Scolaris Content Display Scolaris Content Display

Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth

This is not the most recent version

Abstract

available in

Background

Respiratory morbidity including respiratory distress syndrome (RDS) is a serious complication of preterm birth and the primary cause of early neonatal mortality and disability. While researching the effects of the steroid dexamethasone on premature parturition in fetal sheep in 1969, Liggins found that there was some inflation of the lungs of lambs born at gestations at which the lungs would be expected to be airless. Liggins and Howie published the first randomised controlled trial in humans in 1972 and many others followed.

Objectives

To assess the effects of administering a course of corticosteroids to the mother prior to anticipated preterm birth on fetal and neonatal morbidity and mortality, maternal mortality and morbidity, and on the child in later life.

Search methods

We searched Cochrane Pregnancy and Childbirth's Trials Register (17 February 2016) and reference lists of retrieved studies.

Selection criteria

We considered all randomised controlled comparisons of antenatal corticosteroid administration (betamethasone, dexamethasone, or hydrocortisone) with placebo, or with no treatment, given to women with a singleton or multiple pregnancy, prior to anticipated preterm delivery (elective, or following spontaneous labour), regardless of other co‐morbidity, for inclusion in this review. Most women in this review received a single course of steroids; however, nine of the included trials allowed for women to have weekly repeats.

Data collection and analysis

Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. The quality of the evidence was assessed using the GRADE approach.

Main results

This update includes 30 studies (7774 women and 8158 infants). Most studies are of low or unclear risk for most bias domains. An assessment of high risk usually meant a trial had potential for performance bias due to lack of blinding. Two trials had low risks of bias for all risk of bias domains.

Treatment with antenatal corticosteroids (compared with placebo or no treatment) is associated with a reduction in the most serious adverse outcomes related to prematurity, including: perinatal death (average risk ratio (RR) 0.72, 95% confidence interval (CI) 0.58 to 0.89; participants = 6729; studies = 15; Tau² = 0.05, I² = 34%; moderate‐quality); neonatal death (RR 0.69, 95% CI 0.59 to 0.81; participants = 7188; studies = 22), RDS (average RR 0.66, 95% CI 0.56 to 0.77; participants = 7764; studies = 28; Tau² = 0.06, I² = 48%; moderate‐quality); moderate/severe RDS (average RR 0.59, 95% CI 0.38 to 0.91; participants = 1686; studies = 6; Tau² = 0.14, I² = 52%); intraventricular haemorrhage (IVH) (average RR 0.55, 95% CI 0.40 to 0.76; participants = 6093; studies = 16; Tau² = 0.10, I² = 33%; moderate‐quality), necrotising enterocolitis (RR 0.50, 95% CI 0.32 to 0.78; participants = 4702; studies = 10); need for mechanical ventilation (RR 0.68, 95% CI 0.56 to 0.84; participants = 1368; studies = 9); and systemic infections in the first 48 hours of life (RR 0.60, 95% CI 0.41 to 0.88; participants = 1753; studies = 8).

There was no obvious benefit for: chronic lung disease (average RR 0.86, 95% CI 0.42 to 1.79; participants = 818; studies = 6; Tau² = 0.38 I² = 65%); mean birthweight (g) (MD ‐18.47, 95% CI ‐40.83 to 3.90; participants = 6182; studies = 16; moderate‐quality); death in childhood (RR 0.68, 95% CI 0.36 to 1.27; participants = 1010; studies = 4); neurodevelopment delay in childhood (RR 0.64, 95% CI 0.14 to 2.98; participants = 82; studies = 1); or death into adulthood (RR 1.00, 95% CI 0.56 to 1.81; participants = 988; studies = 1).

Treatment with antenatal corticosteroids does not increase the risk of chorioamnionitis (RR 0.83, 95% CI 0.66 to 1.06; participants = 5546; studies = 15; moderate‐quality evidence) or endometritis (RR 1.20, 95% CI 0.87 to 1.63; participants = 4030; studies = 10; Tau² = 0.11, I² = 28%; moderate‐quality). No increased risk in maternal death was observed. However, the data on maternal death is based on data from a single trial with two deaths; four other trials reporting maternal death had zero events (participants = 3392; studies = 5; moderate‐quality).

There is no definitive evidence to suggest that antenatal corticosteroids work differently in any pre‐specified subgroups (singleton versus multiple pregnancy; membrane status; presence of hypertension) or for different study protocols (type of corticosteroid; single course or weekly repeats).

GRADE outcomes were downgraded to moderate‐quality. Downgrading decisions (for perinatal death, RDS, IVH, and mean birthweight) were due to limitations in study design or concerns regarding precision (chorioamnionitis, endometritis). Maternal death was downgraded for imprecision due to few events.

Authors' conclusions

Evidence from this update supports the continued use of a single course of antenatal corticosteroids to accelerate fetal lung maturation in women at risk of preterm birth. A single course of antenatal corticosteroids could be considered routine for preterm delivery. It is important to note that most of the evidence comes from high income countries and hospital settings; therefore, the results may not be applicable to low‐resource settings with high rates of infections.

There is little need for further trials of a single course of antenatal corticosteroids versus placebo in singleton pregnancies in higher income countries and hospital settings. However, data are sparse in lower income settings. There are also few data regarding risks and benefits of antenatal corticosteroids in multiple pregnancies and other high‐risk obstetric groups. Further information is also required concerning the optimal dose‐to‐delivery interval, and the optimal corticosteroid to use.

We encourage authors of previous studies to provide further information, which may answer any remaining questions about the use of antenatal corticosteroids in such pregnancies without the need for further randomised controlled trials. Individual patient data meta‐analysis from published trials is likely to answer some of the evidence gaps. Follow‐up studies into childhood and adulthood, particularly in the late preterm gestation and repeat courses groups, are needed. We have not examined the possible harmful effects of antenatal corticosteroids in low‐resource settings in this review. It would be particularly relevant to explore this finding in adequately powered prospective trials.

PICOs

Population
Intervention
Comparison
Outcome

The PICO model is widely used and taught in evidence-based health care as a strategy for formulating questions and search strategies and for characterizing clinical studies or meta-analyses. PICO stands for four different potential components of a clinical question: Patient, Population or Problem; Intervention; Comparison; Outcome.

See more on using PICO in the Cochrane Handbook.

Plain language summary

Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth

What is the issue?

Babies born very early, or very preterm, are at risk of having breathing difficulties and other serious health problems at birth, as a child and later in life. Some babies born very early do not survive these difficulties. Some babies have health problems that prevent them from developing as they should and can lead to problems with movement or learning. Corticosteroids are medicines given to women in early labour to help the babies' lungs to mature more quickly and so reduce the number of babies who die or suffer breathing problems at birth.

Why is this important?

Breathing problems are the main cause of death and serious health problems for babies born very early. Pregnant women who have ruptured membranes or spontaneous preterm labour can take corticosteroids to help mature the baby's lungs. In this review, we compared women and babies who had these medicines to women and babies who did not.

What evidence did we find?

We searched Cochrane Pregnancy and Childbirth's Trials Register (17 February 2016).

We looked at 30 trials where corticosteroids were given to women at risk of preterm birth (7774 women and 8158 infants). The trials were all carried out in hospitals in high‐income countries. Our review shows that a single course of a corticosteroids, given to the mother in preterm labour and before the baby is born, helps to develop the baby's lungs and reduces complications such as breathing problems. Furthermore, this treatment results in fewer babies dying at birth, and fewer babies having other serious health problems that commonly affect babies born very early (such as bleeding in the brain or damage to the baby's intestines).

For the mother, having a single course of corticosteroids did not appear to impact on the number of women who had infections of the womb (chorioamnionitis or endometritis). There were too few data available to fully assess the outcome of maternal death.

The quality of the trial evidence was moderate, which means that we can be reasonably confident that future studies of corticosteroids in similar hospital settings will come to the same conclusions about the benefits and safety of treatment for women and babies.

What does this mean?

Most pregnant women who are at risk of giving birth very early or very preterm will benefit from having a corticosteroid medicine. These medicines appear to be safe for pregnant women and babies when given in hospital settings in high‐income countries, and they improve the chance that the preterm baby will survive and avoid immediate health problems. We have less information about the impact of steroids on women with multiple pregnancy and on women with other problems during pregnancy such as high blood pressure or ruptured membranes. We are uncertain whether a specific steroid or dosage is best for women and babies.

Evidence in this review comes from high‐income countries and hospital settings; therefore, the results may not be applicable to low‐resource settings with high rates of infections.