Scolaris Content Display Scolaris Content Display

Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride

This is not the most recent version

Background

In spite of more than 100 years of investigations the question of whether a reduced sodium intake improves health is still unsolved.

Objectives

To estimate the effects of low sodium intake versus high sodium intake on systolic and diastolic blood pressure (SBP and DBP), plasma or serum levels of renin, aldosterone, catecholamines, cholesterol, high‐density lipoprotein (HDL), low‐density lipoprotein (LDL) and triglycerides.

Search methods

The Cochrane Hypertension Information Specialist searched the following databases for randomized controlled trials up to March 2016: the Cochrane Hypertension Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (2016, Issue 3), MEDLINE (from 1946), Embase (from 1974), the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov. We also searched the reference lists of relevant articles.

Selection criteria

Studies randomising persons to low‐sodium and high‐sodium diets were included if they evaluated at least one of the above outcome parameters.

Data collection and analysis

Two review authors independently collected data, which were analysed with Review Manager 5.3.

Main results

A total of 185 studies were included. The average sodium intake was reduced from 201 mmol/day (corresponding to high usual level) to 66 mmol/day (corresponding to the recommended level).

The effect of sodium reduction on blood pressure (BP) was as follows: white people with normotension: SBP: mean difference (MD) ‐1.09 mmHg (95% confidence interval (CI): ‐1.63 to ‐0.56; P = 0.0001); 89 studies, 8569 participants; DBP: + 0.03 mmHg (MD 95% CI: ‐0.37 to 0.43; P = 0.89); 90 studies, 8833 participants. High‐quality evidence.

Black people with normotension: SBP: MD ‐4.02 mmHg (95% CI:‐7.37 to ‐0.68; P = 0.002); seven studies, 506 participants; DBP: MD ‐2.01 mmHg (95% CI:‐4.37 to 0.35; P = 0.09); seven studies, 506 participants. Moderate‐quality evidence.

Asian people with normotension: SBP: MD ‐0.72 mmHg (95% CI: ‐3.86 to 2.41; P = 0.65); DBP: MD ‐1.63 mmHg (95% CI:‐3.35 to 0.08; P =0.06); three studies, 393 participants. Moderate‐quality evidence.

White people with hypertension: SBP: MD ‐5.51 mmHg (95% CI: ‐6.45 to ‐4.57; P < 0.00001); 84 studies, 5925 participants; DBP: MD ‐2.88 mmHg (95% CI: ‐3.44 to ‐2.32; P < 0.00001); 85 studies, 6001 participants. High‐quality evidence.

Black people with hypertension: SBP MD ‐6.64 mmHg (95% CI:‐9.00 to ‐4.27; P = 0.00001); eight studies, 619 participants; DBP ‐2.91 mmHg (95% CI:‐4.52, ‐1.30; P = 0.0004); eight studies, 619 participants. Moderate‐quality evidence.

Asian people with hypertension: SBP: MD ‐7.75 mmHg (95% CI:‐11,44 to ‐4.07; P < 0.0001) nine studies, 501 participants; DBP: MD ‐2.68 mmHg (95% CI: ‐4.21 to ‐1.15; P = 0.0006). Moderate‐quality evidence.

In plasma or serum, there was a significant increase in renin (P < 0.00001), aldosterone (P < 0.00001), noradrenaline (P < 0.00001), adrenaline (P < 0.03), cholesterol (P < 0.0005) and triglyceride (P < 0.0006) with low sodium intake as compared with high sodium intake. All effects were stable in 125 study populations with a sodium intake below 250 mmol/day and a sodium reduction intervention of at least one week.

Authors' conclusions

Sodium reduction from an average high usual sodium intake level (201 mmol/day) to an average level of 66 mmol/day, which is below the recommended upper level of 100 mmol/day (5.8 g salt), resulted in a decrease in SBP/DBP of 1/0 mmHg in white participants with normotension and a decrease in SBP/DBP of 5.5/2.9 mmHg in white participants with hypertension. A few studies showed that these effects in black and Asian populations were greater. The effects on hormones and lipids were similar in people with normotension and hypertension. Renin increased 1.60 ng/mL/hour (55%); aldosterone increased 97.81 pg/mL (127%); adrenalin increased 7.55 pg/mL (14%); noradrenalin increased 63.56 pg/mL: (27%); cholesterol increased 5.59 mg/dL (2.9%); triglyceride increased 7.04 mg/dL (6.3%).

PICOs

Population
Intervention
Comparison
Outcome

The PICO model is widely used and taught in evidence-based health care as a strategy for formulating questions and search strategies and for characterizing clinical studies or meta-analyses. PICO stands for four different potential components of a clinical question: Patient, Population or Problem; Intervention; Comparison; Outcome.

See more on using PICO in the Cochrane Handbook.

The effect of a low salt diet on blood pressure and some hormones and lipids in people with normal and elevated blood pressure

Review question

Studies in which participants were distributed by chance into groups with high and low salt intake were analysed to investigate the effect of reduced salt intake on blood pressure (BP) and potential side effects of sodium reduction on some hormones and lipids.

Background

As a reduction in salt intake decreases blood pressure (BP) in individuals with elevated BP, we are commonly advised to cut down on salt. However, the effect of salt reduction on BP in people with a normal BP has been questioned. Furthermore, several studies have shown that salt reduction activates the salt conserving hormonal system (renin and aldosterone), the stress hormones (adrenalin and noradrenalin) and increases fatty substances (cholesterol and triglyceride) in the blood.

Search date

The present evidence is current to April 2016.

Study characteristics

One hundred and eighty‐five intervention studies of 12,210 individuals lasting four to 1100 days were included, which evaluated at least one of the effect measures. Participants were healthy or had elevated blood pressure. Longitudinal studies have shown that the effect of reduced salt intake on BP is stable after at maximum seven days and population studies have shown that very few people eat more than 14.5 g salt per day. Therefore, we also perfomed subgroup sub‐analyses of 125 studies with a duration of at least seven days and a salt intake of maximum 14.5 g.

Study funding sources

Forty‐four studies did not mention support. One hundred and twenty‐two studies were supported by public foundations. Twelve studies were supported by the pharmaceutical industry and one study by an electronic company. Six studies were supported by food industry organisations.

Key results

The mean dietary sodium intake was reduced from 11.5 g per day to 3.8 g per day. The reduction in SBP/DBP in people with normotension was about 1/0 mmHg, and in people with hypertension about 5.5/2.9 mmHg. In contrast, the effect on hormones and lipids were similar in people with normotension and hypertension. Renin increased 1.60 ng/mL/hour (55%); aldosterone increased 97.81 pg/mL (127%); adrenalin increased 7.55 pg/mL (14%); noradrenalin increased 63.56 pg/mL (27%); cholesterol increased 5.59 mg/dL (2.9%); triglyceride increased 7.04 mg/dL (6.3%).

Quality of evidence

Only randomised controlled trials were included and the basic grade of evidence was therefore considered to be high, although the grade of evidence was downgraded in some of the smaller analyses. In general, the description of the randomisation procedure was insufficient, introducing a bias which could exaggerate the effects, but many of the studies were published in a period where it was not customary to report such descriptions. The majority of studies were open, but the outcomes of these did not differ from the outcomes of the double‐blind studies. Almost all individual studies of participants with normal blood pressure (BP) show no significant effect of sodium reduction on BP, whereas a large number of studies in people with hypertension did show significant effect of sodium reduction on BP. Thus, there was a high grade of consistency between the outcomes of the individual studies and the outcomes of the meta‐analyses. Sensitivity analyses of studies lasting at least one week (the time of maximal efficacy) confirmed the primary analyses. Finally, the impact of commercial interests on the outcomes was negligible.