Scolaris Content Display Scolaris Content Display

Interventions for promoting habitual exercise in people living with and beyond cancer

This is not the most recent version

Background

The beneficial effects of regular exercise for people living with or beyond cancer are becoming apparent. However, how to promote exercise behaviour in sedentary cancer cohorts is not as well understood. A large majority of people living with or recovering from cancer do not meet exercise recommendations. Hence, reviewing the evidence on how to promote and sustain exercise behaviour is important.

Objectives

To assess the effects of interventions to promote exercise behaviour in sedentary people living with and beyond cancer and to address the following questions: Which interventions are most effective in improving aerobic fitness and skeletal muscle strength and endurance? What adverse effects are attributed to different exercise interventions? Which interventions are most effective in improving exercise behaviour amongst patients with different cancers? Which interventions are most likely to promote long‐term (12 months or longer) exercise behaviour? What frequency of contact with exercise professionals is associated with increased exercise behaviour? What theoretical basis is most often associated with increased exercise behaviour? What behaviour change techniques are most often associated with increased exercise behaviour?

Search methods

We searched the following electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 8, 2012), MEDLINE, EMBASE, AMED, CINAHL, PsycLIT/PsycINFO, SportDiscus and PEDro from inception to August 2012. We also searched the grey literature, wrote to leading experts in the field, wrote to charities and searched reference lists of other recent systematic reviews.

Selection criteria

We included only randomised controlled trials (RCTs) that compared an exercise intervention with a usual care approach in sedentary people over the age of 18 with a homogenous primary cancer diagnosis.

Data collection and analysis

Two review authors working independently (LB and KH) screened all titles and abstracts to identify studies that might meet the inclusion criteria, or that cannot be safely excluded without assessment of the full text (e.g. when no abstract is available). All eligible papers were formally abstracted by at least two members of the review author team working independently (LB and KH) and using the data collection form. When possible, and if appropriate, we performed a fixed‐effect meta‐analysis of study outcomes. For continuous outcomes (e.g. cardiorespiratory fitness), we extracted the final value, the standard deviation of the outcome of interest and the number of participants assessed at follow‐up in each treatment arm, to estimate standardised mean difference (SMD) between treatment arms. SMD was used, as investigators used heterogeneous methods to assess individual outcomes. If a meta‐analysis was not possible or was not appropriate, we synthesised studies as a narrative.

Main results

Fourteen trials were included in this review, involving a total of 648 participants. Only studies involving breast, prostate or colorectal cancer were identified as eligible. Just six trials incorporated a target level of exercise that could meet current recommendations. Only three trials were identified that attempted to objectively validate independent exercise behaviour with accelerometers or heart rate monitoring. Adherence to exercise interventions, which is crucial for understanding treatment dose, is often poorly reported. It is important to note that the fundamental metrics of exercise behaviour (i.e. frequency, intensity and duration, repetitions, sets and intensity of resistance training), although easy to devise and report, are seldom included in published clinical trials.

None of the included trials reported that 75% or greater adherence (the stated primary outcome for this review) of the intervention group met current aerobic exercise recommendations at any given follow‐up. Just two trials reported six weeks of resistance exercise behaviour that would meet the guideline recommendations. However, three trials reported adherence of 75% or greater to an aerobic exercise goal that was less than the current guideline recommendation of 150 minutes per week. All three incorporated both supervised and independent exercise components as part of the intervention, and none placed restrictions on the control group in terms of exercise behaviour. These three trials shared programme set goals and the following behaviour change techniques: generalisation of a target behaviour; prompting of self‐monitoring of behaviour; and prompting of practise. Despite the uncertainty surrounding adherence in many of the included trials, interventions caused improvements in aerobic exercise tolerance at 8 to 12 weeks (from 7 studies, SMD 0.73, 95% confidence interval (CI) 0.51 to 0.95) in intervention participants compared with controls. At six months, aerobic exercise tolerance was also improved (from 5 studies, SMD 0.70, 95% CI 0.45 to 0.94), but it should be noted that four of the five trials used in this analysis had a high risk of bias, hence caution is warranted in interpretation of results. Attrition over the course of these interventions is typically low (median 6%).

Authors' conclusions

Interventions to promote exercise in cancer survivors who report better levels of adherence share some common behaviour change techniques. These involve setting programme goals, prompting practise and self‐monitoring and encouraging participants to attempt to generalise behaviours learned in supervised exercise environments to other, non‐supervised contexts. However, expecting most sedentary survivors to achieve current guideline recommendations of at least 150 minutes per week of aerobic exercise is likely to be unrealistic. As with all well‐designed exercise programmes in any context, prescriptions should be designed around individual capabilities, and frequency, duration and intensity or sets, repetitions, intensity or resistance training should be generated on this basis.

PICOs

Population
Intervention
Comparison
Outcome

The PICO model is widely used and taught in evidence-based health care as a strategy for formulating questions and search strategies and for characterizing clinical studies or meta-analyses. PICO stands for four different potential components of a clinical question: Patient, Population or Problem; Intervention; Comparison; Outcome.

See more on using PICO in the Cochrane Handbook.

Plain language summary

Title: Interventions for promoting habitual exercise in people living with and beyond cancer

Question: What are the most effective ways to improve and sustain exercise behaviour in cancer survivors, that is, people living with and beyond cancer?

Background: Being regularly active for people living with and beyond cancer can have a wide range of beneficial effects. These range from improving quality of life to improving physical function. It might also reduce the risk of cancer recurrence and of dying from cancer. We know that most people living with and beyond cancer are not regularly physically active. So, we need to understand how to get those individuals who are not currently exercising to begin to be active and how to help them maintain this change in behaviour.

Study characteristics: We included only studies that compared an exercise intervention with a usual care comparison. Only studies including sedentary people over the age of 18 with the same cancer diagnosis were eligible. Participants must have been put in a group at random. We searched for evidence from research databases up to August 2012.

Key results: This review included 14 trials involving 648 participants. Evidence suggests that we have a poor understanding of how to encourage people living with and beyond cancer to meet current exercise recommendations. Furthermore, how trial investigators report what their exercise programme involved and how much of it the participants actually did is not good. However, we did find some evidence that setting exercise goals, prompting people to exercise, getting people to monitor their own behaviour and getting people to think about how to do exercise outside of a supervised environment could be helpful. In addition, we found some evidence suggesting that study participants are better able to tolerate the exertion of undertaking exercise for up to six months.

Quality of the evidence: The main problems that we found regarding the quality of studies in this review included not knowing how study investigators conducted randomisation for the trials, and whether investigators who were doing trial assessments knew to which group the person they were assessing had been randomly assigned.