.43]

6 Risk factors ‐ blood pressure, systolic Show forest plot

2

68

Mean Difference (IV, Random, 95% CI)

4.98 [‐2.70, 12.66]

6.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

6.2 After usual care

2

68

Mean Difference (IV, Random, 95% CI)

4.98 [‐2.70, 12.66]

7 Risk factors ‐ blood pressure, diastolic Show forest plot

2

68

Mean Difference (IV, Random, 95% CI)

‐3.49 [‐9.51, 2.53]

7.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

7.2 After usual care

2

68

Mean Difference (IV, Random, 95% CI)

‐3.49 [‐9.51, 2.53]

8 Physical fitness ‐ peak VO2 (mL/kg/min) Show forest plot

2

140

Mean Difference (IV, Random, 95% CI)

1.40 [‐0.19, 2.99]

8.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

8.2 After usual care

2

140

Mean Difference (IV, Random, 95% CI)

1.40 [‐0.19, 2.99]

9 Physical fitness ‐ gait economy, VO2 (mL/kg/metre) Show forest plot

1

66

Mean Difference (IV, Random, 95% CI)

‐0.01 [‐0.03, ‐0.00]

9.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

9.2 After usual care

1

66

Mean Difference (IV, Random, 95% CI)

‐0.01 [‐0.03, ‐0.00]

10 Physical fitness ‐ muscle strength, ankle dorsiflexion* Show forest plot

2

148

Std. Mean Difference (IV, Random, 95% CI)

0.80 [‐0.82, 2.41]

10.1 During usual care

0

0

Std. Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

10.2 After usual care

2

148

Std. Mean Difference (IV, Random, 95% CI)

0.80 [‐0.82, 2.41]

11 Physical fitness ‐ muscle strength, knee extension* Show forest plot

3

202

Std. Mean Difference (IV, Random, 95% CI)

0.33 [0.05, 0.61]

11.1 During usual care

1

54

Std. Mean Difference (IV, Random, 95% CI)

0.29 [‐0.25, 0.83]

11.2 After usual care

2

148

Std. Mean Difference (IV, Random, 95% CI)

0.36 [‐0.02, 0.73]

12 Physical fitness ‐ muscle strength, grip strength (paretic hand) Show forest plot

3

147

Mean Difference (IV, Random, 95% CI)

0.32 [‐0.88, 1.52]

12.1 During usual care

2

47

Mean Difference (IV, Random, 95% CI)

0.32 [‐1.12, 1.76]

12.2 After usual care

1

100

Mean Difference (IV, Random, 95% CI)

0.32 [‐1.85, 2.49]

13 Mobility ‐ walking maximum speed Show forest plot

3

168

Mean Difference (IV, Random, 95% CI)

8.48 [1.76, 15.20]

13.1 During usual care

1

29

Mean Difference (IV, Random, 95% CI)

8.00 [‐5.06, 21.06]

13.2 After usual care

2

139

Mean Difference (IV, Random, 95% CI)

8.65 [0.82, 16.48]

14 Mobility ‐ walking preferred speed (m/min) Show forest plot

10

738

Mean Difference (IV, Random, 95% CI)

4.71 [1.32, 8.10]

14.1 During usual care

3

153

Mean Difference (IV, Random, 95% CI)

3.37 [‐2.63, 9.37]

14.2 After usual care

7

585

Mean Difference (IV, Random, 95% CI)

5.13 [1.16, 9.10]

15 Mobility ‐ walking capacity (6‐MWT metres) Show forest plot

10

720

Mean Difference (IV, Random, 95% CI)

35.00 [15.91, 54.09]

15.1 During usual care

2

60

Mean Difference (IV, Random, 95% CI)

13.21 [‐75.07, 101.49]

15.2 After usual care

8

660

Mean Difference (IV, Random, 95% CI)

40.37 [24.82, 55.92]

16 Mobility ‐ Community Ambulation Speed (> 0.8 m/sec) Show forest plot

3

232

Odds Ratio (M‐H, Random, 95% CI)

1.38 [0.78, 2.42]

16.1 During usual care

1

67

Odds Ratio (M‐H, Random, 95% CI)

1.75 [0.46, 6.65]

16.2 After usual care

2

165

Odds Ratio (M‐H, Random, 95% CI)

1.31 [0.70, 2.44]

17 Physical function ‐ balance ‐ Berg Balance scale Show forest plot

9

419

Mean Difference (IV, Random, 95% CI)

2.12 [0.82, 3.41]

17.1 During usual care

5

160

Mean Difference (IV, Random, 95% CI)

0.50 [‐3.00, 4.01]

17.2 After usual care

4

259

Mean Difference (IV, Random, 95% CI)

2.64 [1.34, 3.95]

18 Physical function ‐ balance ‐ functional reach Show forest plot

2

166

Std. Mean Difference (IV, Random, 95% CI)

0.14 [‐0.22, 0.50]

18.1 During usual care

0

0

Std. Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

18.2 After usual care

2

166

Std. Mean Difference (IV, Random, 95% CI)

0.14 [‐0.22, 0.50]

19 Physical function ‐ balance ‐ combined outcome data Show forest plot

12

755

Std. Mean Difference (IV, Random, 95% CI)

0.28 [0.11, 0.45]

19.1 During usual care

5

160

Std. Mean Difference (IV, Random, 95% CI)

0.10 [‐0.23, 0.43]

19.2 After usual care

7

595

Std. Mean Difference (IV, Random, 95% CI)

0.35 [0.15, 0.54]

20 Physical function ‐ Timed Up and Go (sec) Show forest plot

7

586

Mean Difference (IV, Random, 95% CI)

‐2.21 [‐4.43, 0.02]

20.1 During usual care

2

91

Mean Difference (IV, Random, 95% CI)

‐8.17 [‐20.66, 4.33]

20.2 After usual care

5

495

Mean Difference (IV, Random, 95% CI)

‐1.45 [‐2.66, ‐0.24]

21 Health‐related QoL ‐ SF‐36 physical functioning Show forest plot

2

112

Std. Mean Difference (IV, Random, 95% CI)

0.48 [0.10, 0.85]

21.1 During usual care

0

0

Std. Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

21.2 After usual care

2

112

Std. Mean Difference (IV, Random, 95% CI)

0.48 [0.10, 0.85]

22 Health‐related QoL ‐ SF‐36 physical role functioning Show forest plot

3

178

Std. Mean Difference (IV, Random, 95% CI)

0.56 [0.26, 0.86]

22.1 During usual care

0

0

Std. Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

22.2 After usual care

3

178

Std. Mean Difference (IV, Random, 95% CI)

0.56 [0.26, 0.86]

23 Health‐related QoL ‐ SF‐36 social role functioning Show forest plot

2

112

Std. Mean Difference (IV, Random, 95% CI)

0.48 [‐0.22, 1.17]

23.1 During usual care

0

0

Std. Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

23.2 After usual care

2

112

Std. Mean Difference (IV, Random, 95% CI)

0.48 [‐0.22, 1.17]

24 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ anxiety score Show forest plot

3

391

Mean Difference (IV, Random, 95% CI)

‐0.28 [‐0.95, 0.40]

24.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

24.2 After usual care

3

391

Mean Difference (IV, Random, 95% CI)

‐0.28 [‐0.95, 0.40]

25 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ depression score Show forest plot

3

391

Mean Difference (IV, Random, 95% CI)

0.59 [‐0.08, 1.26]

25.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

25.2 After usual care

3

391

Mean Difference (IV, Random, 95% CI)

0.59 [‐0.08, 1.26]

26 Mood ‐ Stroke Impact Scale emotion score Show forest plot

2

335

Mean Difference (IV, Random, 95% CI)

2.87 [‐3.40, 9.14]

26.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

26.2 After usual care

2

335

Mean Difference (IV, Random, 95% CI)

2.87 [‐3.40, 9.14]

27 Mood ‐ combined depression scales Show forest plot

4

484

Std. Mean Difference (IV, Random, 95% CI)

‐0.01 [‐0.39, 0.37]

27.1 During usual care

0

0

Std. Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

27.2 After usual care

4

484

Std. Mean Difference (IV, Random, 95% CI)

‐0.01 [‐0.39, 0.37]

28 Cognitive function ‐ FIM cognitive score Show forest plot

2

159

Mean Difference (IV, Random, 95% CI)

‐0.08 [‐0.47, 0.31]

28.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

28.2 After usual care

2

159

Mean Difference (IV, Random, 95% CI)

‐0.08 [‐0.47, 0.31]

29 Cognitive function ‐ SIS memory and thinking Show forest plot

2

133

Mean Difference (IV, Random, 95% CI)

1.57 [‐10.56, 13.70]

29.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

29.2 After usual care

2

133

Mean Difference (IV, Random, 95% CI)

1.57 [‐10.56, 13.70]

30 Cognitive function ‐ SIS communication Show forest plot

2

133

Mean Difference (IV, Random, 95% CI)

‐1.19 [‐12.06, 9.67]

30.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

30.2 After usual care

2

133

Mean Difference (IV, Random, 95% CI)

‐1.19 [‐12.06, 9.67]

Figuras y tablas -
Comparison 5. Mixed training versus control ‐ end of intervention
Comparison 6. Mixed training versus control ‐ end of retention follow‐up

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Death Show forest plot

13

906

Risk Difference (M‐H, Random, 95% CI)

‐0.01 [‐0.03, 0.01]

1.1 During usual care

6

243

Risk Difference (M‐H, Random, 95% CI)

‐0.02 [‐0.06, 0.02]

1.2 After usual care

7

663

Risk Difference (M‐H, Random, 95% CI)

‐0.01 [‐0.03, 0.01]

2 Disability ‐ Barthel Index (BI) Show forest plot

2

103

Mean Difference (IV, Random, 95% CI)

1.82 [‐13.69, 17.33]

2.1 During usual care

1

40

Mean Difference (IV, Random, 95% CI)

9.0 [‐1.29, 19.29]

2.2 After usual care

1

63

Mean Difference (IV, Random, 95% CI)

‐6.90 [‐21.05, 7.25]

3 Disability ‐ Nottingham Extended ADL Show forest plot

2

106

Mean Difference (IV, Random, 95% CI)

3.10 [‐5.20, 11.40]

3.1 During usual care

1

40

Mean Difference (IV, Random, 95% CI)

9.5 [‐1.83, 20.83]

3.2 After usual care

1

66

Mean Difference (IV, Random, 95% CI)

0.30 [‐0.93, 1.53]

4 Disability ‐ Rivermead Mobility Index (RMI) Show forest plot

3

349

Mean Difference (IV, Random, 95% CI)

0.35 [0.02, 0.69]

4.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

4.2 After usual care

3

349

Mean Difference (IV, Random, 95% CI)

0.35 [0.02, 0.69]

5 Disability ‐ combined disability scales Show forest plot

5

452

Std. Mean Difference (IV, Random, 95% CI)

0.10 [‐0.17, 0.37]

5.1 During usual care

1

40

Std. Mean Difference (IV, Random, 95% CI)

0.53 [‐0.10, 1.16]

5.2 After usual care

4

412

Std. Mean Difference (IV, Random, 95% CI)

0.04 [‐0.25, 0.32]

6 Mobility ‐ Functional Ambulation Categories Show forest plot

1

242

Mean Difference (IV, Random, 95% CI)

0.11 [0.00, 0.22]

6.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

6.2 After usual care

1

242

Mean Difference (IV, Random, 95% CI)

0.11 [0.00, 0.22]

7 Mobility ‐ walking preferred speed (m/min) Show forest plot

5

542

Mean Difference (IV, Random, 95% CI)

2.54 [‐3.65, 8.72]

7.1 During usual care

2

136

Mean Difference (IV, Random, 95% CI)

‐1.02 [‐8.64, 6.60]

7.2 After usual care

3

406

Mean Difference (IV, Random, 95% CI)

4.29 [‐4.46, 13.05]

8 Mobility ‐ walking capacity (6‐MWT metres) Show forest plot

4

464

Mean Difference (IV, Random, 95% CI)

47.48 [23.72, 71.23]

8.1 During usual care

1

40

Mean Difference (IV, Random, 95% CI)

109.50 [17.12, 201.88]

8.2 After usual care

3

424

Mean Difference (IV, Random, 95% CI)

43.09 [18.50, 67.67]

9 Mobility ‐ community ambulation speed (> 0.8 m/sec) Show forest plot

3

217

Odds Ratio (M‐H, Random, 95% CI)

1.33 [0.70, 2.53]

9.1 During usual care

1

52

Odds Ratio (M‐H, Random, 95% CI)

2.14 [0.56, 8.12]

9.2 After usual care

2

165

Odds Ratio (M‐H, Random, 95% CI)

1.15 [0.48, 2.76]

10 Physical function ‐ balance ‐ Berg Balance Scale Show forest plot

3

201

Mean Difference (IV, Random, 95% CI)

1.86 [‐3.05, 6.78]

10.1 During usual care

2

102

Mean Difference (IV, Random, 95% CI)

2.22 [‐7.79, 12.22]

10.2 After usual care

1

99

Mean Difference (IV, Random, 95% CI)

3.0 [‐0.54, 6.54]

11 Physical function ‐ balance ‐ functional reach Show forest plot

1

66

Mean Difference (IV, Random, 95% CI)

2.5 [‐0.97, 5.97]

11.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

11.2 After usual care

1

66

Mean Difference (IV, Random, 95% CI)

2.5 [‐0.97, 5.97]

12 Physical function ‐ Timed Up and Go (sec) Show forest plot

5

510

Mean Difference (IV, Random, 95% CI)

‐1.41 [‐3.74, 0.92]

12.1 During usual care

1

62

Mean Difference (IV, Random, 95% CI)

0.0 [‐6.97, 6.97]

12.2 After usual care

4

448

Mean Difference (IV, Random, 95% CI)

‐1.61 [‐4.39, 1.17]

13 Health‐related QoL ‐ SF‐36 physical functioning Show forest plot

2

146

Mean Difference (IV, Random, 95% CI)

2.46 [‐7.20, 12.11]

13.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

13.2 After usual care

2

146

Mean Difference (IV, Random, 95% CI)

2.46 [‐7.20, 12.11]

14 Health‐related QoL ‐ SF‐36 physical role functioning Show forest plot

2

146

Mean Difference (IV, Random, 95% CI)

11.61 [2.38, 20.84]

14.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

14.2 After usual care

2

146

Mean Difference (IV, Random, 95% CI)

11.61 [2.38, 20.84]

15 Mood ‐ Stroke Impact Scale emotion score Show forest plot

2

322

Mean Difference (IV, Random, 95% CI)

0.13 [‐3.26, 3.51]

15.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

15.2 After usual care

2

322

Mean Difference (IV, Random, 95% CI)

0.13 [‐3.26, 3.51]

16 Mood ‐ Geriatric Depression Scale Show forest plot

1

80

Mean Difference (IV, Random, 95% CI)

‐1.4 [‐2.54, ‐0.26]

16.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

16.2 After usual care

1

80

Mean Difference (IV, Random, 95% CI)

‐1.4 [‐2.54, ‐0.26]

17 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ anxiety score Show forest plot

3

391

Mean Difference (IV, Random, 95% CI)

‐0.11 [‐0.78, 0.57]

17.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

17.2 After usual care

3

391

Mean Difference (IV, Random, 95% CI)

‐0.11 [‐0.78, 0.57]

18 Mood ‐ Hospital Anxiety and Depression Scale (HADS) ‐ depression score Show forest plot

3

391

Mean Difference (IV, Random, 95% CI)

0.26 [‐0.43, 0.96]

18.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

18.2 After usual care

3

391

Mean Difference (IV, Random, 95% CI)

0.26 [‐0.43, 0.96]

19 Mood ‐ combined depression scales Show forest plot

4

471

Std. Mean Difference (IV, Random, 95% CI)

‐0.06 [‐0.33, 0.22]

19.1 During usual care

0

0

Std. Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

19.2 After usual care

4

471

Std. Mean Difference (IV, Random, 95% CI)

‐0.06 [‐0.33, 0.22]

20 Cognitive function ‐ FIM cognitive score Show forest plot

1

93

Mean Difference (IV, Random, 95% CI)

0.40 [‐0.19, 0.99]

20.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

20.2 After usual care

1

93

Mean Difference (IV, Random, 95% CI)

0.40 [‐0.19, 0.99]

21 Cognitive function ‐ SIS memory and thinking Show forest plot

1

93

Mean Difference (IV, Random, 95% CI)

4.30 [‐3.32, 11.92]

21.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

21.2 After usual care

1

93

Mean Difference (IV, Random, 95% CI)

4.30 [‐3.32, 11.92]

22 Cognitive function ‐ SIS communication Show forest plot

1

93

Mean Difference (IV, Random, 95% CI)

2.90 [‐4.16, 9.96]

22.1 During usual care

0

0

Mean Difference (IV, Random, 95% CI)

0.0 [0.0, 0.0]

22.2 After usual care

1

93

Mean Difference (IV, Random, 95% CI)

2.90 [‐4.16, 9.96]

Figuras y tablas -
Comparison 6. Mixed training versus control ‐ end of retention follow‐up
Comparison 7. Cardiorespiratory versus resistance versus mixed training

Outcome or subgroup title

No. of studies

No. of participants

Statistical method

Effect size

1 Disability ‐ combined disability scales Show forest plot

18

Std. Mean Difference (IV, Random, 95% CI)

Subtotals only

1.1 Cardiorespiratory training

8

462

Std. Mean Difference (IV, Random, 95% CI)

0.52 [0.19, 0.84]

1.2 Resistance training

1

42

Std. Mean Difference (IV, Random, 95% CI)

0.12 [‐0.48, 0.73]

1.3 Mixed training

9

604

Std. Mean Difference (IV, Random, 95% CI)

0.23 [0.03, 0.42]

2 Mobility ‐ walking maximal speed Show forest plot

26

1176

Mean Difference (IV, Random, 95% CI)

5.60 [3.11, 8.08]

2.1 Cardiorespiratory training

17

782

Mean Difference (IV, Random, 95% CI)

7.66 [3.65, 11.68]

2.2 Resistance training

7

250

Mean Difference (IV, Random, 95% CI)

2.75 [‐0.61, 6.12]

2.3 Mixed training

3

144

Mean Difference (IV, Random, 95% CI)

8.92 [1.74, 16.10]

3 Mobility ‐ walking preferred speed Show forest plot

26

1481

Mean Difference (IV, Random, 95% CI)

3.98 [1.96, 6.01]

3.1 Cardiorespiratory training

12

588

Mean Difference (IV, Random, 95% CI)

4.47 [2.07, 6.87]

3.2 Resistance training

5

179

Mean Difference (IV, Random, 95% CI)

1.97 [‐3.76, 7.71]

3.3 Mixed training

10

714

Mean Difference (IV, Random, 95% CI)

4.68 [1.26, 8.09]

4 Mobility ‐ walking capacity (6‐MWT distance) Show forest plot

30

1792

Mean Difference (IV, Random, 95% CI)

30.14 [21.27, 39.00]

4.1 Cardiorespiratory training

16

882

Mean Difference (IV, Random, 95% CI)

33.41 [19.04, 47.78]

4.2 Resistance training

5

214

Mean Difference (IV, Random, 95% CI)

24.83 [11.68, 37.97]

4.3 Mixed training

10

696

Mean Difference (IV, Random, 95% CI)

35.30 [15.88, 54.71]

5 Physical Function ‐ Balance ‐ Berg Balance Scale Show forest plot

21

1062

Mean Difference (IV, Random, 95% CI)

2.29 [1.42, 3.17]

5.1 Cardiorespiratory training

8

471

Mean Difference (IV, Random, 95% CI)

1.92 [0.16, 3.68]

5.2 Resistance training

5

196

Mean Difference (IV, Random, 95% CI)

3.24 [2.11, 4.38]

5.3 Mixed training

9

395

Mean Difference (IV, Random, 95% CI)

2.10 [0.73, 3.48]

6 Physical function ‐ Timed up and go Show forest plot

16

1033

Mean Difference (IV, Random, 95% CI)

‐3.04 [‐4.62, ‐1.45]

6.1 Cardiorespiratory training

5

223

Mean Difference (IV, Random, 95% CI)

‐3.42 [‐4.78, ‐2.05]

6.2 Resistance training

5

224

Mean Difference (IV, Random, 95% CI)

‐3.46 [‐6.94, 0.02]

6.3 Mixed training

7

586

Mean Difference (IV, Random, 95% CI)

‐2.21 [‐4.43, 0.02]

Figuras y tablas -
Comparison 7. Cardiorespiratory versus resistance versus mixed training